Skip to content
2000
Volume 32, Issue 12
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

The CLDN18 gene, encoding claudin 18.1 and claudin 18.2, is a key component of tight junction strands in epithelial cells that form a paracellular barrier that is critical in Stomach Adenocarcinoma (STAD).

Methods

Our study included 1,095 patients with proven STAD, 415 from The Cancer Genome Atlas (TCGA) cohort and 680 from the Gene Expression Omnibus database. We applied various analyses, including gene set enrichment analysis, pathway analysis, and drug screening to evaluate survival, immune cells, and genes and gene sets associated with cancer progression, based on CLDN18 expression levels. Gradient boosting machine learning (70% for training, 15% for validation, and 15% for testing) was used to evaluate the impact of CLDN18 on survival and develop a survival prediction model.

Results

High CLDN18 expression correlated with worse survival in lymphocyte-poor STAD, accompanied by decreased helper T cells, altered metabolic genes, low necrosis-related gene expression, and increased tumor proliferation. CLDN18 expression showed associations with gene sets associated with various stomach, breast, ovarian, and esophageal cancers, while pathway analysis linked CLDN18 to immunity. Incorporating CLDN18 expression improved survival prediction in a machine learning model. Notably, nutlin-3a and niraparib effectively inhibited high CLDN18-expressing gastric cancer cells in drug screening.

Conclusion

Our study provides a comprehensive understanding of the biological role of CLDN18-based bioinformatics and machine learning analysis in STAD, shedding light on its prognostic significance and potential therapeutic implications. To fully elucidate the molecular intricacies of CLDN18, further investigation is warranted, particularly through and studies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673288604240408065715
2024-04-18
2025-10-21
Loading full text...

Full text loading...

References

  1. KangM.J. JungK.W. BangS.H. ChoiS.H. ParkE.H. YunE.H. KimH.J. KongH.J. ImJ.S. SeoH.G. Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2020.Cancer Res. Treat.202355238539910.4143/crt.2023.44736915245
    [Google Scholar]
  2. BangY.J. Van CutsemE. FeyereislovaA. ChungH.C. ShenL. SawakiA. LordickF. OhtsuA. OmuroY. SatohT. AprileG. KulikovE. HillJ. LehleM. RüschoffJ. KangY.K. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial.Lancet2010376974268769710.1016/S0140‑6736(10)61121‑X20728210
    [Google Scholar]
  3. JanjigianY.Y. ShitaraK. MoehlerM. GarridoM. SalmanP. ShenL. WyrwiczL. YamaguchiK. SkoczylasT. Campos BragagnoliA. LiuT. SchenkerM. YanezP. TehfeM. KowalyszynR. KaramouzisM.V. BrugesR. ZanderT. Pazo-CidR. HitreE. FeeneyK. ClearyJ.M. PoulartV. CullenD. LeiM. XiaoH. KondoK. LiM. AjaniJ.A. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial.Lancet202139810294274010.1016/S0140‑6736(21)00797‑234102137
    [Google Scholar]
  4. UngureanuB.S. LungulescuC.V. PiriciD. Turcu-StiolicaA. GheoneaD.I. SacerdotianuV.M. LiliacI.M. MoraruE. BendeF. SaftoiuA. Clinicopathologic relevance of claudin 18.2 expression in gastric cancer: A meta-analysis.Front. Oncol.20211164387210.3389/fonc.2021.64387233747967
    [Google Scholar]
  5. WongM.T. SinghiA.D. LarsonB.K. HuynhC.A.T. BalzerB.L. BurchM. DhallD. GangiA. GongJ. GuindiM. HendifarA.E. KimS.A. de Peralta-VenturinaM. WatersK.M. Claudin-18.Arch. Pathol. Lab. Med.2022147555956710.5858/arpa.2021‑0428‑OA35976638
    [Google Scholar]
  6. ChenJ. XuZ. HuC. ZhangS. ZiM. YuanL. ChengX. Targeting CLDN18.2 in cancers of the gastrointestinal tract: New drugs and new indications.Front. Oncol.202313113231910.3389/fonc.2023.113231936969060
    [Google Scholar]
  7. QiC. GongJ. LiJ. LiuD. QinY. GeS. ZhangM. PengZ. ZhouJ. CaoY. ZhangX. LuZ. LuM. YuanJ. WangZ. WangY. PengX. GaoH. LiuZ. WangH. YuanD. XiaoJ. MaH. WangW. LiZ. ShenL. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results.Nat. Med.20222861189119810.1038/s41591‑022‑01800‑835534566
    [Google Scholar]
  8. ShitaraK. LordickF. BangY.J. EnzingerP. IlsonD. ShahM.A. Van CutsemE. XuR.H. AprileG. XuJ. ChaoJ. Pazo-CidR. KangY.K. YangJ. MoranD. BhattacharyaP. ArozullahA. ParkJ.W. OhM. AjaniJ.A. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial.Lancet2023401103891655166810.1016/S0140‑6736(23)00620‑737068504
    [Google Scholar]
  9. ZhuY. ZhouM. KongW. LiC. Antibody-drug conjugates: the clinical development in gastric cancer.Front. Oncol.20231313121194710.3389/fonc.2023.121194737305567
    [Google Scholar]
  10. CaoW. XingH. LiY. TianW. SongY. JiangZ. YuJ. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy.Biomark. Res.20221013810.1186/s40364‑022‑00385‑135642043
    [Google Scholar]
  11. PengX. ChenZ. FarshidfarF. XuX. LorenziP.L. WangY. ChengF. TanL. MojumdarK. DuD. GeZ. LiJ. ThomasG.V. BirsoyK. LiuL. ZhangH. ZhaoZ. MarchandC. WeinsteinJ.N. BatheO.F. LiangH. Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers.Cell Rep.2018231255269.e410.1016/j.celrep.2018.03.07729617665
    [Google Scholar]
  12. SaltzJ. GuptaR. HouL. KurcT. SinghP. NguyenV. SamarasD. ShroyerK.R. ZhaoT. BatisteR. Van ArnamJ. Cancer Genome Atlas Research Network Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images.Cell Rep.201823118119310.1016/j.celrep.2018.03.08629617659
    [Google Scholar]
  13. MüllerJ. HothornT. Maximally selected two-sample statistics as a new tool for the identification and assessment of habitat factors with an application to breeding-bird communities in oak forests.Eur. J. For. Res.200412321922810.1007/s10342‑004‑0035‑5
    [Google Scholar]
  14. ThorssonV. GibbsD.L. BrownS.D. WolfD. BortoneD.S. Ou YangT.H. Porta-PardoE. GaoG.F. PlaisierC.L. EddyJ.A. ZivE. CulhaneA.C. PaullE.O. SivakumarI.K.A. GentlesA.J. MalhotraR. FarshidfarF. ColapricoA. ParkerJ.S. MoseL.E. VoN.S. LiuJ. LiuY. RaderJ. DhankaniV. ReynoldsS.M. BowlbyR. CalifanoA. CherniackA.D. AnastassiouD. BedognettiD. MokrabY. NewmanA.M. RaoA. ChenK. KrasnitzA. HuH. MaltaT.M. NoushmehrH. PedamalluC.S. BullmanS. OjesinaA.I. LambA. ZhouW. ShenH. ChoueiriT.K. WeinsteinJ.N. GuinneyJ. SaltzJ. HoltR.A. RabkinC.S. LazarA.J. SerodyJ.S. DemiccoE.G. DisisM.L. VincentB.G. ShmulevichI. Cancer Genome Atlas Research Network The immune landscape of cancer.Immunity2018484812830.e1410.1016/j.immuni.2018.03.02329628290
    [Google Scholar]
  15. UhlénM. FagerbergL. HallströmB.M. LindskogC. OksvoldP. MardinogluA. SivertssonÅ. KampfC. SjöstedtE. AsplundA. OlssonI. EdlundK. LundbergE. NavaniS. SzigyartoC.A.K. OdebergJ. DjureinovicD. TakanenJ.O. HoberS. AlmT. EdqvistP.H. BerlingH. TegelH. MulderJ. RockbergJ. NilssonP. SchwenkJ.M. HamstenM. von FeilitzenK. ForsbergM. PerssonL. JohanssonF. ZwahlenM. von HeijneG. NielsenJ. PonténF. Tissue-based map of the human proteome.Science20153476220126041910.1126/science.126041925613900
    [Google Scholar]
  16. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA200510243155451555010.1073/pnas.050658010216199517
    [Google Scholar]
  17. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  18. BindeaG. MlecnikB. HacklH. CharoentongP. TosoliniM. KirilovskyA. FridmanW.H. PagèsF. TrajanoskiZ. GalonJ. ClueG.O. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks.Bioinformatics20092581091109310.1093/bioinformatics/btp10119237447
    [Google Scholar]
  19. BindeaG. GalonJ. MlecnikB. CluePedia Cytoscape plugin: Pathway insights using integrated experimental and in silico data.Bioinformatics201329566166310.1093/bioinformatics/btt01923325622
    [Google Scholar]
  20. JiangP. GuS. PanD. FuJ. SahuA. HuX. LiZ. TraughN. BuX. LiB. LiuJ. FreemanG.J. BrownM.A. WucherpfennigK.W. LiuX.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.Nat. Med.201824101550155810.1038/s41591‑018‑0136‑130127393
    [Google Scholar]
  21. SubhashV.V. YeoM.S. WangL. TanS.H. WongF.Y. ThuyaW.L. TanW.L. PeethalaP.C. SoeM.Y. TanD.S.P. PadmanabhanN. BalogluE. ShachamS. TanP. KoefflerH.P. YongW.P. Anti-tumor efficacy of Selinexor (KPT-330) in gastric cancer is dependent on nuclear accumulation of p53 tumor suppressor.Sci. Rep.2018811224810.1038/s41598‑018‑30686‑130115935
    [Google Scholar]
  22. LeeJ. SohnI. DoI.G. KimK.M. ParkS.H. ParkJ.O. ParkY.S. LimH.Y. SohnT.S. BaeJ.M. ChoiM.G. LimD.H. MinB.H. LeeJ.H. RheeP.L. KimJ.J. ChoiD.I. TanI.B. DasK. TanP. JungS.H. KangW.K. KimS. Nanostring-based multigene assay to predict recurrence for gastric cancer patients after surgery.PLoS One201493e9013310.1371/journal.pone.009013324598828
    [Google Scholar]
  23. YangW. SoaresJ. GreningerP. EdelmanE.J. LightfootH. ForbesS. BindalN. BeareD. SmithJ.A. ThompsonI.R. RamaswamyS. FutrealP.A. HaberD.A. StrattonM.R. BenesC. McDermottU. GarnettM.J. Genomics of drug sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells.Nucleic Acids Res.201341Database issueD955D96123180760
    [Google Scholar]
  24. BamfordS. DawsonE. ForbesS. ClementsJ. PettettR. DoganA. FlanaganA. TeagueJ. FutrealP.A. StrattonM.R. WoosterR. The COSMIC (Catalogue of somatic mutations in cancer) database and website.Br. J. Cancer200491235535810.1038/sj.bjc.660189415188009
    [Google Scholar]
  25. GarnettM.J. EdelmanE.J. HeidornS.J. GreenmanC.D. DasturA. LauK.W. GreningerP. ThompsonI.R. LuoX. SoaresJ. LiuQ. IorioF. SurdezD. ChenL. MilanoR.J. BignellG.R. TamA.T. DaviesH. StevensonJ.A. BarthorpeS. LutzS.R. KogeraF. LawrenceK. McLaren-DouglasA. MitropoulosX. MironenkoT. ThiH. RichardsonL. ZhouW. JewittF. ZhangT. O’BrienP. BoisvertJ.L. PriceS. HurW. YangW. DengX. ButlerA. ChoiH.G. ChangJ.W. BaselgaJ. StamenkovicI. EngelmanJ.A. SharmaS.V. DelattreO. Saez-RodriguezJ. GrayN.S. SettlemanJ. FutrealP.A. HaberD.A. StrattonM.R. RamaswamyS. McDermottU. BenesC.H. Systematic identification of genomic markers of drug sensitivity in cancer cells.Nature2012483739157057510.1038/nature1100522460902
    [Google Scholar]
  26. IorioF. KnijnenburgT.A. VisD.J. BignellG.R. MendenM.P. SchubertM. AbenN. GonçalvesE. BarthorpeS. LightfootH. CokelaerT. GreningerP. van DykE. ChangH. de SilvaH. HeynH. DengX. EganR.K. LiuQ. MironenkoT. MitropoulosX. RichardsonL. WangJ. ZhangT. MoranS. SayolsS. SoleimaniM. TamboreroD. Lopez-BigasN. Ross- MacdonaldP. EstellerM. GrayN.S. HaberD.A. StrattonM.R. BenesC.H. WesselsL.F.A. Saez-RodriguezJ. McDermottU. GarnettM.J. A landscape of pharmacogenomic interactions in cancer.Cell2016166374075410.1016/j.cell.2016.06.01727397505
    [Google Scholar]
  27. Gu-TrantienC. Willard-GalloK. Tumor-infiltrating follicular helper T cells: The new kids on the block.OncoImmunology2013210e2606610.4161/onci.2606624244900
    [Google Scholar]
  28. BeavonI.R.G. The E-cadherin-catenin complex in tumour metastasis.Eur. J. Cancer200036131607162010.1016/S0959‑8049(00)00158‑110959047
    [Google Scholar]
  29. GrassetE.M. DunworthM. SharmaG. LothM. TandurellaJ. Cimino-MathewsA. GentzM. BrachtS. HaynesM. FertigE.J. EwaldA.J. Triple-negative breast cancer metastasis involves complex epithelial-mesenchymal transition dynamics and requires vimentin.Sci. Transl. Med.202214656eabn757110.1126/scitranslmed.abn757135921474
    [Google Scholar]
  30. AdekolaK. RosenS.T. ShanmugamM. Glucose transporters in cancer metabolism.Curr. Opin. Oncol.201224665065410.1097/CCO.0b013e328356da7222913968
    [Google Scholar]
  31. ChenR. KangR. TangD. The mechanism of HMGB1 secretion and release.Exp. Mol. Med.20225429110210.1038/s12276‑022‑00736‑w35217834
    [Google Scholar]
  32. LavieD. Ben-ShmuelA. ErezN. Scherz-ShouvalR. Cancer-associated fibroblasts in the single-cell era.Nat. Can.20223779380710.1038/s43018‑022‑00411‑z35883004
    [Google Scholar]
  33. OshimaT. ShanJ. OkugawaT. ChenX. HoriK. TomitaT. FukuiH. WatariJ. MiwaH. Down-regulation of claudin-18 is associated with the proliferative and invasive potential of gastric cancer at the invasive front.PLoS One201389e7475710.1371/journal.pone.007475724073219
    [Google Scholar]
  34. PellinoA. BrignolaS. RielloE. NieroM. MurgioniS. GuidoM. NappoF. BusinelloG. SbaragliaM. BergamoF. SpolveratoG. PucciarelliS. MeriglianoS. PilatiP. CavallinF. RealdonS. FarinatiF. Dei TosA.P. ZagonelV. LonardiS. LoupakisF. FassanM. Association of CLDN18 protein expression with clinicopathological features and prognosis in advanced gastric and gastroesophageal junction adenocarcinomas.J. Pers. Med.20211111109510.3390/jpm1111109534834447
    [Google Scholar]
  35. KunertA. BasakE.A. HurkmansD.P. BalciogluH.E. KlaverY. van BrakelM. OostvogelsA.A.M. LamersC.H.J. BinsS. KoolenS.L.W. van der VeldtA.A.M. SleijferS. MathijssenR.H.J. AertsJ.G.J.V. DebetsR. CD45RA+CCR7− CD8 T cells lacking co-stimulatory receptors demonstrate enhanced frequency in peripheral blood of NSCLC patients responding to nivolumab.J. Immunother. Cancer20197114910.1186/s40425‑019‑0608‑y31176366
    [Google Scholar]
  36. Gutiérrez-MeloN. BaumjohannD. T Follicular helper cells in cancer.Trends Cancer20239430932510.1016/j.trecan.2022.12.00736642575
    [Google Scholar]
  37. SchlößerH.A. ThelenM. LechnerA. WennholdK. Garcia-MarquezM.A. RothschildS.I. StaibE. ZanderT. BeutnerD. GathofB. GillesR. CukurogluE. GökeJ. Shimabukuro-VornhagenA. DrebberU. QuaasA. BrunsC.J. HölscherA.H. Von Bergwelt-BaildonM.S. B cells in esophago-gastric adenocarcinoma are highly differentiated, organize in tertiary lymphoid structures and produce tumor-specific antibodies.OncoImmunology201981e151245810.1080/2162402X.2018.151245830546950
    [Google Scholar]
  38. ZhaoH. HuH. ChenB. XuW. ZhaoJ. HuangC. XingY. LvH. NieC. WangJ. HeY. WangS.Q. ChenX.B. Overview on the role of E-cadherin in gastric cancer: Dysregulation and clinical implications.Front. Mol. Biosci.2021868913910.3389/fmolb.2021.68913934422902
    [Google Scholar]
  39. YinS. ChenF. YangG. Vimentin immunohistochemical expression as a prognostic factor in gastric cancer: A meta-analysis.Pathol. Res. Pract.201821491376138010.1016/j.prp.2018.07.01430078472
    [Google Scholar]
  40. YanS. WangY. ChenM. LiG. FanJ. Deregulated SLC2A1 promotes tumor cell proliferation and metastasis in gastric cancer.Int. J. Mol. Sci.2015167161441615710.3390/ijms16071614426193257
    [Google Scholar]
  41. RaucciA. PalumboR. BianchiM.E. HMGB1: A signal of necrosis.Autoimmunity200740428528910.1080/0891693070135697817516211
    [Google Scholar]
  42. AryaA.K. El-FertA. DevlingT. EcclesR.M. AslamM.A. RubbiC.P. VlatkovićN. FenwickJ. LloydB.H. SibsonD.R. JonesT.M. BoydM.T. Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53.Br. J. Cancer2010103218619510.1038/sj.bjc.660573920588277
    [Google Scholar]
  43. EndoS. YamatoK. HiraiS. MoriwakiT. FukudaK. SuzukiH. AbeiM. NakagawaI. HyodoI. Potent in vitro and in vivo antitumor effects of MDM2 inhibitor nutlin-3 in gastric cancer cells.Cancer Sci.2011102360561310.1111/j.1349‑7006.2010.01821.x21205074
    [Google Scholar]
  44. KimH.D. ChoiE. ShinJ. LeeI.S. KoC.S. RyuM.H. ParkY.S. Clinicopathologic features and prognostic value of claudin 18.2 overexpression in patients with resectable gastric cancer.Sci. Rep.20231312004710.1038/s41598‑023‑47178‑637973935
    [Google Scholar]
  45. HongJ.Y. AnJ.Y. LeeJ. ParkS.H. ParkJ.O. ParkY.S. LimH.Y. KimK.M. KangW.K. KimS.T. Claudin 18.2 expression in various tumor types and its role as a potential target in advanced gastric cancer.Transl. Cancer Res.2020953367337410.21037/tcr‑19‑187635117702
    [Google Scholar]
  46. KubotaY. KawazoeA. MishimaS. NakamuraY. KotaniD. KubokiY. BandoH. KojimaT. DoiT. YoshinoT. KuwataT. ShitaraK. Comprehensive clinical and molecular characterization of claudin 18.2 expression in advanced gastric or gastroesophageal junction cancer.ESMO Open20238110076210.1016/j.esmoop.2022.10076236610262
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673288604240408065715
Loading
/content/journals/cmc/10.2174/0109298673288604240408065715
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): CLDN18; drug; machine learning; niraparib; prognosis; stomach cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test