Skip to content
2000
Volume 32, Issue 25
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Infertility was often considered a female issue, but male infertility emerged significantly after the COVID-19 pandemic. Hence, assessments are crucial for planning policies on health care and family planning and reasons thereof post vaccinations.

Materials and Methods

The present study was a case-control, dual-centers, prospective study with normal sperm parameters. Semen samples collected by masturbation for idiopathic reasons were conducted at King Abdulaziz University with 133 samples, followed by molecular modeling interaction between IZUMO1, Alpha2A adrenergic receptor, and Fibroblast growth factor receptor 2 protein with IgA antibody produced post vaccination/infection.

Results and Discussion

The infertile males under 30 (21%), 31-40 (50%), 41-50 (24%) and over 50 (5%), with altered sperm motility grades are A (8.45%), B (11.1%), C (15.8%), and D (59.8%) were reported. Liquefaction times range from 36 to 30 minutes by age, with abnormal sperm percentages between 43.85% and 46.33%. Protein molecular interaction between IZUMO1, Alpha2A adrenergic receptor, and Fibroblast growth factor receptor 2 protein with IgA antibody shows cumulative length of 25.354 Å, 39.049 Å, and 41.999 Å, respectively, with significant interaction between atoms chain, amino acid, marked variation in bond length.

Conclusion

Male infertility peaks at 31-40 years, with lowering in men aged 41-50 years, IgA antibody reduced sperm motility, causing immunogenic infertility exacerbated post-COVID-19 vaccination or infection. Interaction of IgA and various receptors produced stable interactive molecules of IgA and proteins on sperm, affecting motility, aliquefication, and abnormal sperm percentage disturbing the normal dynamics of sperm cells opening a new dimension of infertility among males.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673343390241214050107
2025-01-29
2025-10-23
Loading full text...

Full text loading...

References

  1. LiuX.Y. DengY.L. ChenP.P. LiuC. MiaoY. ZhangM. CuiF.P. ZengJ.Y. WuY. LiC.R. LiuC.J. ZengQ. Self-rated health and semen quality in men undergoing assisted reproductive technology.JAMA Netw. Open202471e2353877e235387710.1001/jamanetworkopen.2023.5387738289600
    [Google Scholar]
  2. WhiteA. Men and COVID-19: The aftermath.Postgrad. Med.2020132sup4182710.1080/00325481.2020.1823760
    [Google Scholar]
  3. KalsiP. AggarwalN. ShuklaK.K. SharmaJ. GoyalG. PrasadR. SharmaH. SARS-CoV-2 Associated impact on reproductive health: A global perspective.Indian J. Clin. Biochem.202411210.1007/s12291‑024‑01243‑7
    [Google Scholar]
  4. GolzardiM. Hromić-JahjefendićA. ŠutkovićJ. AydinO. Ünal-AydınP. BećirevićT. RedwanE.M. Rubio- CasillasA. UverskyV.N. The aftermath of COVID-19: Exploring the long-term effects on organ systems.Biomedicines202412491310.3390/biomedicines1204091338672267
    [Google Scholar]
  5. MajzoubA. KhalafallaK. ArafaM. El AnsariW. NairA. Al BishawiA. SalehM. Khair EllaM. ElBardisiH. KhattabM.A. AlRumaihiK. COVID-19 and male fertility: Short- and long-term impacts of asymptomatic vs. symptomatic infection on male reproductive potential.Front. Reprod. Health20246140314310.3389/frph.2024.140314338847012
    [Google Scholar]
  6. KabiA.K. PalM. GujjarappaR. MalakarC.C. RoyM. Overview of hydroxychloroquine and remdesivir on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).J. Heterocycl. Chem.202360216518210.1002/jhet.454135942205
    [Google Scholar]
  7. AliA.M. AbdlwahidR.F. AliK.M. MahmoodK.I. RashidP.M.A. RostamH.M. The influence of SARS-CoV -2 on male reproduction and men’s health.Eur. J. Clin. Invest.2024541e1409710.1111/eci.1409737726940
    [Google Scholar]
  8. SchalerL. GhanimM. GuardiolaJ. KaulsayJ. IbrahimA. BradyG. McCormackW. ConlonN. KellyV.P. WingfieldM. GloverL. Impact of COVID-19 vaccination on seminal and systemic inflammation in men.J. Reprod. Immunol.202416410428710.1016/j.jri.2024.10428738964132
    [Google Scholar]
  9. EdenfieldR.C. EasleyC.A. Implications of testicular ACE2 and the renin–angiotensin system for SARS-CoV-2 on testis function.Nat. Rev. Urol.202219211612710.1038/s41585‑021‑00542‑534837081
    [Google Scholar]
  10. GeR-S. LiX. WangY. Leydig cell and spermatogenesis.Molecular Mechanisms in SpermatogenesisChamSpringer ChengC. SunF. 202111112910.1007/978‑3‑030‑77779‑1_6
    [Google Scholar]
  11. GuoT.H. SangM.Y. BaiS. MaH. WanY.Y. JiangX.H. ZhangY.W. XuB. ChenH. ZhengX.Y. LuoS.H. XieX.F. GongC.J. WengJ.P. ShiQ.H. Semen parameters in men recovered from COVID-19.Asian J. Androl.202123547948310.4103/aja.aja_31_2133975987
    [Google Scholar]
  12. Edele SantosD. ColonettiT. Rodrigues UggioniM.L. RechP. Marcelino BaptistaM. MedeirosL.R. GrandeA.J. RosaM.I. Effects of COVID-19 or vaccines for SARS-COV-2 on sperm parameters: A systematic review and meta-analysis.J. Reprod. Immunol.202316010414010.1016/j.jri.2023.10414037696225
    [Google Scholar]
  13. BogovićA. PotkonjakA-M. DjakovićI. VranešH.S. Depression, anxiety, and stress in infertile couples during the COVID-19 pandemic: The consequences we face.JBRA Assist. Reprod.202428191237962946
    [Google Scholar]
  14. GarrouchS. SallemA. Ben FredjM. KooliR. BousabbehM. BoughzalaI. SrihaA. HajjajiA. MehdiM. Deleterious impact of COVID-19 pandemic: Male fertility was not out of the bag.PLoS One2023185e028448910.1371/journal.pone.028448937155673
    [Google Scholar]
  15. OsadchukL.V. OsadchukA.V. Individual lifestyle and male fertility.Hum. Physiol.202349219620710.1134/S0362119722600527
    [Google Scholar]
  16. NoriW. Akeel SalmanD. Seminal fluid changes in the COVID-19 era: During infection and Post-vaccination.Gynecol. Obstet. Clin. Med.202332889310.1016/j.gocm.2023.04.00138620126
    [Google Scholar]
  17. AdelusiT.I. OyedeleA.Q.K. BoyenleI.D. OgunlanaA.T. AdeyemiR.O. UkachiC.D. IdrisM.O. OlaobaO.T. AdedotunI.O. KolawoleO.E. XiaoxingY. Abdul-HammedM. Molecular modeling in drug discovery.Inform. Med. Unlocked20222910088010.1016/j.imu.2022.100880
    [Google Scholar]
  18. CollinsK.W. CopelandM.M. BrysbaertG. WodakS.J. BonvinA.M.J.J. KundrotasP.J. VakserI.A. LensinkM.F. CAPRI-Q: The CAPRI resource evaluating the quality of predicted structures of protein complexes.J. Mol. Biol.20244361716854010.1016/j.jmb.2024.16854039237205
    [Google Scholar]
  19. OvekD. KeskinO. GursoyA. ProInterVal: Validation of protein-protein interfaces through learned interface representations.J. Chem. Inf. Model.20246482979298710.1021/acs.jcim.3c0178838526504
    [Google Scholar]
  20. DestaI.T. KotelnikovS. JonesG. GhaniU. AbyzovM. KholodovY. StandleyD.M. BeglovD. VajdaS. KozakovD. The ClusPro AbEMap web server for the prediction of antibody epitopes.Nat. Protoc.20231861814184010.1038/s41596‑023‑00826‑737188806
    [Google Scholar]
  21. LiuH. JinY. DingH. MDBuilder: A PyMOL plugin for the preparation of molecular dynamics simulations.Brief. Bioinform.2023242bbad05710.1093/bib/bbad05736790845
    [Google Scholar]
  22. AgrawalR. PunarvaH.B. HedaG.O. VisheshY.M. KarunakarP. VinaLigGen: A method to generate LigPlots and retrieval of hydrogen and hydrophobic interactions from protein-ligand complexes.J. Biomol. Struct. Dyn.2024422212040310.1080/07391102.2023.226652437822199
    [Google Scholar]
  23. LensinkM.F. WodakS.J. Docking, scoring, and affinity prediction in CAPRI.Proteins201381122082209510.1002/prot.2442824115211
    [Google Scholar]
  24. DestaI.T. PorterK.A. XiaB. KozakovD. VajdaS. Performance and its limits in rigid body protein-protein docking.Structure2020289p10711081.e3
    [Google Scholar]
  25. LiuJ.X. ZhangX. HuangY.Q. HaoG.F. YangG.F. Multi-level bioinformatics resources support drug target discovery of protein–protein interactions.Drug Discov. Today202429510397910.1016/j.drudis.2024.10397938608830
    [Google Scholar]
  26. PorterK.A. DestaI. KozakovD. VajdaS. What method to use for protein–protein docking?Curr. Opin. Struct. Biol.2019551710.1016/j.sbi.2018.12.01030711743
    [Google Scholar]
  27. KaczorA.A. BartuziD. StępniewskiT.M. MatosiukD. SelentJ. Protein-protein docking in drug design and discovery.Computational Drug Discovery and DesignNew YorkHumana Press GoreM. JagtapU. 201828530510.1007/978‑1‑4939‑7756‑7_15
    [Google Scholar]
  28. StrangesP.B. KuhlmanB. A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds.Protein Sci.2013221748210.1002/pro.218723139141
    [Google Scholar]
  29. GuptaM.N. UverskyV.N. Biological importance of arginine: A comprehensive review of the roles in structure, disorder, and functionality of peptides and proteins.Int. J. Biol. Macromol.2024257Pt 112864610.1016/j.ijbiomac.2023.12864638061507
    [Google Scholar]
  30. Martins da SilvaS. AndersonR.A. Reproductive axis ageing and fertility in men.Rev. Endocr. Metab. Disord.20222361109112110.1007/s11154‑022‑09759‑036322295
    [Google Scholar]
  31. ZańkoA. SiewkoK. KrętowskiA.J. MilewskiR. Lifestyle, insulin resistance and semen quality as co-dependent factors of male infertility.Int. J. Environ. Res. Public Health202220173210.3390/ijerph2001073236613051
    [Google Scholar]
  32. DongS. ChenC. ZhangJ. GaoY. ZengX. ZhangX. Testicular aging, male fertility and beyond.Front. Endocrinol. (Lausanne)202213101211910.3389/fendo.2022.101211936313743
    [Google Scholar]
  33. RizzutiA. AlvarengaC. StockerG. FragaL. SantosH.O. Early pharmacologic approaches to avert anabolic steroid-induced male infertility: A narrative review.Clin. Ther.20234511e234e24110.1016/j.clinthera.2023.09.00337806813
    [Google Scholar]
  34. MukherjeeA.G. GopalakrishnanA.V. Anti-sperm antibodies as an increasing threat to male fertility: Immunological insights, diagnostic and therapeutic strategies.Reprod. Sci.2024120
    [Google Scholar]
  35. LeathersichS. HartR.J. Immune infertility in men.Fertil. Steril.202211761121113110.1016/j.fertnstert.2022.02.01035367058
    [Google Scholar]
  36. SheibakN. ZandiehZ. AmjadiF. AflatoonianR. How sperm protects itself: A journey in the female reproductive system.J. Reprod. Immunol.202416310422210.1016/j.jri.2024.10422238489929
    [Google Scholar]
  37. ChenG.X. LiH.Y. LinY.H. HuangZ.Q. HuangP.Y. DaL.C. ShiH. YangL. FengY.B. ZhengB.H. The effect of age and abstinence time on semen quality.Asian J. Androl.2022241737710.4103/aja20216534747722
    [Google Scholar]
  38. GautamR. PriyadarshiniE. PatelA.K. AroraT. Assessing the impact and mechanisms of environmental pollutants (heavy metals and pesticides) on the male reproductive system: A comprehensive review.J. Environ. Sci. Health C Toxicol. Carcinog.202442212615310.1080/26896583.2024.230273838240636
    [Google Scholar]
  39. GalloA. Reprotoxic impact of environment, diet, and behavior.Int. J. Environ. Res. Public Health2022193130310.3390/ijerph1903130335162326
    [Google Scholar]
  40. XieY. MirzaeiM. KahriziM.S. ShabestariA.M. RiahiS.M. FarsimadanM. RovielloG. SARS-CoV-2 effects on sperm parameters: A meta-analysis study.J. Assist. Reprod. Genet.20223971555156310.1007/s10815‑022‑02540‑x35716338
    [Google Scholar]
  41. ZhangG. ZhiW. YeF. XiongD. ZhangY. LiuF. ZhaoY. DuX. WuY. HouM. LiuJ. WeiJ. SilangY. XuW. ZengJ. ChenS. LiuW. Systematic analyses of the factors influencing sperm quality in patients with SARS-CoV-2 infection.Sci. Rep.2024141813210.1038/s41598‑024‑58797‑y38584153
    [Google Scholar]
  42. PłaczkowskaS. RodakK. KmieciakA. GilowskaI. KratzE.M. Exploring correlations: Human seminal plasma and blood serum biochemistry in relation to semen quality.PLoS One2024196e030586110.1371/journal.pone.030586138913627
    [Google Scholar]
  43. WangL. HanW.K. SongX.H. ZhangQ.L. GuanA.Q. GaoY. MaJ.L. Effect of SARS-CoV-2 infection on semen parameters in sperm bank volunteers with normal sperm concentration.Asian J. Androl.202426332833210.4103/aja20236738063303
    [Google Scholar]
  44. SciorioR. TramontanoL. AdelM. FlemingS. Decrease in sperm parameters in the 21st century: Obesity, lifestyle, or environmental factors? An updated narrative review.J. Pers. Med.202414219810.3390/jpm1402019838392631
    [Google Scholar]
  45. ChenT. BelladelliF. Del GiudiceF. EisenbergM.L. Male fertility as a marker for health.Reprod. Biomed. Online202244113114410.1016/j.rbmo.2021.09.02334848151
    [Google Scholar]
  46. CastelliniC. CordeschiG. TienfortiD. BarbonettiA. Relationship between male aging and semen quality: A retrospective study on over 2500 men.Arch. Gynecol. Obstet.202430962843285210.1007/s00404‑024‑07448‑838551703
    [Google Scholar]
  47. UwamahoroC. JoJ.H. JangS.I. JungE.J. LeeW.J. BaeJ.W. KwonW.S. Assessing the risks of pesticide exposure: Implications for endocrine disruption and male fertility.Int. J. Mol. Sci.20242513694510.3390/ijms2513694539000054
    [Google Scholar]
  48. LiewF.F. DuttaS. SenguptaP. Fertility treatment-induced oxidative stress and reproductive disorders.J. Integr. Sci. Technol.202412375675610.62110/sciencein.jist.2024.v12.756
    [Google Scholar]
  49. StreichS.R. BeltranT.A. PierB.D. Malathion exposure may increase infertility risk among US Adults: Results from the 2015–2016 NHANES.Eur. J. Obstet. Gynecol. Reprod. Biol.2024298495210.1016/j.ejogrb.2024.03.01638728841
    [Google Scholar]
  50. LeisingerC.A. SilverbergK.M. VerMilyeaM.D. Evaluation of sperm.Textbook of Assisted Reproductive TechniquesCRC Press20234657
    [Google Scholar]
  51. KekäläinenJ. HiltunenJ. JokiniemiA. KuusipaloL. HeikuraM. LeppänenJ. MalinenM. Female-induced selective modification of sperm protein SUMOylation—potential mechanistic insights into the non-random fertilization in humans.J. Evol. Biol.202235225426410.1111/jeb.1398035000241
    [Google Scholar]
  52. MatsumuraT. NodaT. SatouhY. MorohoshiA. YuriS. OgawaM. LuY. IsotaniA. IkawaM. Sperm IZUMO1 is required for binding preceding fusion with oolemma in mice and rats.Front. Cell Dev. Biol.2022981011810.3389/fcell.2021.81011835096839
    [Google Scholar]
  53. KazlauskasR. Engineering more stable proteins.Chem. Soc. Rev.201847249026904510.1039/C8CS00014J30306986
    [Google Scholar]
  54. RahbanM. ZolghadriS. SalehiN. AhmadF. HaertléT. Rezaei-GhalehN. SawyerL. SabouryA.A. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure.Int. J. Biol. Macromol.202221464265410.1016/j.ijbiomac.2022.06.15435772638
    [Google Scholar]
  55. VickramA.S. DhamaK. ChakrabortyS. SamadH.A. LatheefS.K. SharunK. KhuranaS.K. ArchanaK. TiwariR. BhattP. Role of antisperm antibodies in infertility, pregnancy, and potential for contraceptive and antifertility vaccine designs: Research progress and pioneering vision.Vaccines (Basel)20197311610.3390/vaccines703011631527552
    [Google Scholar]
  56. ContrerasW. WiesehöferC. SchreierD. LeinungN. PecheP. WennemuthG. GentzelM. SchröderB. MentrupT. C11orf94/Frey is a key regulator for male fertility by controlling Izumo1 complex assembly.Sci. Adv.2022832eabo604910.1126/sciadv.abo604935960805
    [Google Scholar]
  57. Hernández-FalcóM. Sáez-EspinosaP. López-BotellaA. AizpuruaJ. Gómez-TorresM.J. The role of sperm proteins IZUMO1 and TMEM95 in mammalian fertilization: A systematic review.Int. J. Mol. Sci.2022237392910.3390/ijms2307392935409288
    [Google Scholar]
  58. Adeoya-OsiguwaS.A. GibbonsR. FraserL.R. Identification of functional α2- and β-adrenergic receptors in mammalian spermatozoa.Hum. Reprod.20062161555156310.1093/humrep/del01616488904
    [Google Scholar]
  59. HellstromW.J.G. SikkaS.C. Effects of alfuzosin and tamsulosin on sperm parameters in healthy men: Results of a short-term, randomized, double-blind, placebo-controlled, crossover study.J. Androl.200930446947410.2164/jandrol.108.00687419201696
    [Google Scholar]
  60. BreitbartH. Signaling pathways in sperm capacitation and acrosome reaction.Cell. Mol. Biol.200349332132712887084
    [Google Scholar]
  61. SchugK.A. LindnerW. Noncovalent binding between guanidinium and anionic groups: focus on biological- and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues.Chem. Rev.200510516711410.1021/cr040603j15720152
    [Google Scholar]
  62. UstunolI.B. Gonzalez-PechN.I. GrassianV.H. pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO2 nanoparticle surfaces.J. Colloid Interface Sci.201955436237510.1016/j.jcis.2019.06.08631306947
    [Google Scholar]
  63. SaucedoL. BuffaG.N. RossoM. GuillardoyT. GóngoraA. MunuceM.J. Vazquez-LevinM.H. Marín-BriggilerC. Fibroblast growth factor receptors (FGFRs) in human sperm: expression, functionality and involvement in motility regulation.PLoS One2015105e012729710.1371/journal.pone.012729725970615
    [Google Scholar]
  64. SaucedoL. SobarzoC. BrukmanN.G. GuidobaldiH.A. LustigL. GiojalasL.C. BuffoneM.G. Vazquez-LevinM.H. Marín-BriggilerC. Involvement of fibroblast growth factor 2 (FGF2) and its receptors in the regulation of mouse sperm physiology.Reproduction2018156216317210.1530/REP‑18‑013329866768
    [Google Scholar]
  65. NemtsovI. MastaiY. EjgenbergM. Formation of hierarchical structures of l-glutamic acid with an l-arginine additive.Cryst. Growth Des.20181874054405910.1021/acs.cgd.8b00429
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673343390241214050107
Loading
/content/journals/cmc/10.2174/0109298673343390241214050107
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): age trends; anti-sperm; antibodies; Clinicopathological; in silico assay; male infertility
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test