Skip to content
2000
Volume 32, Issue 12
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Osteoarthritis (OA) is a chronic joint disease, usually accompanied by degeneration of the articular cartilage, fibrosis, bone hyperplasia around the joint, and damage to the entire articular surface. Gossypol is a natural phenolic compound isolated from the seed of cotton plants, and gossypol acetic acid (GAA) is a medicinal form of Gossypol. Recently, various biological activities of GAA, including anti-inflammatory and anti-tumor effects, have been widely reported. However, its effect on chondrocytes in OA has yet to be determined.

Methods

In this study, we investigated the effect of GAA on ferroptosis in OA chondrocytes. The effect of GAA on the cell viability and cytotoxicity of chondrocytes in rat cells was investigated using CCK8. Western blotting, Reverse-transcription PCR (RT-PCR), and immunofluorescence staining were used to elucidate the molecular mechanisms and signaling pathways of GAA inhibition of ferroptosis in OA chondrocytes. The effect of GAA on reactive oxygen species (ROS) production and lipid peroxidation levels in chondrocytes was examined using dihydroethidium (DHE) staining and fluorescent dye BODIPY581/591 C11. , micro-CT imaging, hematoxylin and eosin staining, Safranin O-Fast staining, and immunohistochemistry were performed to evaluate the effects of GAA on OA cartilage.

Results

The results showed that GAA treatment regulated the expression of chondrocyte extracellular matrix (ECM) related factors, including ADAMTS5, MMP13, SOX9, Aggrecan, and COL1A2 and reduced the ROS and lipid peroxidation levels. Besides, Erastin could reverse the effects of GAA on chondrocytes. Similar to GAA, 5-AZA caused the reduction of ROS and lipid peroxidation levels and reversed the effect of IL-1β on the expression of ECM-related factors in OA chondrocytes. The above results clarified that GAA alleviated the ferroptosis of chondrocytes in OA by inhibiting GPX4 methylation.

Conclusion

Our findings revealed that GAA might be developed as a drug for treating OA clinically.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673280730231211092905
2024-01-03
2025-10-19
Loading full text...

Full text loading...

References

  1. WangR. TianH. GuoD. TianQ. YaoT. KongX. Impacts of exercise intervention on various diseases in rats.J. Sport Health Sci.20209321122710.1016/j.jshs.2019.09.00832444146
    [Google Scholar]
  2. ZhouK YangC ShiK LiuY HuD HeX Activated macrophage membrane-coated nanoparticles relieve osteoarthritis-induced synovitis and joint damage.Biomaterials202329512203610.1016/j.biomaterials.2023.122036
    [Google Scholar]
  3. YaoQ. WuX. TaoC. GongW. ChenM. QuM. ZhongY. HeT. ChenS. XiaoG. Osteoarthritis: pathogenic signaling pathways and therapeutic targets.Signal Transduct. Target. Ther.2023815610.1038/s41392‑023‑01330‑w36737426
    [Google Scholar]
  4. LiaoC.R. WangS.N. ZhuS.Y. WangY.Q. LiZ.Z. LiuZ.Y. Advanced oxidation protein products increase TNF-α and IL-1β expression in chondrocytes via NADPH oxidase 4 and accelerate cartilage degeneration in osteoarthritis progression.Redox Biol20202810130610.1016/j.redox.2019.101306
    [Google Scholar]
  5. LiT. ChubinskayaS. EspositoA. JinX. TagliafierroL. LoeserR. HakimiyanA.A. LongobardiL. OzkanH. SpagnoliA. TGF-β type 2 receptor–mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis.Sci. Transl. Med.201911491eaan258510.1126/scitranslmed.aan258531068441
    [Google Scholar]
  6. LevyD.M. PetersenK.A. Scalley VaughtM. ChristianD.R. ColeB.J. Injections for knee osteoarthritis: Corticosteroids, viscosupplementation, platelet-rich plasma, and autologous stem cells.Arthroscopy20183451730174310.1016/j.arthro.2018.02.02229656808
    [Google Scholar]
  7. HawkerG.A. Osteoarthritis is a serious disease.Clin. Exp. Rheumatol.2019120536
    [Google Scholar]
  8. De LunaA. OtahalA. NehrerS. Mesenchymal stromal cell-derived extracellular vesicles - silver linings for cartilage regeneration.Front. Cell Dev. Biol.20208593386
    [Google Scholar]
  9. WangB. ShiY. ChenJ. ShaoZ. NiL. LinY. WuY. TianN. ZhouY. SunL. WuA. HongZ. WangX. ZhangX. High glucose suppresses autophagy through the AMPK pathway while it induces autophagy via oxidative stress in chondrocytes.Cell. Death. Dis.202112650610.1038/s41419‑021‑03791‑934006821
    [Google Scholar]
  10. SunM.M.G. BeierF. PestM.A. Recent developments in emerging therapeutic targets of osteoarthritis.Curr. Opin. Rheumatol.20172919610210.1097/BOR.000000000000035127906752
    [Google Scholar]
  11. GuY.T. ChenJ. MengZ.L. GeW.Y. BianY.Y. ChengS.W. Research progress on osteoarthritis treatment mechanisms.Biomed. Pharmacother.2017931246125210.1016/j.biopha.2017.07.034
    [Google Scholar]
  12. LiJ. ZhangH. HanY. HuY. GengZ. SuJ. Targeted and responsive biomaterials in osteoarthritis.Theranostics202313393195410.7150/thno.7863936793867
    [Google Scholar]
  13. ZhouY. NiJ. WenC. LaiP. Light on osteoarthritic joint: From bench to bed.Theranostics202212254255710.7150/thno.6434034976200
    [Google Scholar]
  14. GaoJ. XiaZ. MaryH.B. JosephJ. LuoJ.N. JoshiN. Overcoming barriers for intra-articular delivery of disease-modifying osteoarthritis drugs.Trends Pharmacol. Sci.202243317118710.1016/j.tips.2021.12.00435086691
    [Google Scholar]
  15. HuynhA. PrieferR. Hyaluronic acid applications in ophthalmology, rheumatology, and dermatology.Carbohydr. Res.202048910795010.1016/j.carres.2020.107950
    [Google Scholar]
  16. HermannW. LambovaS. Müller-LadnerU. Current treatment options for osteoarthritis.Curr. Rheumatol. Rev.201814210811610.2174/157339711366617082915514928875826
    [Google Scholar]
  17. YuanC. PanZ. ZhaoK. LiJ. ShengZ. YaoX. LiuH. ZhangX. YangY. YuD. ZhangY. XuY. ZhangZ.Y. HuangT. LiuW. OuyangH. Classification of four distinct osteoarthritis subtypes with a knee joint tissue transcriptome atlas.Bone Res.2020813810.1038/s41413‑020‑00109‑x33298863
    [Google Scholar]
  18. BendersK.E.M. WeerenP.R. BadylakS.F. SarisD.B.F. DhertW.J.A. MaldaJ. Extracellular matrix scaffolds for cartilage and bone regeneration.Trends Biotechnol.201331316917610.1016/j.tibtech.2012.12.00423298610
    [Google Scholar]
  19. AdánN. Guzmán-MoralesJ. Ledesma-ColungaM.G. Perales-CanalesS.I. Quintanar-StéphanoA. López-BarreraF. MéndezI. Moreno-CarranzaB. TriebelJ. BinartN. Martínez de la EscaleraG. ThebaultS. ClappC. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis.J. Clin. Invest.201312393902391310.1172/JCI6948523908112
    [Google Scholar]
  20. ZhangY. ZuoT. McVicarA. YangH.L. LiY.P. ChenW. Runx1 is a key regulator of articular cartilage homeostasis by orchestrating YAP, TGFβ, and Wnt signaling in articular cartilage formation and osteoarthritis.Bone Res.20221016310.1038/s41413‑022‑00231‑y36307389
    [Google Scholar]
  21. JiangJ. LiJ. XiongC. ZhouX. LiuT. Isorhynchophylline alleviates cartilage degeneration in osteoarthritis by activating autophagy of chondrocytes.J. Orthop. Surg. Res.202318115410.1186/s13018‑023‑03645‑436864518
    [Google Scholar]
  22. ZhangC. LiuX. JinS. ChenY. GuoR. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance.Mol. Cancer20222114710.1186/s12943‑022‑01530‑y35151318
    [Google Scholar]
  23. YangW.S. StockwellB.R. Ferroptosis: Death by lipid peroxidation.Trends Cell Biol.201626316517610.1016/j.tcb.2015.10.01426653790
    [Google Scholar]
  24. JiangX. StockwellB.R. ConradM. Ferroptosis: Mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑833495651
    [Google Scholar]
  25. StockwellB.R. JiangX. GuW. Emerging mechanisms and disease relevance of ferroptosis.Trends Cell Biol.202030647849010.1016/j.tcb.2020.02.00932413317
    [Google Scholar]
  26. ChenX. YuC. KangR. KroemerG. TangD. Cellular degradation systems in ferroptosis.Cell Death Differ.20212841135114810.1038/s41418‑020‑00728‑133462411
    [Google Scholar]
  27. LingH. LiM. YangC. SunS. ZhangW. ZhaoL. XuN. ZhangJ. ShenY. ZhangX. LiuC. LuL. WangJ. Glycine increased ferroptosis via SAM-mediated GPX4 promoter methylation in rheumatoid arthritis.Rheumatology202261114521453410.1093/rheumatology/keac06935136972
    [Google Scholar]
  28. GuanZ. JinX. GuanZ. LiuS. TaoK. LuoL. The gut microbiota metabolite capsiate regulate SLC2A1 expression by targeting HIF-1α to inhibit knee osteoarthritis-induced ferroptosis.Aging Cell2023226e1380710.1111/acel.1380736890785
    [Google Scholar]
  29. YangZ. JiangW. XiongC. ShangJ. HuangY. ZhouX. Calcipotriol suppresses GPX4-mediated ferroptosis in OA chondrocytes by blocking the TGF-β1 pathway.Cytokine202317115638210.1016/j.cyto.2023.156382
    [Google Scholar]
  30. JingX. LinJ. DuT. JiangZ. LiT. WangG. Iron overload is associated with accelerated progression of osteoarthritis: The role of dmt1 mediated iron homeostasis.Front. Cell Dev. Biol.20208594509
    [Google Scholar]
  31. YanJ. FengG. MaL. ChenZ. JinQ. Metformin alleviates osteoarthritis in mice by inhibiting chondrocyte ferroptosis and improving subchondral osteosclerosis and angiogenesis.J. Orthop. Surg. Res.202217133310.1186/s13018‑022‑03225‑y35765024
    [Google Scholar]
  32. MiaoY. ChenY. XueF. LiuK. ZhuB. GaoJ. Contribution of ferroptosis and GPX4's dual functions to osteoarthritis progression.EBioMedicine20227610384710.1016/j.ebiom.2022.103847
    [Google Scholar]
  33. ZhaS.W. ZhaJ. HuangY.F. Male antifertility drugs and cell apoptosis.Zhonghua Nan Ke Xue2008141757818297819
    [Google Scholar]
  34. HanusJ. ZhangH. ChenD.H. ZhouQ. JinP. LiuQ. WangS. Gossypol acetic acid prevents oxidative stress-induced retinal pigment epithelial necrosis by regulating the foxo3/sestrin2 pathway.Mol. Cell. Biol.201535111952196310.1128/MCB.00178‑1525802279
    [Google Scholar]
  35. El-SharakyA.S. WahbyM.M. Bader El-DeinM.M. FawzyR.A. El-ShahawyI.N. Mutual anti-oxidative effect of gossypol acetic acid and gossypol–iron complex on hepatic lipid peroxidation in male rats.Food Chem. Toxicol.200947112735274110.1016/j.fct.2009.08.00119665044
    [Google Scholar]
  36. LiuY. MaY. LiZ. YangY. YuB. ZhangZ. Investigation of inhibition effect of gossypol-acetic acid on gastric cancer cells based on a network pharmacology approach and experimental validation.Drug Des. Devel. Ther.2020143615362310.2147/DDDT.S256566
    [Google Scholar]
  37. MessehaS. ZarmouhN. MendoncaP. AlwagdaniH. CottonC. SolimanK. Effects of gossypol on apoptosis-related gene expression in racially distinct triple-negative breast cancer cells.Oncol. Rep.201942246747810.3892/or.2019.717931173249
    [Google Scholar]
  38. MessehaS. ZarmouhN. MendoncaP. CottonC. SolimanK. Molecular mechanism of gossypol mediating CCL2 and IL-8 attenuation in triple-negative breast cancer cells.Mol. Med. Rep.20202221213122610.3892/mmr.2020.1124032627003
    [Google Scholar]
  39. ZhongS. LeongJ. YeW. XuP. LinS.H. LiuJ.Y. LinY.C. (-)-Gossypol-enriched cottonseed oil inhibits proliferation and adipogenesis of human breast pre-adipocytes.Anticancer Res.201333394995523482766
    [Google Scholar]
  40. HuangS.F. ChuS.C. HsuL.S. TuY.C. ChenP.N. HsiehY.S. Antimetastatic effects of gossypol on colon cancer cells by targeting the u-PA and FAK pathways.Food Funct.201910128172818110.1039/C9FO01306G31730141
    [Google Scholar]
  41. ChienC.C. KoC.H. ShenS.C. YangL.Y. ChenY.C. The role of COX-2/PGE 2 in gossypol-induced apoptosis of colorectal carcinoma cells.J. Cell. Physiol.201222783128313710.1002/jcp.2306722170686
    [Google Scholar]
  42. YuanY. TangA.J. CastorenoA.B. KuoS-Y. WangQ. KuballaP. XavierR. ShamjiA.F. SchreiberS.L. WagnerB.K. Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells.Cell Death Dis.201346e69010.1038/cddis.2013.19123807219
    [Google Scholar]
  43. ThakurA. LumL.G. SchalkD. AzmiA. BanerjeeS. SarkarF.H. MohommadR. Pan-Bcl-2 inhibitor AT-101 enhances tumor cell killing by EGFR targeted T cells.PLoS One2012711e4752010.1371/journal.pone.004752023185240
    [Google Scholar]
  44. CaoS. WangG. GeF. LiX. ZhuQ. GeR.S. Gossypol inhibits 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase: Its possible use for the treatment of prostate cancer.Fitoterapia2019133102108
    [Google Scholar]
  45. HuoM. GaoR. JiangL. CuiX. DuanL. DengX. GuanS. WeiJ. SoromouL.W. FengH. ChiG. Suppression of LPS-induced inflammatory responses by gossypol in RAW 264.7 cells and mouse models.Int. Immunopharmacol.201315244244910.1016/j.intimp.2013.01.00823352443
    [Google Scholar]
  46. OskoueianE. AbdullahN. HendraR. KarimiE. Bioactive compounds, antioxidant, xanthine oxidase inhibitory, tyrosinase inhibitory and anti-inflammatory activities of selected agro-industrial by-products.Int. J. Mol. Sci.201112128610862510.3390/ijms1212861022272095
    [Google Scholar]
  47. YaoX. SunK. YuS. LuoJ. GuoJ. LinJ. Chondrocyte ferroptosis contribute to the progression of osteoarthritis.J. Orthop. Translat.202127334310.1016/j.jot.2020.09.006
    [Google Scholar]
  48. LiS. XieF. ShiK. WangJ. CaoY. LiY. Gossypol ameliorates the IL-1β-induced apoptosis and inflammation in chondrocytes by suppressing the activation of TLR4/MyD88/NF-κB pathway via downregulating CX43.Tissue Cell.202173101621
    [Google Scholar]
  49. LinJ.H. YangK.T. TingP.C. LuoY.P. LinD.J. WangY.S. ChangJ.C. Gossypol acetic acid attenuates cardiac ischemia/reperfusion injury in rats via an antiferroptotic mechanism.Biomolecules20211111166710.3390/biom1111166734827665
    [Google Scholar]
  50. LiJ. JiangM. YuZ. XiongC. PanJ. CaiZ. XuN. ZhouX. HuangY. YangZ. Artemisinin relieves osteoarthritis by activating mitochondrial autophagy through reducing TNFSF11 expression and inhibiting PI3K/AKT/mTOR signaling in cartilage.Cell. Mol. Biol. Lett.20222716210.1186/s11658‑022‑00365‑135902802
    [Google Scholar]
  51. ZhuY. XieS. ZhangJ. ZhangT. ZhouJ. CaoY. CaoL. Involvement of Bcl-2, Src, and ERα in gossypol-mediated growth inhibition and apoptosis in human uterine leiomyoma and myometrial cells.Acta Pharmacol. Sin.201031121593160310.1038/aps.2010.15321102482
    [Google Scholar]
  52. LiR. XingQ. WuX. ZhangL. TangM. TangJ. WangJ. HanP. WangS. WangW. ZhangW. ZhouG. QinZ. Di-n-butyl phthalate epigenetically induces reproductive toxicity via the PTEN/AKT pathway.Cell. Death. Dis.201910430710.1038/s41419‑019‑1547‑830952838
    [Google Scholar]
  53. YangH. YangZ. YuZ. XiongC. ZhangY. ZhangJ. SEMA6D, Negatively Regulated by miR-7, contributes to c28/i2 chondrocyte's catabolic and anabolic activities via p38 signaling pathway.Oxid. Med. Cell. Longev202220229674221
    [Google Scholar]
  54. ShangJ. YuZ. XiongC. ZhangJ. GongJ. YuC. HuangY. ZhouX. Resistin targets TAZ to promote osteogenic differentiation through PI3K/AKT/mTOR pathway.iScience202326710702510.1016/j.isci.2023.10702537389179
    [Google Scholar]
  55. WuY. LinZ. YanZ. WangZ. FuX. YuK. Sinomenine contributes to the inhibition of the inflammatory response and the improvement of osteoarthritis in mouse-cartilage cells by acting on the Nrf2/HO-1 and NF-κB signaling pathways.Int. Immunopharmacol.201975105715
    [Google Scholar]
  56. ZhouY. MingJ. DengM. LiY. LiB. LiJ. MaY. ChenZ. WangG. LiuS. Chemically modified curcumin (CMC2.24) alleviates osteoarthritis progression by restoring cartilage homeostasis and inhibiting chondrocyte apoptosis via the NF-κB/HIF-2α axis.J. Mol. Med. (Berl.)202098101479149110.1007/s00109‑020‑01972‑132860098
    [Google Scholar]
  57. GaoY. WangS. HeL. WangC. YangL. Alpinetin protects chondrocytes and exhibits anti-inflammatory effects via the nf-κb/erk pathway for alleviating osteoarthritis.Inflammation20204351742175010.1007/s10753‑020‑01248‑332474881
    [Google Scholar]
  58. ZhouX. LiJ. ZhouY. YangZ. YangH. LiD. ZhangJ. ZhangY. XuN. HuangY. JiangL. Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis.Aging (Albany NY)20201220201632018310.18632/aging.10373133099538
    [Google Scholar]
  59. ShanW. ChengC. HuangW. DingZ. LuoS. CuiG. LuW. LiuF. XuJ. HeW. YinZ. Angiopoietin-like 2 upregulation promotes human chondrocyte injury via NF-κB and p38/MAPK signaling pathway.J. Bone Miner. Metab.201937697698610.1007/s00774‑019‑01016‑w31214838
    [Google Scholar]
  60. SettleS. VickeryL. NemirovskiyO. VidmarT. BendeleA. MessingD. RuminskiP. SchnuteM. SunyerT. Cartilage degradation biomarkers predict efficacy of a novel, highly selective matrix metalloproteinase 13 inhibitor in a dog model of osteoarthritis: Confirmation by multivariate analysis that modulation of type ii collagen and aggrecan degradation peptides parallels pathologic changes.Arthritis Rheum.201062103006301510.1002/art.2759620533541
    [Google Scholar]
  61. SuchorskaW.M. AugustyniakE. RichterM. TrzeciakT. Gene expression profile in human induced pluripotent stem cells: Chondrogenic differentiation in vitro, part A.Mol. Med. Rep.20171552387240110.3892/mmr.2017.633428447755
    [Google Scholar]
  62. HouM. ZhangY. ZhouX. LiuT. YangH. ChenX. HeF. ZhuX. Kartogenin prevents cartilage degradation and alleviates osteoarthritis progression in mice via the miR-146a/NRF2 axis.Cell. Death. Dis.202112548310.1038/s41419‑021‑03765‑x33986262
    [Google Scholar]
  63. MalemudC.J. Inhibition of MMPs and ADAM/ADAMTS.Biochem. Pharmacol.20191653340
    [Google Scholar]
  64. GuoC. LiuP. DengG. HanY. ChenY. CaiC. ShenH. DengG. ZengS. Honokiol induces ferroptosis in colon cancer cells by regulating GPX4 activity.Am. J. Cancer Res.20211163039305434249443
    [Google Scholar]
  65. TangB. YanR. ZhuJ. ChengS. KongC. ChenW. FangS. WangY. YangY. QiuR. LuC. JiJ. Integrative analysis of the molecular mechanisms, immunological features and immunotherapy response of ferroptosis regulators across 33 cancer types.Int. J. Biol. Sci.202218118019810.7150/ijbs.6465434975326
    [Google Scholar]
  66. TangS. TangQ. JinJ. ZhengG. XuJ. HuangW. LiX. ShangP. LiuH. Polydatin inhibits the IL-1β-induced inflammatory response in human osteoarthritic chondrocytes by activating the Nrf2 signaling pathway and ameliorates murine osteoarthritis.Food Funct.2018931701171210.1039/C7FO01555K29484338
    [Google Scholar]
  67. WangC. GaoY. ZhangZ. ChenC. ChiQ. XuK. Ursolic acid protects chondrocytes, exhibits anti-inflammatory properties via regulation of the NF-κB/NLRP3 inflammasome pathway and ameliorates osteoarthritis.Biomed. Pharmacother.2020130110568
    [Google Scholar]
  68. LiuL. ZhangW. LiuT. TanY. ChenC. ZhaoJ. The physiological metabolite α-ketoglutarate ameliorates osteoarthritis by regulating mitophagy and oxidative stress.Redox Biol.20236210266310.1016/j.redox.2023.102663
    [Google Scholar]
  69. LiZ. FengX. LuoS. DingY. ZhangZ. ShangY. LeiD. CaiJ. ZhaoJ. ZhengL. GaoM. High drug loading hydrophobic cross-linked dextran microspheres as novel drug delivery systems for the treatment of osteoarthritis.Asian J. Pharma. Sci.202318410083010.1016/j.ajps.2023.10083037588991
    [Google Scholar]
  70. SunK. HouL. GuoZ. WangG. GuoJ. XuJ. JNK-JUN-NCOA4 axis contributes to chondrocyte ferroptosis and aggravates osteoarthritis via ferritinophagy.Free. Radic. Biol. Med.202320087101
    [Google Scholar]
  71. TangD. ChenX. KangR. KroemerG. Ferroptosis: Molecular mechanisms and health implications.Cell Res.202131210712510.1038/s41422‑020‑00441‑133268902
    [Google Scholar]
  72. IchiharaG. KatsumataY. SugiuraY. MatsuokaY. MaedaR. EndoJ. AnzaiA. ShirakawaK. MoriyamaH. KitakataH. HiraideT. GotoS. KoS. IwasawaY. SugaiK. DaigoK. GotoS. SatoK. YamadaK. SuematsuM. IedaM. SanoM. MRP1-dependent extracellular release of glutathione induces cardiomyocyte ferroptosis after ischemia-reperfusion.Circ. Res.20231331086187610.1161/CIRCRESAHA.123.32351737818671
    [Google Scholar]
  73. YanJ. LiZ. LiangY. YangC. OuW. MoH. TangM. ChenD. ZhongC. QueD. FengL. XiaoH. SongX. YangP. Fucoxanthin alleviated myocardial ischemia and reperfusion injury through inhibition of ferroptosis via the NRF2 signaling pathway.Food Funct.20231422100521006810.1039/D3FO02633G37861458
    [Google Scholar]
  74. LiJ. RenC. WangL.X. YaoR. DongN. WuY. TianY. YaoY. Sestrin2 protects dendrite cells against ferroptosis induced by sepsis.Cell. Death. Dis.202112983410.1038/s41419‑021‑04122‑834482365
    [Google Scholar]
  75. GuoZ. LinJ. SunK. GuoJ. YaoX. WangG. Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the nrf2 pathway.Front Pharmacol.20221379137610.3389/fphar.2022.791376
    [Google Scholar]
  76. YangW.S. SriRamaratnamR. WelschM.E. ShimadaK. SkoutaR. ViswanathanV.S. CheahJ.H. ClemonsP.A. ShamjiA.F. ClishC.B. BrownL.M. GirottiA.W. CornishV.W. SchreiberS.L. StockwellB.R. Regulation of ferroptotic cancer cell death by GPX4.Cell20141561-231733110.1016/j.cell.2013.12.01024439385
    [Google Scholar]
  77. ViscontiV.V. CariatiI. FittipaldiS. IundusiR. GasbarraE. TarantinoU. BottaA. DNA methylation signatures of bone metabolism in osteoporosis and osteoarthritis aging-related diseases: An updated review.Int. J. Mol. Sci.2021228424410.3390/ijms2208424433921902
    [Google Scholar]
  78. ZhangX. HuangZ. XieZ. ChenY. ZhengZ. WeiX. Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4.Free. Radic. Biol. Med.202016055256510.1016/j.freeradbiomed.2020.08.029
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673280730231211092905
Loading
/content/journals/cmc/10.2174/0109298673280730231211092905
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ferroptosis; Gossypol acetic acid; GPX4; methylation; obesity; osteoarthritis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test