Skip to content
2000
Volume 32, Issue 25
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Pathogenic viruses that cause large-scale global or regional outbreaks almost always contain class I fusion proteins. Although the viruses differ in morphology, they all require fusion protein-mediated virus-host cell membranes during the early stages of host cell invasion.

Methods

The CHR region and NHR region of fusion proteins can form the 6-HB structure to drive the fusion pore formation between viruses and host cells through metastable interactions. Here, we obtained bifunctional N-peptides with inhibitory activities against two viruses, HIV-1 and MERS-CoV, based on the sequences in the HIV-1 NHR region by constructing N-trimer conformation interacting with the CHR region.

Results

This study demonstrates that N-peptides with the coiled triple helix structure obtained from the NHR region in 6-HB are able to target the CHR region and exhibit inhibitory activity against a variety of viruses.

Conclusion

Moreover, this strategy can be used to investigate antivirals against unknown viruses for future outbreaks.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673291459240328074404
2024-04-03
2025-09-07
Loading full text...

Full text loading...

References

  1. VigantF. SantosN.C. LeeB. Broad-spectrum antivirals against viral fusion.Nat. Rev. Microbiol.201513742643710.1038/nrmicro347526075364
    [Google Scholar]
  2. PattnaikG.P. ChakrabortyH. Entry inhibitors: Efficient means to block viral infection.J. Membr. Biol.2020253542544410.1007/s00232‑020‑00136‑z32862236
    [Google Scholar]
  3. PuJ. ZhouJ.T. LiuP. YuF. HeX. LuL. JiangS. Viral entry inhibitors targeting six-helical bundle core against highly pathogenic enveloped viruses with class I fusion proteins.Curr. Med. Chem.202229470071810.2174/092986732866621051101580833992055
    [Google Scholar]
  4. DüzgüneşN. Fernandez-FuentesN. KonopkaK. Inhibition of viral membrane fusion by peptides and approaches to peptide design.Pathogens20211012159910.3390/pathogens1012159934959554
    [Google Scholar]
  5. HarrisonS.C. Mechanism of membrane fusion by viral envelope proteins.Adv. Virus Res.20056423126110.1016/S0065‑3527(05)64007‑916139596
    [Google Scholar]
  6. HarrisonS.C. Viral membrane fusion.Nat. Struct. Mol. Biol.200815769069810.1038/nsmb.145618596815
    [Google Scholar]
  7. NaH. LiangG. LaiW. Isopeptide bond bundling superhelix for designing antivirals against enveloped viruses with class I fusion proteins: A review.Curr. Pharm. Biotechnol.202324141774178310.2174/138920102466623033008364037005549
    [Google Scholar]
  8. XuW. PuJ. SuS. HuaC. SuX. WangQ. JiangS. LuL. Revisiting the mechanism of enfuvirtide and designing an analog with improved fusion inhibitory activity by targeting triple sites in gp41.AIDS201933101545155510.1097/QAD.000000000000220830932963
    [Google Scholar]
  9. LuL. LiuQ. ZhuY. ChanK.H. QinL. LiY. WangQ. ChanJ.F.W. DuL. YuF. MaC. YeS. YuenK.Y. ZhangR. JiangS. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor.Nat. Commun.201451306710.1038/ncomms406724473083
    [Google Scholar]
  10. LaiW. WangC. YuF. LuL. WangQ. JiangX. XuX. ZhangT. WuS. ZhengX. ZhangZ. DongF. JiangS. LiuK. An effective strategy for recapitulating N-terminal heptad repeat trimers in enveloped virus surface glycoproteins for therapeutic applications.Chem. Sci.2016732145215010.1039/C5SC04046A29899942
    [Google Scholar]
  11. WangC. ZhaoL. XiaS. ZhangT. CaoR. LiangG. LiY. MengG. WangW. ShiW. ZhongW. JiangS. LiuK. De novo design of α-helical lipopeptides targeting viral fusion proteins: A promising strategy for relatively broad-spectrum antiviral drug discovery.J. Med. Chem.201861198734874510.1021/acs.jmedchem.8b0089030192544
    [Google Scholar]
  12. WangH. WangC. Peptide-based dual HIV and coronavirus entry inhibitors.Adv. Exp. Med. Biol.202213668710010.1007/978‑981‑16‑8702‑0_635412136
    [Google Scholar]
  13. WangC. XiaS. WangX. LiY. WangH. XiangR. JiangQ. LanQ. LiangR. LiQ. HuoS. LuL. WangQ. YuF. LiuK. JiangS. Supercoiling structure-based design of a trimeric coiled-coil peptide with high potency against HIV-1 and human β-coronavirus infection.J. Med. Chem.20226542809281910.1021/acs.jmedchem.1c0025833929200
    [Google Scholar]
  14. WangC. LaiW. YuF. ZhangT. LuL. JiangX. ZhangZ. XuX. BaiY. JiangS. LiuK. De novo design of isopeptide bond-tethered triple-stranded coiled coils with exceptional resistance to unfolding and proteolysis: Implication for developing antiviral therapeutics.Chem. Sci.20156116505650910.1039/C5SC02220G30090269
    [Google Scholar]
  15. ChenX. LuL. QiZ. LuH. WangJ. YuX. ChenY. JiangS. Novel recombinant engineered gp41 N-terminal heptad repeat trimers and their potential as anti-HIV-1 therapeutics or microbicides.J. Biol. Chem.201028533255062551510.1074/jbc.M110.10117020538590
    [Google Scholar]
  16. EckertD.M. KimP.S. Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region.Proc. Natl. Acad. Sci. USA20019820111871119210.1073/pnas.20139289811572974
    [Google Scholar]
  17. GengX. LiuZ. YuD. QinB. ZhuY. CuiS. ChongH. HeY. Conserved residue Asn-145 in the C-terminal heptad repeat region of HIV-1 gp41 is critical for viral fusion and regulates the antiviral activity of fusion inhibitors.Viruses201911760910.3390/v1107060931277353
    [Google Scholar]
  18. SuS. MaZ. HuaC. LiW. LuL. JiangS. Adding an artificial tail-anchor to a peptide-based HIV-1 fusion inhibitor for improvement of its potency and resistance profile.Molecules20172211199610.3390/molecules2211199629156603
    [Google Scholar]
  19. SuS. ZhuY. YeS. QiQ. XiaS. MaZ. YuF. WangQ. ZhangR. JiangS. LuL. Creating an artificial tail anchor as a novel strategy to enhance the potency of peptide-based HIV fusion inhibitors.J. Virol.2017911e01445-1610.1128/JVI.01445‑1627795416
    [Google Scholar]
  20. Wang, C.; Shi, W.; Cai, L.; Lu, L.; Wang, Q.; Zhang, T.; Li, J.; Zhang, Z.; Wang, K.; Xu, L.; Jiang, X.; Jiang, S.; Liu, K. Design, synthesis, and biological evaluation of highly potent small molecule-peptide conjugates as new HIV-1 fusion inhibitors. J. Med. Chem., 2013, 56(6), 2527-2539.10.1021/jm301896423458727
  21. Yu, D.; Zhu, Y.; Yan, H.; Wu, T.; Chong, H.; He, Y. Pan-coronavirus fusion inhibitors possess potent inhibitory activity against HIV-1, HIV-2, and simian immunodeficiency virus. Emerg. Microbes Infect., 2021, 10(1), 810-821.10.1080/22221751.2021.191730933847245
/content/journals/cmc/10.2174/0109298673291459240328074404
Loading
/content/journals/cmc/10.2174/0109298673291459240328074404
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test