Skip to content
2000
Volume 32, Issue 21
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Human Immunodeficiency Virus (HIV) infection is still a major global problem, whose drug treatment consists of prophylactic prevention and antiretroviral combination therapy for better pharmacological efficacy and control of the circulating virus. However, there are still pharmacological problems that need to be overcome, such as low aqueous solubility of drugs, toxicity, and low patient adherence. Drug delivery technologies can be used to overcome these barriers.

Objective

This review summarized the latest drug delivery systems for HIV treatment. Initially, an overview of the current therapy was presented, along with the problems it presents. Then, the latest drug delivery systems used to overcome the challenges imposed in conventional HIV therapy were discussed.

Conclusion

This review examines innovative approaches for HIV treatment, where various drug delivery systems have shown significant advantages, such as high drug encapsulation, improved solubility, and enhanced bioavailability both and . Strategies like cyclodextrins, solid dispersions, microneedles, and nanoparticles are explored to address challenges in drug solubility, bioavailability, and administration routes. Despite progress, obstacles like limited clinical trials and industrial scalability hinder the widespread adoption of these formulations, emphasizing the need for further research and collaboration to optimize and ensure accessibility of innovative HIV therapies, mainly in regions where access to HIV treatment is scarce and remains a challenge.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673306606240802111136
2024-08-13
2025-10-09
Loading full text...

Full text loading...

References

  1. PedroK.D. HendersonA.J. AgostoL.M. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir.Virus Res.201926511512110.1016/j.virusres.2019.03.01430905686
    [Google Scholar]
  2. TouwM. Update on human immunodeficiency virus.Physician Assist. Clin.20172232734310.1016/j.cpha.2016.12.013
    [Google Scholar]
  3. ShawG.M. HunterE. HIV Transmission.Cold Spring Harb. Perspect. Med.2012211a006965a00696510.1101/cshperspect.a00696523043157
    [Google Scholar]
  4. MelhuishA. LewthwaiteP. Natural history of HIV and AIDS.Medicine (Abingdon)201846635636110.1016/j.mpmed.2018.03.010
    [Google Scholar]
  5. SharpP.M. HahnB.H. Origins of HIV and the AIDS pandemic.Cold Spring Harb. Perspect. Med.201111a006841a00684110.1101/cshperspect.a00684122229120
    [Google Scholar]
  6. RamanaL.N. AnandA.R. SethuramanS. KrishnanU.M. Targeting strategies for delivery of anti-HIV drugs.J. Control. Release201419227128310.1016/j.jconrel.2014.08.00325119469
    [Google Scholar]
  7. World Health OrganizationHIV and AIDS.2023Available From: https://www.who.int/news-room/fact-sheets/detail/hiv-aids
  8. UNAIDSGlobal HIV & AIDS statistics - fact sheet.2022Available From: https://www.unaids.org/en/resources/fact-sheet?_gl=1*1gq9cc4*_ga*NTYyNjc5NjYxLjE2OTYyODgzODQ.*_ga_T7FBEZEXNC*MTY5NjI4ODM4My4xLjEuMTY5NjI4ODYwMi40My4wLjA.&_ga=2.91300504.322923887.1696288384-562679661.1696288384
  9. UNAIDSFact Sheet 2022, Estatísticas Globais do HIV.2022Available From: https://unaids.org.br/wp-content/uploads/2022/07/2022_07_27_Factsheet_PT.pdf
  10. GhosnJ. TaiwoB. SeedatS. AutranB. KatlamaC. HIV.Lancet20183921014868569710.1016/S0140‑6736(18)31311‑430049419
    [Google Scholar]
  11. GandhiR.T. BedimoR. HoyJ.F. LandovitzR.J. SmithD.M. EatonE.F. LehmannC. SpringerS.A. SaxP.E. ThompsonM.A. BensonC.A. BuchbinderS.P. del RioC. EronJ.J.Jr GünthardH.F. MolinaJ.M. JacobsenD.M. SaagM.S. Antiretroviral drugs for treatment and prevention of HIV infection in adults.JAMA20233291638410.1001/jama.2022.2224636454551
    [Google Scholar]
  12. ArtsE.J. HazudaD.J. HIV-1 antiretroviral drug therapy.Cold Spring Harb. Perspect. Med.201224a007161a00716110.1101/cshperspect.a00716122474613
    [Google Scholar]
  13. SilvestreA.L.P. Oshiro-JúniorJ.A. GarciaC. TurcoB.O. da Silva LeiteJ.M. de Lima DamascenoB.P.G. SoaresJ.C.M. ChorilliM. Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment.Curr. Med. Chem.202128240141810.2174/1875533XMTAzfNzkzy31965938
    [Google Scholar]
  14. RojoJ. Sousa-HervesA. MascaraqueA. Perspectives of carbohydrates in drug discovery. Reference Module in Chemistry, Molecular Sciences and Chemical EngineeringAmsterdamElsevier201710.1016/B978‑0‑12‑409547‑2.12311‑X
    [Google Scholar]
  15. da Silva LeiteJ.M. PatriotaY.B.G. de La RocaM.F. Soares-SobrinhoJ.L. New perspectives in drug delivery systems for the treatment of tuberculosis.Curr. Med. Chem.202229111936195810.2174/092986732866621062915490834212827
    [Google Scholar]
  16. VoC.L.N. ParkC. LeeB.J. Current trends and future perspectives of solid dispersions containing poorly water- soluble drugs.Eur. J. Pharm. Biopharm.20138533 PART B79981310.1016/j.ejpb.2013.09.00724056053
    [Google Scholar]
  17. HariB.V. DevendharanK. NarayananN. Approaches of novel drug delivery systems for anti-HIV agents.Int. J. Drug Develop. Res.20135419
    [Google Scholar]
  18. SosnikA. AugustineR. Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them.Adv. Drug Deliv. Rev.201610310310512010.1016/j.addr.2015.12.02226772138
    [Google Scholar]
  19. CunhaR.F. SimõesS. CarvalheiroM. PereiraJ.M.A. CostaQ. AscensoA. Novel antiretroviral therapeutic strategies for HIV.Molecules20212617530510.3390/molecules2617530534500737
    [Google Scholar]
  20. NelsonA.G. ZhangX. GanapathiU. SzekelyZ. FlexnerC.W. OwenA. SinkoP.J. Drug delivery strategies and systems for HIV/AIDS pre-exposure prophylaxis and treatment.J. Control. Release201521966968010.1016/j.jconrel.2015.08.04226315816
    [Google Scholar]
  21. LimenhL.W. Advances in the transdermal delivery of antiretroviral drugs.SAGE Open Med.2024122050312123122360010.1177/2050312123122360038249942
    [Google Scholar]
  22. SarmaA. DasM.K. Nose to brain delivery of antiretroviral drugs in the treatment of neuro-AIDS.Molecular Biomedicine2020111510.1186/s43556‑020‑00019‑834765998
    [Google Scholar]
  23. MehrotraS. Salwa BgP.K. BhaskaranN.A. Srinivas ReddyJ. KumarL. Nose-to-Brain delivery of antiretroviral drug loaded lipidic nanocarriers to purge HIV reservoirs in CNS: A safer approach.J. Drug Deliv. Sci. Technol.20238710483310.1016/j.jddst.2023.104833
    [Google Scholar]
  24. NabiB. RehmanS. PottooF.H. BabootaS. AliJ. Directing the antiretroviral drugs to the brain reservoir: A nanoformulation approach for Neuro-AIDS.Curr. Drug Metab.202122428028610.2174/18755453MTEwlMTc9532964821
    [Google Scholar]
  25. KakadS.P. KshirsagarS.J. Neuro-AIDS: Current status and challenges to antiretroviral drug therapy (ART) for its treatment.Curr. Drug Ther.202015546948110.2174/1574885515666200604123046
    [Google Scholar]
  26. MhambiS. FisherD. TchokonteM.B.T. DubeA. Permeation challenges of drugs for treatment of neurological tuberculosis and HIV and the application of magneto- electric nanoparticle drug delivery systems.Pharmaceutics2021139147910.3390/pharmaceutics1309147934575555
    [Google Scholar]
  27. KharwadeR. MoreS. MahajanN. AgrawalP. Functionalised dendrimers: potential tool for antiretroviral therapy.Curr. Nanosci.202016570872210.2174/1573413716666200213114836
    [Google Scholar]
  28. AslF.D. MousazadehM. TajiS. BahmaniA. KhashayarP. AzimzadehM. MostafaviE. Nano drug-delivery systems for management of AIDS: Liposomes, dendrimers, gold and silver nanoparticles.Nanomedicine (Lond.)202318327930210.2217/nnm‑2022‑024837125616
    [Google Scholar]
  29. NayanM.U. PanjaS. SultanaA. ZamanL.A. VoraL.K. SillmanB. GendelmanH.E. EdagwaB. Polymer delivery systems for long-acting antiretroviral drugs.Pharmaceutics202416218310.3390/pharmaceutics1602018338399244
    [Google Scholar]
  30. SarodeI.M. JindalA.B. Current status of dolutegravir delivery systems for the treatment of HIV-1 infection.J. Drug Deliv. Sci. Technol.20227610380210.1016/j.jddst.2022.103802
    [Google Scholar]
  31. TsengA. SeetJ. PhillipsE.J. The evolution of three decades of antiretroviral therapy: Challenges, triumphs and the promise of the future.Br. J. Clin. Pharmacol.201579218219410.1111/bcp.1240324730660
    [Google Scholar]
  32. MossJ.A. HIV/AIDS review.Radiol. Technol.201384324726723322863
    [Google Scholar]
  33. BergA. Insights of antiretrovirals: A new drug delivery systems.J. Antivir. Antiretrovir.202001110.35248/1948‑5964.21.S12.E001
    [Google Scholar]
  34. EronJ.J.Jr LelievreJ.D. KalayjianR. SlimJ. WurapaA.K. StephensJ.L. McDonaldC. CuaE. WilkinA. SchmiedB. McKellarM. CoxS. MajeedS.R. JiangS. ChengA. DasM. SenGuptaD. Safety of elvitegravir, cobicistat, emtricitabine, and tenofovir alafenamide in HIV-1-infected adults with end-stage renal disease on chronic haemodialysis: An open-label, single-arm, multicentre, phase 3b trial.Lancet HIV201961e15e2410.1016/S2352‑3018(18)30296‑030555051
    [Google Scholar]
  35. VenterW.D.F. MoorhouseM. SokhelaS. FairlieL. MashabaneN. MasenyaM. SerenataC. AkpomiemieG. QaviA. ChandiwanaN. NorrisS. ChersichM. ClaydenP. AbramsE. ArulappanN. VosA. McCannK. SimmonsB. HillA. Dolutegravir plus two different prodrugs of tenofovir to treat HIV.N. Engl. J. Med.2019381980381510.1056/NEJMoa190282431339677
    [Google Scholar]
  36. O’CofaighE. LewthwaiteP. Natural history of HIV and AIDS.Medicine (Abingdon)201341841141610.1016/j.mpmed.2013.05.009
    [Google Scholar]
  37. ZhangJ. VernonK. LiQ. BenkoZ. AmorosoA. NasrM. ZhaoR. Y. Single-agent and fixed-dose combination HIV-1 protease inhibitor drugs in fission yeast (Schizosaccharomyces pombe).Pathogens202110780410.3390/pathogens10070804
    [Google Scholar]
  38. Department of Health and Human ServicesPanel on Antiretroviral Guidelines for Adults and Adolescents.Available From: https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-arv
  39. Protocolo Clínico e Diretrizes Terapêuticas para Manejo da Infecção pelo HIV em Adultos.2018Available From: https://www.gov.br/aids/pt-br/central-de-conteudo/pcdts/2013/hiv-aids/pcdt_manejo_adulto_12_2018_web.pdf/view
  40. Protocolo Clínico e Diretrizes Terapêuticas para Atenção Integral às Pessoas com Infecções Sexualmente Transmissíveis1.2017Available From: https://bvsms.saude.gov.br/bvs/publicacoes/protocolo_clinico_diretrizes_terapeutica_atencao_integral_pessoas_infeccoes_sexualmente_transmissiveis.pdf
  41. OrkinC. ArastehK. Górgolas Hernández-MoraM. PokrovskyV. OvertonE.T. GirardP-M. OkaS. WalmsleyS. BettacchiC. BrinsonC. PhilibertP. LombaardJ. St ClairM. CrauwelsH. FordS.L. PatelP. ChountaV. D’AmicoR. VanveggelS. DoreyD. CutrellA. GriffithS. MargolisD.A. WilliamsP.E. ParysW. SmithK.Y. SpreenW.R. Long-acting cabotegravir and rilpivirine after oral induction for HIV-1 infection.N. Engl. J. Med.2020382121124113510.1056/NEJMoa190951232130806
    [Google Scholar]
  42. SaxP.E. ArribasJ.R. OrkinC. LazzarinA. PozniakA. DeJesusE. MaggioloF. StellbrinkH.J. YazdanpanahY. AcostaR. HuangH. HindmanJ.T. MartinH. BaetenJ.M. WohlD. Bictegravir/emtricitabine/tenofovir alafenamide as initial treatment for HIV-1: Five-year follow-up from two randomized trials.EClinicalMedicine20235910199110.1016/j.eclinm.2023.10199137200995
    [Google Scholar]
  43. GargA.B. NuttallJ. RomanoJ. The future of HIV microbicides: Challenges and opportunities.Antivir. Chem. Chemother.200919414315010.1177/09563202090190040119374141
    [Google Scholar]
  44. BuckheitR.W.Jr WatsonK.M. MorrowK.M. HamA.S. Development of topical microbicides to prevent the sexual transmission of HIV.Antivir. Res.201085114215810.1016/j.antiviral.2009.10.01319874851
    [Google Scholar]
  45. ValeraP. AliZ.S. CunninghamD. McLaughlinC. AcevedoS. Exploring pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) knowledge in incarcerated men.Am. J. Men Health202216410.1177/1557988322110719235796098
    [Google Scholar]
  46. EnsignL.M. ConeR. HanesJ. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers.Adv. Drug Deliv. Rev.201264655757010.1016/j.addr.2011.12.00922212900
    [Google Scholar]
  47. DavisM.T. EganD.P. KuhsM. AlbadarinA.B. GriffinC.S. CollinsJ.A. WalkerG.M. Amorphous solid dispersions of BCS class II drugs: A rational approach to solvent and polymer selection.Chem. Eng. Res. Des.201611019219910.1016/j.cherd.2016.04.008
    [Google Scholar]
  48. ChoudharyN. AvariJ. Formulation and evaluation of taste mask pellets of granisetron hydrochloride as oro dispersible tablet.Braz. J. Pharm. Sci.201551356957810.1590/S1984‑82502015000300009
    [Google Scholar]
  49. JjumbaI. KanyesigyeM. NdagijimanaG. WattiraJ. OlongC. Akumu OlokR. BeebwaE. MuzooraC. Perceived barriers and facilitators to antiretroviral therapy adherence among youth aged 15-24 years at a regional HIV clinic in South-Western Uganda: A qualitative study.Afr. Health Sci.2022222546210.4314/ahs.v22i2.736407355
    [Google Scholar]
  50. SridharI. DoshiA. JoshiB. WankhedeV. DoshiJ. Solid dispersions: An approach to enhance solubility of poorly water soluble drug.J. Sci. Innov. Res201323685694
    [Google Scholar]
  51. PandiP. BulusuR. KommineniN. KhanW. SinghM. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products.Int J Pharm202058611956010.1016/j.ijpharm.2020.119560
    [Google Scholar]
  52. AmidonG.L. LennernäsH. ShahV.P. CrisonJ.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability.Pharm. Res.199512341342010.1023/A:10162128042887617530
    [Google Scholar]
  53. GolfarY. ShayanfarA. Prediction of biopharmaceutical drug disposition classification system (BDDCS) by structural parameters.J. Pharm. Pharm. Sci.201922124726910.18433/jpps3027131287788
    [Google Scholar]
  54. SoaresK.C.C. RediguieriC.F. SouzaJ. SerraC.H.R. AbrahamssonB. GrootD.W. KoppS. LangguthP. PolliJ.E. ShahV.P. DressmanJ. Biowaiver monographs for immediate-release solid oral dosage forms: Zidovudine (azidothymidine).J. Pharm. Sci.201310282409242310.1002/jps.2362423754446
    [Google Scholar]
  55. MohsinN.U.A. AhmedM. IrfanM. Zidovudine: structural modifications and their impact on biological activities and pharmacokinectic properties.J. Chil. Chem. Soc.20196434523453010.4067/S0717‑97072019000304523
    [Google Scholar]
  56. MetryM. PolliJ.E. Evaluation of excipient risk in BCS class I and III biowaivers.AAPS J.20222412010.1208/s12248‑021‑00670‑134988701
    [Google Scholar]
  57. ShajanD.K. PandeyN. GhoshA. ChanduluruH.K. SanphuiP. Investigating the effect of emtricitabine co-crystals with aromatic carboxylic acids on solubility and diffusion permeability.Cryst. Growth Des.20232375289530010.1021/acs.cgd.3c00485
    [Google Scholar]
  58. PatilS. KadamC. PokharkarV. QbD based approach for optimization of tenofovir disoproxil fumarate loaded liquid crystal precursor with improved permeability.J. Adv. Res.20178660761610.1016/j.jare.2017.07.00528794904
    [Google Scholar]
  59. SantosK.A. DandaL.J.A. OliveiraT.C. Soares-SobrinhoJ.L. SoaresM.F.L.R. The drug loading impact on dissolution and diffusion: A case-study with amorphous solid dispersions of nevirapine.Res. Soc. Develop.202211143611710.33448/rsd‑v11i14.36117
    [Google Scholar]
  60. AlvesL.D.S. de La Roca SoaresM.F. de AlbuquerqueC.T. da SilvaÉ.R. VieiraA.C.C. FontesD.A.F. FigueirêdoC.B.M. Soares SobrinhoJ.L. Rolim NetoP.J. Solid dispersion of efavirenz in PVP K-30 by conventional solvent and kneading methods.Carbohydr. Polym.201410416617410.1016/j.carbpol.2014.01.02724607174
    [Google Scholar]
  61. RekdalM. paiA. BsM. Experimental data of co-crystals of Etravirine and L-tartaric acid.Data Brief20181613514010.1016/j.dib.2017.11.01929201980
    [Google Scholar]
  62. SaeedA.M. SchmidtJ.M. MunasingheW.P. VallabhB.K. JarvisM.F. MorrisJ.B. MostafaN.M. Comparative bioavailability of two formulations of biopharmaceutical classification system (BCS) class IV drugs: A case study of lopinavir/ritonavir.J. Pharm. Sci.2021110123963396810.1016/j.xphs.2021.08.03734530003
    [Google Scholar]
  63. ZolotovS.A. DeminaN.B. ZolotovaA.S. ShevlyaginaN.V. BuzanovG.A. RetivovV.M. KozhukhovaE.I. ZakhodaO.Y. DainI.A. FilatovA.R. CheremisinA.M. Development of novel darunavir amorphous solid dispersions with mesoporous carriers.Eur. J. Pharm. Sci.202115910570010.1016/j.ejps.2021.10570033429047
    [Google Scholar]
  64. KurdM. Sadegh MalvajerdS. RezaeeS. HamidiM. DerakhshandehK. Oral delivery of indinavir using mPEG-PCL nanoparticles: Preparation, optimization, cellular uptake, transport and pharmacokinetic evaluation.Artif. Cells Nanomed. Biotechnol.20194712123213310.1080/21691401.2019.161655331155961
    [Google Scholar]
  65. SrinivasN. RosenE.P. GillilandW.M.Jr KovarovaM. Remling-MulderL. De La CruzG. WhiteN. AdamsonL. SchauerA.P. SykesC. LuciwP. GarciaJ.V. AkkinaR. KashubaA.D.M. Antiretroviral concentrations and surrogate measures of efficacy in the brain tissue and CSF of preclinical species.Xenobiotica201949101192120110.1080/00498254.2018.153927830346892
    [Google Scholar]
  66. KrishnaR. RizkM.L. LarsonP.J. SchulzV. FriedmanE. GuptaP. KesisoglouF. ConnorA. McDermottJ. SmithR. EvansP. Novel gastroretentive controlled release formulations for once-daily administration: Assessment of clinical feasibility and formulation concept for raltegravir.Ther. Innov. Regul. Sci.201650677779010.1177/216847901665713030231748
    [Google Scholar]
  67. ChaudharyS. NairA.B. ShahJ. GorainB. JacobS. ShahH. PatelV. Enhanced solubility and bioavailability of dolutegravir by solid dispersion method: In vitro and in vivo evaluation-a potential approach for HIV therapy.AAPS PharmSciTech202122312710.1208/s12249‑021‑01995‑y33835317
    [Google Scholar]
  68. KarunakaranD. SimpsonS.M. SuJ.T. Bryndza-TfailyE. HopeT.J. VeazeyR. DobekG. QiuJ. WatrousD. SungS. ChaconJ.E. KiserP.F. Design and testing of a cabotegravir implant for HIV prevention.J. Control. Release202133065866810.1016/j.jconrel.2020.12.02433347943
    [Google Scholar]
  69. KovačL. ČasarZ. Trdan LušinT. RoškarR. Development of an analytical method for determination of related substances and degradation products of cabotegravir using analytical quality by design principles.ACS Omega20227108896890510.1021/acsomega.1c0726035309479
    [Google Scholar]
  70. PalD. NayakA.K. Alginates, blends and microspheres: Controlled drug delivery. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials.New YorkTaylor & Francis2015899810.1081/E‑EBPP‑120049967
    [Google Scholar]
  71. TiwariG. TiwariR. BannerjeeS.K. BhatiL. PandeyS. PandeyP. SriwastawaB. Drug delivery systems: An updated review.Int. J. Pharm. Investig.20122121110.4103/2230‑973X.9692023071954
    [Google Scholar]
  72. NayakA.K. AhmadS.A. BegS. AraT.J. HasnainM.S. Drug delivery: Present, past, and future of medicine. Applications of Nanocomposite Materials in Drug Delivery.AmsterdamElsevier201825528210.1016/B978‑0‑12‑813741‑3.00012‑1
    [Google Scholar]
  73. CarvalhoS.G. AraujoV.H.S. dos SantosA.M. DuarteJ.L. SilvestreA.L.P. Fonseca-SantosB. VillanovaJ.C.O. GremiãoM.P.D. ChorilliM. Advances and challenges in nanocarriers and nanomedicines for veterinary application.Int. J. Pharm.202058011921410.1016/j.ijpharm.2020.11921432165220
    [Google Scholar]
  74. BompelwarS.S. BakdeB.V. RautB.M. Enhancement of solubility of nevirapine by using HPMC by solid dispersion method.ASIO J. Pharmaceut. Herb MedRes.2019515563
    [Google Scholar]
  75. SheteS. ReddyS.C. LakshmanY.D. VullendulaS.K.A. MehtaC.H. NayakU.Y. DengaleS. Implications of phase solubility/miscibility and drug-rich phase formation on the performance of co-amorphous materials: The case of Darunavir co-amorphous materials with Ritonavir and Indomethacin as co-formers.Int. J. Pharm.202160812111910.1016/j.ijpharm.2021.12111934560205
    [Google Scholar]
  76. DengaleS.J. HussenS.S. KrishnaB.S.M. MusmadeP.B. Gautham ShenoyG. BhatK. Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of Ritonavir with Quercetin.Eur. J. Pharm. Biopharm.20158932933810.1016/j.ejpb.2014.12.02525542681
    [Google Scholar]
  77. FayedN.D. ArafaM.F. EssaE.A. El MaghrabyG.M. Lopinavir-menthol co-crystals for enhanced dissolution rate and intestinal absorption.J. Drug Deliv. Sci. Technol.20227410358710.1016/j.jddst.2022.10358735845293
    [Google Scholar]
  78. SogaiB.S. NarayansettyV.B. KolapalliR.M.V. Comparative single dose pharmacokinetics and bioavailability studies of saquinavir, ritonavir and their optimized cyclodextrin complexes after oral administration into rats using LC-MS/MS.Indian. J. Pharmaceut. Edu. Res201852458759310.5530/ijper.52.4.68
    [Google Scholar]
  79. PhamK. LiD. GuoS. PenzakS. DongX. Development and in vivo evaluation of child-friendly lopinavir/ritonavir pediatric granules utilizing novel in situ self-assembly nanoparticles.J. Control. Release2016226889710.1016/j.jconrel.2016.02.00126849919
    [Google Scholar]
  80. AbbateM.T.A. RamöllerI.K. SabriA.H. ParedesA.J. HuttonA.J. McKennaP.E. PengK. HollettJ.A. McCarthyH.O. DonnellyR.F. Formulation of antiretroviral nanocrystals and development into a microneedle delivery system for potential treatment of HIV-associated neurocognitive disorder (HAND).Int. J. Pharm.202364012300510.1016/j.ijpharm.2023.12300537142137
    [Google Scholar]
  81. MutalikS.P. GaikwadS.Y. FernandesG. MoreA. KulkarniS. FayazS.M.A. TupallyK. ParekhH.S. KulkarniS. MukherjeeA. MutalikS. Anti-CD4 antibody and dendrimeric peptide based targeted nano-liposomal dual drug formulation for the treatment of HIV infection.Life Sci.202333412222610.1016/j.lfs.2023.12222637918627
    [Google Scholar]
  82. KenchappaV. CaoR. VenketaramanV. BetageriG.V. Liposomes as carriers for the delivery of efavirenz in combination with glutathione-an approach to combat opportunistic infections.Appl. Sci. (Basel)2022123146810.3390/app1203146835663347
    [Google Scholar]
  83. KannanR.M. NanceE. KannanS. TomaliaD.A. Emerging concepts in dendrimer-based nanomedicine: From design principles to clinical applications.J. Intern. Med.2014276657961710.1111/joim.1228024995512
    [Google Scholar]
  84. Sepúlveda-CrespoD. GómezR. De La MataF.J. JiménezJ.L. Muñoz-FernándezM.Á. Polyanionic carbosilane dendrimer-conjugated antiviral drugs as efficient microbicides: Recent trends and developments in HIV treatment/therapy.Nanomedicine20151161481149810.1016/j.nano.2015.03.00825835558
    [Google Scholar]
  85. IvoneR. FernandoA. DeBoefB. MeenachS.A. ShenJ. Development of spray-dried cyclodextrin-based pediatric Anti-HIV formulations.AAPS PharmSciTech202122519310.1208/s12249‑021‑02068‑w34184163
    [Google Scholar]
  86. AdeoyeO. ConceiçãoJ. SerraP.A. Bento da SilvaA. DuarteN. GuedesR.C. CorvoM.C. Aguiar-RicardoA. JicsinszkyL. CasimiroT. Cabral-MarquesH. Cyclodextrin solubilization and complexation of antiretroviral drug lopinavir: In silico prediction; Effects of derivatization, molar ratio and preparation method.Carbohydr. Polym.202022711528710.1016/j.carbpol.2019.11528731590843
    [Google Scholar]
  87. Volpe-ZanuttoF. VoraL.K. TekkoI.A. McKennaP.E. PermanaA.D. SabriA.H. AnjaniQ.K. McCarthyH.O. ParedesA.J. DonnellyR.F. Hydrogel-forming microarray patches with cyclodextrin drug reservoirs for long-acting delivery of poorly soluble cabotegravir sodium for HIV pre-exposure prophylaxis.J. Control. Release202234877178510.1016/j.jconrel.2022.06.02835738464
    [Google Scholar]
  88. KommavarapuP. MaruthapillaiA. PalanisamyK. Preparation and characterization of Efavirenz nanosuspension with the application of enhanced solubility and dissolution rate.HIV AIDS Rev.201615417017610.1016/j.hivar.2016.11.007
    [Google Scholar]
  89. VieiraA.C.C. Ferreira FontesD.A. ChavesL.L. AlvesL.D.S. de Freitas NetoJ.L. de La Roca SoaresM.F. Soares-SobrinhoJ.L. RolimL.A. Rolim-NetoP.J. Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz.Carbohydr. Polym.201513013314010.1016/j.carbpol.2015.04.05026076609
    [Google Scholar]
  90. RaoM.R.P. ChaudhariJ. TrottaF. CalderaF. Investigation of cyclodextrin-based nanosponges for solubility and bioavailability enhancement of rilpivirine.AAPS PharmSciTech20181952358236910.1208/s12249‑018‑1064‑629869305
    [Google Scholar]
  91. MadanJ. KamateV. DuaK. AwasthiR. Improving the solubility of nevirapine using a hydrotropy and mixed hydrotropy based solid dispersion approach.Polim Med2017472839010.17219/pim/77093
    [Google Scholar]
  92. DengaleS.J. RanjanO.P. HussenS.S. KrishnaB.S.M. MusmadeP.B. Gautham ShenoyG. BhatK. Preparation and characterization of co-amorphous Ritonavir–Indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions.Eur. J. Pharm. Sci.201462576410.1016/j.ejps.2014.05.01524878386
    [Google Scholar]
  93. ChaudhariK.R. SavjaniJ.K. SavjaniK.T. DahiyaS. BhangaleJ.O. Enhanced solubility and dissolution of drug-drug co-crystals of lopinavir-ritonavir.Indian J. Pharmaceut. Edu. Res.2023572ss292s30010.5530/ijper.57.2s.33
    [Google Scholar]
  94. Sepúlveda-CrespoD. LorenteR. LealM. GómezR. De la MataF.J. JiménezJ.L. Muñoz-FernándezM.Á. Synergistic activity profile of carbosilane dendrimer G2-STE16 in combination with other dendrimers and antiretrovirals as topical anti-HIV-1 microbicide.Nanomedicine201410360961810.1016/j.nano.2013.10.00224135563
    [Google Scholar]
  95. Munoz-FernandezM.A. de la MataF.J. PionM. Vacas-CordobaE. GalanM. GomezR. Enhanced activity of carbosilane dendrimers against HIV when combined with reverse transcriptase inhibitor drugs: Searching for more potent microbicides.Int. J. Nanomedicine201493591360010.2147/IJN.S6267325114528
    [Google Scholar]
  96. Sepúlveda-CrespoD. Sánchez-RodríguezJ. SerramíaM.J. GómezR. De La MataF.J. JiménezJ.L. Muñoz-FernándezM.Á. Triple combination of carbosilane dendrimers, tenofovir and maraviroc as potential microbicide to prevent HIV-1 sexual transmission.Nanomedicine (Lond.)201510689991410.2217/nnm.14.7925867856
    [Google Scholar]
  97. GajbhiyeV. GaneshN. BarveJ. JainN.K. Synthesis, characterization and targeting potential of zidovudine loaded sialic acid conjugated-mannosylated poly(propyleneimine) dendrimers.Eur. J. Pharm. Sci.2013484-566867910.1016/j.ejps.2012.12.02723298577
    [Google Scholar]
  98. BrizV. Sepúlveda-CrespoD. DinizA.R. BorregoP. RodesB. de la MataF.J. GómezR. TaveiraN. Muñoz-FernándezM.Á. Development of water-soluble polyanionic carbosilane dendrimers as novel and highly potent topical anti-HIV-2 microbicides.Nanoscale2015735146691468310.1039/C5NR03644E26274532
    [Google Scholar]
  99. PyreddyS. KumarP. KumarP. Polyethylene glycolated PAMAM dendrimers-efavirenz conjugates.Int. J. Pharm. Investig.201441151810.4103/2230‑973X.12773524678457
    [Google Scholar]
  100. ZolotovS.A. DeminaN.B. DainI.A. ZolotovaA.S. BuzanovG.A. RetivovV.M. PonomaryovY.S. Comparative study of methods for the pharmaceutical preparation and effectiveness of darunavir ethanolate compositions with mesoporous carriers and polymer solid dispersions.J. Pharm. Innov.202318262964010.1007/s12247‑022‑09667‑5
    [Google Scholar]
  101. MamathaT. Naseha AnithaN. QureshiH.K. Development of nevirapine tablets by direct compression method using solid dispersion technique.J. Pharm. Res.20171617210.18579/jpcrkc/2017/16/1/112482
    [Google Scholar]
  102. MonschkeM. WagnerK.G. Amorphous solid dispersions of weak bases with pH-dependent soluble polymers to overcome limited bioavailability due to gastric pH variability – An in-vitro approach.Int. J. Pharm.201956416217010.1016/j.ijpharm.2019.04.03430991134
    [Google Scholar]
  103. LakshmanD. ChegireddyM. HanegaveG.K. SreeK.N. KumarN. LewisS.A. DengaleS.J. Investigation of drug-polymer miscibility, biorelevant dissolution, and bioavailability improvement of Dolutegravir-polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer solid dispersions.Eur. J. Pharm. Sci.202014210513710.1016/j.ejps.2019.10513731706016
    [Google Scholar]
  104. AlhalawehA. BergströmC.A.S. TaylorL.S. Compromised in vitro dissolution and membrane transport of multidrug amorphous formulations.J. Control. Release201622917218210.1016/j.jconrel.2016.03.02827006280
    [Google Scholar]
  105. YarlagaddaD.L. NayakA.M. BrahmamB. BhatK. Exploring the solubility and bioavailability of sodium salt and its free acid solid dispersions of dolutegravir.Adv. Pharmacol. Pharm. Sci.2023202311010.1155/2023/719867437383518
    [Google Scholar]
  106. FariaM.J. MachadoR. RibeiroA. GonçalvesH. Real OliveiraM.E.C.D. ViseuT. das NevesJ. LúcioM. Rational development of liposomal hydrogels: A strategy for topical vaginal antiretroviral drug delivery in the context of HIV prevention.Pharmaceutics201911948510.3390/pharmaceutics1109048531540519
    [Google Scholar]
  107. OkaforN.I. NkangaC.I. WalkerR.B. NoundouX.S. KrauseR.W.M. Encapsulation and physicochemical evaluation of efavirenz in liposomes.J. Pharm. Investig.202050220120810.1007/s40005‑019‑00458‑8
    [Google Scholar]
  108. BazzoG.C. MostafaD. FrançaM.T. PezziniB.R. StulzerH.K. How tenofovir disoproxil fumarate can impact on solubility and dissolution rate of efavirenz?Int. J. Pharm.201957011859710.1016/j.ijpharm.2019.11859731401297
    [Google Scholar]
  109. KottaS. KhanA.W. AnsariS.H. SharmaR.K. AliJ. Anti HIV nanoemulsion formulation: Optimization and in vitro–in vivo evaluation.Int. J. Pharm.20144621-212913410.1016/j.ijpharm.2013.12.03824374067
    [Google Scholar]
  110. SenapatiP.C. SahooS.K. SahuA.N. Mixed surfactant based (SNEDDS) self-nano-emulsifying drug delivery system presenting efavirenz for enhancement of oral bioavailability.Biomed. Pharmacother.201680425110.1016/j.biopha.2016.02.03927133038
    [Google Scholar]
  111. InugalaS. EedaraB.B. SunkavalliS. DhurkeR. KandadiP. JukantiR. BandariS. Solid self-nano-emulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: In vitro and in vivo evaluation.Eur. J. Pharm. Sci.20157411010.1016/j.ejps.2015.03.02425845633
    [Google Scholar]
  112. DesaiJ. ThakkarH. Enhanced oral bioavailability and brain uptake of Darunavir using lipid nano-emulsion formulation.Colloids Surf. B Biointerfaces201917514314910.1016/j.colsurfb.2018.11.05730529999
    [Google Scholar]
  113. PrabhakarK. AfzalS.M. SurenderG. KishanV. Tween 80 containing lipid nano-emulsions for delivery of indinavir to brain.Acta Pharm. Sin. B20133534535310.1016/j.apsb.2013.08.001
    [Google Scholar]
  114. GargB. BegS. KumarR. KatareO.P. SinghB. Nanostructured lipidic carriers of lopinavir for effective management of HIV-associated neurocognitive disorder.J. Drug Deliv. Sci. Technol.20195310122010.1016/j.jddst.2019.101220
    [Google Scholar]
  115. NguyenD.N. ClasenC. Van den MooterG. Encapsulating darunavir nanocrystals within eudragit L100 using coaxial electrospraying.Eur. J. Pharm. Biopharm.2017113505910.1016/j.ejpb.2016.12.00227993734
    [Google Scholar]
  116. KarakucukA. CelebiN. TeksinZ.S. Preparation of ritonavir nano-suspensions by micro-fluidization using polymeric stabilizers: I. A design of experiment approach.Eur. J. Pharm. Sci.20169511112110.1016/j.ejps.2016.05.01027181836
    [Google Scholar]
  117. ElkatebH. CauldbeckH. NiezabitowskaE. HogarthC. ArnoldK. RannardS. McDonaldT.O. High drug loading solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsions for the dual drug delivery of the HIV drugs darunavir and ritonavir.JCIS Open20231110008710.1016/j.jciso.2023.100087
    [Google Scholar]
  118. RojekarS. PaiR. AbadiL.F. MahajanK. PrajapatiM.K. KulkarniS. VaviaP. Dual loaded nanostructured lipid carrier of nano-selenium and etravirine as a potential anti-HIV therapy.Int. J. Pharm.202160712098610.1016/j.ijpharm.2021.12098634389421
    [Google Scholar]
  119. WüpperS. LüersenK. RimbachG. Cyclodextrins, natural compounds, and plant bioactives-a nutritional perspective.Biomolecules202111340110.3390/biom1103040133803150
    [Google Scholar]
  120. BragaS.S. Cyclodextrins: Emerging medicines of the new millennium.Biomolecules201991280110.3390/biom912080131795222
    [Google Scholar]
  121. FenyvesiÉ. VikmonM. SzenteL. Cyclodextrins in food technology and human nutrition: Benefits and limitations.Crit. Rev. Food Sci. Nutr.201656121981200410.1080/10408398.2013.80951325764389
    [Google Scholar]
  122. HaimhofferÁ. RusznyákÁ. Réti-NagyK. VasváriG. VáradiJ. VecsernyésM. BácskayI. FehérP. UjhelyiZ. FenyvesiF. Cyclodextrins in drug delivery systems and their effects on biological barriers.Sci. Pharm.20198743310.3390/scipharm87040033
    [Google Scholar]
  123. JambhekarS.S. BreenP. Cyclodextrins in pharmaceutical formulations I: Structure and physicochemical properties, formation of complexes, and types of complex.Drug Discov. Today201621235636210.1016/j.drudis.2015.11.01726686054
    [Google Scholar]
  124. LiuZ. YeL. XiJ. WangJ. FengZ. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers.Prog. Polym. Sci.202111810140810.1016/j.progpolymsci.2021.101408
    [Google Scholar]
  125. MigdadiE.M. CourtenayA.J. TekkoI.A. McCruddenM.T.C. KearneyM.C. McAlisterE. McCarthyH.O. DonnellyR.F. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride.J. Control. Release201828514215110.1016/j.jconrel.2018.07.00929990526
    [Google Scholar]
  126. VasconcelosT. MarquesS. das NevesJ. SarmentoB. Amorphous solid dispersions: Rational selection of a manufacturing process.Adv. Drug Deliv. Rev.20161008510110.1016/j.addr.2016.01.01226826438
    [Google Scholar]
  127. SandhuH. ShahN. ChokshiH. MalickA.W. Overview of amorphous solid dispersion technologies. Amorphous Solid Dispersions. ShahN. SandhuH. ChoiD. ChokshiH. MalickA. New YorkSpringer20149112210.1007/978‑1‑4939‑1598‑9_3
    [Google Scholar]
  128. KaragianniA. KachrimanisK. NikolakakisI. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: Composition, preparation, characterization and formulations for oral delivery.Pharmaceutics20181039810.3390/pharmaceutics1003009830029516
    [Google Scholar]
  129. FigueirêdoC.B.M. NadvornyD. de Medeiros VieiraA.C.Q. Soares SobrinhoJ.L. Rolim NetoP.J. LeeP.I. de La Roca SoaresM.F. Enhancement of dissolution rate through eutectic mixture and solid solution of posaconazole and benznidazole.Int. J. Pharm.20175251324210.1016/j.ijpharm.2017.04.02128412452
    [Google Scholar]
  130. DandaL.J.A. BatistaL.M. MeloV.C.S. Soares SobrinhoJ.L. SoaresM.F.L.R. Combining amorphous solid dispersions for improved kinetic solubility of posaconazole simultaneously released from soluble PVP/VA64 and an insoluble ammonio methacrylate copolymer.Eur. J. Pharm. Sci.2019133798510.1016/j.ejps.2019.03.01230890364
    [Google Scholar]
  131. DengaleS.J. GrohganzH. RadesT. LöbmannK. Recent advances in co-amorphous drug formulations.Adv. Drug Deliv. Rev.201610011612510.1016/j.addr.2015.12.00926805787
    [Google Scholar]
  132. PinalH.S. SudhaB.S. Co-amorphous dispersions of amlodipine and atorvastatin: Preparation, characterization, stability evaluation and formulation.World. J. Pharmaceut. Med. Res202066207220
    [Google Scholar]
  133. JensenK.T. LarsenF.H. LöbmannK. RadesT. GrohganzH. Influence of variation in molar ratio on co-amorphous drug-amino acid systems.Eur. J. Pharm. Biopharm.2016107323910.1016/j.ejpb.2016.06.02027368747
    [Google Scholar]
  134. ZhangH. LiM. LiJ. AgrawalA. HuiH.W. LiuD. Superiority of mesoporous silica-based amorphous formulations over spray-dried solid dispersions.Pharmaceutics202214242810.3390/pharmaceutics1402042835214159
    [Google Scholar]
  135. ShuklaA. DumpaN.R. ThakkarR. ShettarA. AshourE. BandariS. RepkaM.A. Influence of poloxamer on the dissolution and stability of hot-melt extrusion–based amorphous solid dispersions using design of experiments.AAPS PharmSciTech202324510710.1208/s12249‑023‑02562‑337100926
    [Google Scholar]
  136. WuW. WangY. LöbmannK. GrohganzH. RadesT. Transformations between co-amorphous and co-crystal systems and their influence on the formation and physical stability of co-amorphous systems.Mol. Pharm.20191631294130410.1021/acs.molpharmaceut.8b0122930624075
    [Google Scholar]
  137. LöbmannK. LaitinenR. GrohganzH. StrachanC. RadesT. GordonK.C. A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin.Int. J. Pharm.20134531808710.1016/j.ijpharm.2012.05.01622613066
    [Google Scholar]
  138. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  139. AfzalO. AltamimiA.S.A. NadeemM.S. AlzareaS.I. AlmalkiW.H. TariqA. MubeenB. MurtazaB.N. IftikharS. RiazN. KazmiI. Nanoparticles in drug delivery: From history to therapeutic applications.Nanomaterials (Basel)20221224449410.3390/nano1224449436558344
    [Google Scholar]
  140. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy. Nano-Enabled Med. Appl.New DelhiJenny Stanford Publishing2020619110.1201/9780429399039‑2
    [Google Scholar]
  141. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  142. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  143. JhaS. SharmaP.K. MalviyaR. Liposomal drug delivery system for cancer therapy: Advancement and patents.Recent Pat. Drug Deliv. Formul.201610317718310.2174/187221131066616100415575727712569
    [Google Scholar]
  144. SunT. ZhangY.S. PangB. HyunD.C. YangM. XiaY. Engineered nanoparticles for drug delivery in cancer therapy.Angew. Chem. Int. Ed.20145346123201236410.1002/anie.20140303625294565
    [Google Scholar]
  145. WangJ. LiB. QiuL. QiaoX. YangH. Dendrimer-based drug delivery systems: History, challenges, and latest developments.J. Biol. Eng.20221611810.1186/s13036‑022‑00298‑535879774
    [Google Scholar]
  146. PatelM.R. PatelR.B. ThakoreS.D. Nano-emulsion in drug delivery. Applications of Nano-composite Materials in Drug Delivery.AmsterdamElsevier201866770010.1016/B978‑0‑12‑813741‑3.00030‑3
    [Google Scholar]
  147. ChavanR. B. ThipparaboinaR. KumarD. ShastriN. R. Co amorphous systems: A product development perspective.Int. J. Pharm.20165151-240341510.1016/j.ijpharm.2016.10.043
    [Google Scholar]
  148. CobbD.A. SmithN.A. EdagwaB.J. McMillanJ.M. Long-acting approaches for delivery of antiretroviral drugs for prevention and treatment of HIV: A review of recent research.Expert Opin. Drug Deliv.20201791227123810.1080/17425247.2020.178323332552187
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673306606240802111136
Loading
/content/journals/cmc/10.2174/0109298673306606240802111136
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test