Skip to content
2000
Volume 32, Issue 25
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

To determine the cell types that promoted the progression of Parkinson's disease (PD) using the substantia nigra in the brain tissues derived from patients with PD and normal controls.

Background

PD is an incurable neurodegenerative disease that threatens the physical activity of the aging population, and the complex molecular mechanisms remain be comprehensively elucidated.

Objective

To describe potential disease-promoting cell types in PD and to provide a theoretical basis.

Methods

Single-cell nuclear sequencing data of nine PD samples and control samples from Gene Expression Omnibus (GEO) were included, and heterogeneous cell subpopulations in the substantia nigra were identified by annotation analysis. Potential pathogenic cell subpopulations of PD were determined based on the expression data of marker genes. Cell differentiation trajectories and communication networks were generated by Pseudotime trajectory analysis and cell communication analysis. Furthermore, single- cell regulatory network inference and clustering (SCENIC) analysis was conducted to determine the regulatory network of transcription factor-target genes in PD.

Results

Among the nine cell subpopulations classified, RELN+neuron 3 showed reduced abundance and dopamine secretion capacity in PD and was therefore considered as a promoter of PD pathogenesis and progression. The regulatory network of MSRA action was involved in the developmental process of cells in the central nervous system, indicating that MSRA and its targets might serve as potential therapeutic targets for PD. RELN+neuron 3 had two directions of differentiation, specifically, branch 1 exhibited a high apoptotic profile and branch 2 exhibited a high cell death profile. In addition, the intensity of EPHA and EPHB signaling was attenuated between RELN+neuron 3 and other cell subpopulations.

Conclusion

To conclude, this study identified a subpopulation of RELN+neuron 3 cells with markedly reduced abundance in the brain substantia nigra in PD. The MSRA-involved gene regulatory networks was considered as a novel therapeutic network for PD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673289286240322041842
2024-03-29
2025-09-06
Loading full text...

Full text loading...

References

  1. LesageS. TrinhJ. Special issue “Parkinson’s disease: Genetics and pathogenesis.Genes202314373710.3390/genes1403073736981007
    [Google Scholar]
  2. CostaH.N. EstevesA.R. EmpadinhasN. CardosoS.M. Parkinson’s disease: A multisystem disorder.Neurosci. Bull.202339111312410.1007/s12264‑022‑00934‑635994167
    [Google Scholar]
  3. WolffA. SchumacherN.U. PürnerD. MachetanzG. DemleitnerA.F. FenebergE. HagemeierM. LingorP. Parkinson’s disease therapy: What lies ahead?J. Neural Transm.2023130679382010.1007/s00702‑023‑02641‑637147404
    [Google Scholar]
  4. van DyckC.H. SwansonC.J. AisenP. BatemanR.J. ChenC. GeeM. KanekiyoM. LiD. ReydermanL. CohenS. FroelichL. KatayamaS. SabbaghM. VellasB. WatsonD. DhaddaS. IrizarryM. KramerL.D. IwatsuboT. Lecanemab in early Alzheimer’s disease.N. Engl. J. Med.2023388192110.1056/NEJMoa221294836449413
    [Google Scholar]
  5. UsmaniA. ShavarebiF. HinikerA. The cell biology of LRRK2 in Parkinson’s disease.Mol. Cell. Biol.2021415e00660-2010.1128/MCB.00660‑2033526455
    [Google Scholar]
  6. ShuL. ZhangY. SunQ. PanH. GuoJ. TangB. SNCA REP1 and Parkinson’s disease.Neurosci. Lett.2018682798410.1016/j.neulet.2018.05.04329859327
    [Google Scholar]
  7. AbeliovichA. HeftiF. SevignyJ. Gene therapy for Parkinson’s disease associated with GBA1 mutations.J. Parkinsons Dis.202111s2S183S18810.3233/JPD‑21273934151863
    [Google Scholar]
  8. ZhuW. HuangX. YoonE. Bandres-CigaS. BlauwendraatC. BillingsleyK.J. CadeJ.H. WuB.P. WilliamsV.H. SchindlerA.B. BrooksJ. GibbsJ.R. HernandezD.G. EhrlichD. SingletonA.B. NarendraD.P. Heterozygous PRKN mutations are common but do not increase the risk of Parkinson’s disease.Brain202214562077209110.1093/brain/awab45635640906
    [Google Scholar]
  9. HeremansI.P. CaligioreF. GerinI. BuryM. LutzM. GraffJ. StroobantV. VertommenD. TelemanA.A. Van SchaftingenE. BommerG.T. Parkinson’s disease protein PARK7 prevents metabolite and protein damage caused by a glycolytic metabolite.Proc. Natl. Acad. Sci. USA20221194e211133811910.1073/pnas.211133811935046029
    [Google Scholar]
  10. RajanR. DivyaK.P. KandadaiR.M. YadavR. SatagopamV.P. MadhusoodananU.K. AgarwalP. KumarN. FerreiraT. KumarH. Sreeram PrasadA.V. ShettyK. MehtaS. DesaiS. KumarS. PrashanthL.K. BhattM. WadiaP. RamalingamS. WaliG.M. PandeyS. BartuschF. HannussekM. KrügerJ. Kumar-SreelathaA. GroverS. LichtnerP. SturmM. RoeperJ. BusskampV. ChandakG.R. SchwambornJ. SethP. GasserT. RiessO. GoyalV. PalP.K. BorgohainR. KrügerR. KishoreA. SharmaM. Lux-GIANT Consortium Genetic architecture of Parkinson’s disease in the indian population: Harnessing genetic diversity to address critical gaps in Parkinson’s disease research.Front. Neurol.20201152410.3389/fneur.2020.0052432655481
    [Google Scholar]
  11. FooJ.N. ChewE.G.Y. ChungS.J. PengR. BlauwendraatC. NallsM.A. MokK.Y. SatakeW. TodaT. ChaoY. TanL.C.S. TandionoM. LianM.M. NgE.Y. PrakashK.M. AuW.L. MeahW.Y. MokS.Q. AnnuarA.A. ChanA.Y.Y. ChenL. ChenY. JeonB.S. JiangL. LimJ.L. LinJ.J. LiuC. MaoC. MokV. PeiZ. ShangH.F. ShiC.H. SongK. TanA.H. WuY.R. XuY. XuR. YanY. YangJ. ZhangB. KohW.P. LimS.Y. KhorC.C. LiuJ. TanE.K. Identification of risk loci for Parkinson disease in asians and comparison of risk between Asians and Europeans.JAMA Neurol.202077674675410.1001/jamaneurol.2020.042832310270
    [Google Scholar]
  12. ZhaoY. QinL. PanH. LiuZ. JiangL. HeY. ZengQ. ZhouX. ZhouX. ZhouY. FangZ. WangZ. XiangY. YangH. WangY. ZhangK. ZhangR. HeR. ZhouX. ZhouZ. YangN. LiangD. ChenJ. ZhangX. ZhouY. LiuH. DengP. XuK. XuK. ZhouC. ZhongJ. XuQ. SunQ. LiB. ZhaoG. WangT. ChenL. ShangH. LiuW. ChanP. XueZ. WangQ. GuoL. WangX. XuC. ZhangZ. ChenT. LeiL. ZhangH. WangC. TanJ. YanX. ShenL. JiangH. ZhangZ. HuZ. XiaK. YueZ. LiJ. GuoJ. TangB. The role of genetics in Parkinson’s disease: A large cohort study in Chinese mainland population.Brain202014372220223410.1093/brain/awaa16732613234
    [Google Scholar]
  13. StuartT. ButlerA. HoffmanP. HafemeisterC. PapalexiE. MauckW.M.III HaoY. StoeckiusM. SmibertP. SatijaR. Comprehensive integration of single-cell data.Cell2019177718881902.e2110.1016/j.cell.2019.05.03131178118
    [Google Scholar]
  14. KorsunskyI. MillardN. FanJ. SlowikowskiK. ZhangF. WeiK. BaglaenkoY. BrennerM. LohP. RaychaudhuriS. Fast, sensitive and accurate integration of single-cell data with Harmony.Nat. Methods201916121289129610.1038/s41592‑019‑0619‑031740819
    [Google Scholar]
  15. HuangM. XuL. LiuJ. HuangP. TanY. ChenS. Cell–cell communication alterations via intercellular signaling pathways in substantia nigra of Parkinson’s disease.Front. Aging Neurosci.20221482845710.3389/fnagi.2022.82845735283752
    [Google Scholar]
  16. ZhangX. LanY. XuJ. QuanF. ZhaoE. DengC. LuoT. XuL. LiaoG. YanM. PingY. LiF. ShiA. BaiJ. ZhaoT. LiX. XiaoY. CellMarker: A manually curated resource of cell markers in human and mouse.Nucleic Acids Res.201947D1D721D72810.1093/nar/gky90030289549
    [Google Scholar]
  17. DennisG.Jr ShermanB.T. HosackD.A. YangJ. GaoW. LaneH.C. LempickiR.A. DAVID: Database for annotation, visualization, and integrated discovery.Genome Biol.200345P310.1186/gb‑2003‑4‑5‑p312734009
    [Google Scholar]
  18. AibarS. González-BlasC.B. MoermanT. Huynh-ThuV.A. ImrichovaH. HulselmansG. RambowF. MarineJ.C. GeurtsP. AertsJ. van den OordJ. AtakZ.K. WoutersJ. AertsS. SCENIC: Single-cell regulatory network inference and clustering.Nat. Methods201714111083108610.1038/nmeth.446328991892
    [Google Scholar]
  19. TrapnellC. CacchiarelliD. GrimsbyJ. PokharelP. LiS. MorseM. LennonN.J. LivakK.J. MikkelsenT.S. RinnJ.L. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.Nat. Biotechnol.201432438138610.1038/nbt.285924658644
    [Google Scholar]
  20. JinS. Guerrero-JuarezC.F. ZhangL. ChangI. RamosR. KuanC.H. MyungP. PlikusM.V. NieQ. Inference and analysis of cell-cell communication using CellChat.Nat. Commun.2021121108810.1038/s41467‑021‑21246‑933597522
    [Google Scholar]
  21. ShenW. SongZ. ZhongX. HuangM. ShenD. GaoP. QianX. WangM. HeX. WangT. LiS. SongX. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform.iMeta202213e3610.1002/imt2.36
    [Google Scholar]
  22. SteinkellnerT. ConradW.S. KovacsI. RissmanR.A. LeeE.B. TrojanowskiJ.Q. FreybergZ. RoyS. LukK.C. LeeV.M. HnaskoT.S. Dopamine neurons exhibit emergent glutamatergic identity in Parkinson’s disease.Brain2022145387988610.1093/brain/awab37335258081
    [Google Scholar]
  23. DuranteV. de IureA. LoffredoV. VaikathN. De RisiM. PaciottiS. Quiroga-VarelaA. ChiasseriniD. MelloneM. MazzocchettiP. CalabreseV. CampanelliF. MechelliA. Di FilippoM. GhiglieriV. PicconiB. El-AgnafO.M. De LeonibusE. GardoniF. TozziA. CalabresiP. Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration.Brain201914251365138510.1093/brain/awz06530927362
    [Google Scholar]
  24. OstadhadiS. Imran KhanM. Norouzi-JavidanA. DehpourA.R. Antidepressant effect of pramipexole in mice forced swimming test: A cross talk between dopamine receptor and NMDA/nitric oxide/cGMP pathway.Biomed. Pharmacother.20168129530410.1016/j.biopha.2016.04.02627261607
    [Google Scholar]
  25. SurmeierD.J. Determinants of dopaminergic neuron loss in Parkinson’s disease.FEBS J.2018285193657366810.1111/febs.1460730028088
    [Google Scholar]
  26. SieberB.A. KuzminA. CanalsJ.M. DanielssonA. ParatchaG. ArenasE. AlberchJ. ÖgrenS.O. IbáñezC.F. Disruption of EphA/ephrin-A signaling in the nigrostriatal system reduces dopaminergic innervation and dissociates behavioral responses to amphetamine and cocaine.Mol. Cell. Neurosci.200426341842810.1016/j.mcn.2004.03.00915234346
    [Google Scholar]
  27. HendersonN.T. DalvaM.B. EphBs and ephrin-Bs: Trans-synaptic organizers of synapse development and function.Mol. Cell. Neurosci.20189110812110.1016/j.mcn.2018.07.00230031105
    [Google Scholar]
  28. YeH. RobakL.A. YuM. CykowskiM. ShulmanJ.M. Genetics and pathogenesis of parkinson’s syndrome.Annu. Rev. Pathol.20231819512110.1146/annurev‑pathmechdis‑031521‑03414536100231
    [Google Scholar]
  29. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X33848468
    [Google Scholar]
  30. EmanueleM. ChieregattiE. Mechanisms of alpha-synuclein action on neurotransmission: Cell-autonomous and non-cell autonomous role.Biomolecules20155286589210.3390/biom502086525985082
    [Google Scholar]
  31. di MicheleF. LuchettiS. BernardiG. RomeoE. LongoneP. Neurosteroid and neurotransmitter alterations in Parkinson’s disease.Front. Neuroendocrinol.201334213214210.1016/j.yfrne.2013.03.00123563222
    [Google Scholar]
  32. BoccellaS. MarabeseI. GuidaF. LuongoL. MaioneS. PalazzoE. The modulation of pain by metabotropic glutamate receptors 7 and 8 in the dorsal striatum.Curr. Neuropharmacol.2019181345010.2174/1570159X1766619061812185931210112
    [Google Scholar]
  33. AhmedI. BoseS.K. PaveseN. RamlackhansinghA. TurkheimerF. HottonG. HammersA. BrooksD.J. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias.Brain2011134497998610.1093/brain/awr02821371994
    [Google Scholar]
  34. LiuF. HindupurJ. NguyenJ.L. RufK.J. ZhuJ. SchielerJ.L. BonhamC.C. WoodK.V. DavissonV.J. RochetJ.C. Methionine sulfoxide reductase A protects dopaminergic cells from Parkinson’s disease-related insults.Free Radic. Biol. Med.200845324225510.1016/j.freeradbiomed.2008.03.02218456002
    [Google Scholar]
  35. WassefR. HaenoldR. HanselA. BrotN. HeinemannS.H. HoshiT. Methionine sulfoxide reductase A and a dietary supplement S-methyl-L-cysteine prevent Parkinson’s-like symptoms.J. Neurosci.20072747128081281610.1523/JNEUROSCI.0322‑07.200718032652
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673289286240322041842
Loading
/content/journals/cmc/10.2174/0109298673289286240322041842
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test