Skip to content
2000
Volume 32, Issue 12
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Chemoresistance by stemness in HPV-induced cervical carcinogenesis has significant implications for the overall disease-specific survival of the patients. To date, there are no reports related to the implications of significant aspects of inflammation and microbiome-mediated epigenetics in cervical cancers.

Objective

The current systematic review delineates the significant aspects of the inflammation-related pathophysiology, cervical cancer diagnosis based on the HPV-indued stemness, and microbiome-mediated epigenetic markers to develop personalized therapies to target the stemness-acquired indefinitely dividing cancer stem cells.

Methods

We performed a systematic review without a meta-analysis. We searched several public databases, such as Pubmed, ReleMed, National Library of Medicine, and Scopus, related to inflammation, metabolomics, microbiome-mediated epigenetic markers, and HPV-induced stemness.

Results and Conclusion

The review significantly described the correlation between microbial inflammation and stem cell stochasticity of HPV-Induced cervical cancer and the expression of epigenetics-based biomarkers through microbiome and metabolome to foster the cervical cancer progression. These are major risk factors that can cause cervical dysplasia with substantial therapy resistance in cervical cancer patients. The qualitative and quantitative examination of the spatial transcriptomic expression of these stemness markers in the dividing cervical cancer stem cells has significant implications in the clinical sector to develop early personalized medicine to prevent cervical precancerous lesions depending on the prognosis of the cervical cancer patients. Mainly, the combinatorial regimen of current therapeutic modalities, along with microbiome-related therapies with future landscape of epigenetics-modulated therapies, may enhance overall disease-specific survival by modulating the stochastic dynamics of basal epithelial cells across the cervical region.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673257429231108072717
2023-11-24
2025-10-21
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. ArbynM WeiderpassE BruniL de SanjoséS SaraiyaM FerlayJ BrayF Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis.Lancet Glob Health.202082e191e203
    [Google Scholar]
  3. WalboomersJ.M. JacobsM.V. ManosM.M. BoschF.X. KummerJ.A. ShahK.V. SnijdersP.J. PetoJ. MeijerC.J. MuñozN. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide.J. Pathol.19991891121910.1002/(SICI)1096‑9896(199909)189:1<12::AID‑PATH431>3.0.CO;2‑F10451482
    [Google Scholar]
  4. BakerT.S. NewcombW.W. OlsonN.H. CowsertL.M. OlsonC. BrownJ.C. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction.Biophys. J.19916061445145610.1016/S0006‑3495(91)82181‑61663794
    [Google Scholar]
  5. BennettJ.E. DolinR. BlaserM.J. Mandell, douglas, and bennett's principles and practice of infectious diseases E-bookElsevier health sciences2019
    [Google Scholar]
  6. BoschF.X. International biological study on cervical cancer study group; aprevalaence of human papillomavirus in cervical cancer: world wide perspective.J. Natl. Cancer Inst.19958779680210.1093/jnci/87.11.7967791229
    [Google Scholar]
  7. AnderssonS. RylanderE. LarssonB. StrandA. SilfversvärdC. WilanderE. The role of human papillomavirus in cervical adenocarcinoma carcinogenesis.Eur. J. Cancer200137224625010.1016/S0959‑8049(00)00376‑211166153
    [Google Scholar]
  8. LuffR. KurmanR. SolomonD. The Bethesda System for reporting cervical and vaginal cytologic diagnoses: Report of the 1991 Bethesda workshop.J. Fam. Pract.1992351981011613480
    [Google Scholar]
  9. BontkesH.J. de GruijlT.D. WalboomersJ.M. SchillerJ.T. DillnerJ. HelmerhorstT.J. VerheijenR.H. ScheperR.J. MeijerC.J. Immune responses against human papillomavirus (HPV) type 16 virus-like particles in a cohort study of women with cervical intraepithelial neoplasia. II. Systemic but not local IgA responses correlate with clearance of HPV-16.J. Gen. Virol.199980240941710.1099/0022‑1317‑80‑2‑40910073701
    [Google Scholar]
  10. SchiffmanM. CastleP.E. JeronimoJ. RodriguezA.C. WacholderS. Human papillomavirus and cervical cancer.Lancet2007370959089090710.1016/S0140‑6736(07)61416‑017826171
    [Google Scholar]
  11. MotaM.C. Importance of human papillomavirus (HPV) infection in carcinogenesis in various body sites.2021Available from: https://who.int/news-room/fact-sheets/detail/human-papilloma-virus-and-cancer
  12. BerthelootD. LatzE. FranklinB.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death.Cell. Mol. Immunol.20211851106112110.1038/s41423‑020‑00630‑333785842
    [Google Scholar]
  13. YangX. ChengY. LiC. The role of TLRs in cervical cancer with HPV infection: A review.Signal Transduct. Target. Ther.2017211705510.1038/sigtrans.2017.5529263932
    [Google Scholar]
  14. KyrgiouM. MitraA. MoscickiA.B. Does the vaginal microbiota play a role in the development of cervical cancer?Transl. Res.201717916818210.1016/j.trsl.2016.07.00427477083
    [Google Scholar]
  15. Audirac-ChalifourA. Torres-PovedaK. Bahena-RománM. Téllez-SosaJ. Martínez-BarnetcheJ. Cortina-CeballosB. López-EstradaG. Delgado-RomeroK. Burguete-GarcíaA.I. CantúD. García-CarrancáA. Madrid-MarinaV. Cervical microbiome and cytokine profile at various stages of cervical cancer: A pilot study.PLoS One2016114e015327410.1371/journal.pone.015327427115350
    [Google Scholar]
  16. MitraA. MacIntyreD.A. LeeY.S. SmithA. MarchesiJ.R. LehneB. BhatiaR. LyonsD. ParaskevaidisE. LiJ.V. HolmesE. NicholsonJ.K. BennettP.R. KyrgiouM. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity.Sci. Rep.2015511686510.1038/srep1686526574055
    [Google Scholar]
  17. MitraA. MacIntyreD.A. MarchesiJ.R. LeeY.S. BennettP.R. KyrgiouM. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next?Microbiome2016415810.1186/s40168‑016‑0203‑027802830
    [Google Scholar]
  18. YangX. DaM. ZhangW. QiQ. ZhangC. HanS. Role of Lactobacillus in cervical cancer.Cancer Manag. Res.2018101219122910.2147/CMAR.S16522829844701
    [Google Scholar]
  19. Mendoza-AlmanzaG. Ortíz-SánchezE. Rocha-ZavaletaL. Rivas-SantiagoC. Esparza-IbarraE. OlmosJ. Cervical cancer stem cells and other leading factors associated with cervical cancer development.Oncol. Lett.20191843423343210.3892/ol.2019.1071831516560
    [Google Scholar]
  20. JouraE.A. GiulianoA.R. IversenO.E. BouchardC. MaoC. MehlsenJ. MoreiraE.D.Jr NganY. PetersenL.K. Lazcano-PonceE. PitisuttithumP. RestrepoJ.A. StuartG. WoelberL. YangY.C. CuzickJ. GarlandS.M. HuhW. KjaerS.K. BautistaO.M. ChanI.S.F. ChenJ. GesserR. MoellerE. RitterM. VuocoloS. LuxembourgA. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women.N. Engl. J. Med.2015372871172310.1056/NEJMoa140504425693011
    [Google Scholar]
  21. LeitaoM.M.Jr The LACC trial: Has minimally invasive surgery for early-stage cervical cancer been dealt a knockout punch?Int. J. Gynecol. Cancer20182871248125010.1097/IGC.000000000000134230095706
    [Google Scholar]
  22. McNamaraK. TofailS.A.M. Nanoparticles in biomedical applications.Adv. Phys. X201721548810.1080/23746149.2016.1254570
    [Google Scholar]
  23. TilborghsS. CorthoutsJ. VerhoevenY. AriasD. RolfoC. TrinhX.B. van DamP.A. The role of Nuclear Factor-kappa B signaling in human cervical cancer.Crit. Rev. Oncol. Hematol.201712014115010.1016/j.critrevonc.2017.11.00129198328
    [Google Scholar]
  24. IkebeM. KitauraY. NakamuraM. TanakaH. YamasakiA. NagaiS. WadaJ. YanaiK. KogaK. SatoN. KuboM. TanakaM. OnishiH. KatanoM. Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway.J. Surg. Oncol.2009100872573110.1002/jso.2139219722233
    [Google Scholar]
  25. HasimuA. GeL. LiQ.Z. ZhangR.P. GuoX. Expressions of Toll-like receptors 3, 4, 7, and 9 in cervical lesions and their correlation with HPV16 infection in Uighur women.Chin. J. Cancer201130534435010.5732/cjc.010.1045621527067
    [Google Scholar]
  26. LiJ. RaoH. CeJ. LiuJ. Involvement of the Toll-like receptor/nitric oxide signaling pathway in the pathogenesis of cervical cancer caused by high-risk human papillomavirus infection.BioMed. Res. Int.20172017
    [Google Scholar]
  27. FukataM. AbreuM.T. Role of Toll-like receptors in gastrointestinal malignancies.Oncogene200827223424310.1038/sj.onc.121090818176605
    [Google Scholar]
  28. Pimentel-NunesP. AfonsoL. LopesP. Roncon-AlbuquerqueR.Jr GonçalvesN. HenriqueR. Moreira-DiasL. Leite-MoreiraA.F. Dinis-RibeiroM. Increased expression of toll-like receptors (TLR) 2, 4 and 5 in gastric dysplasia.Pathol. Oncol. Res.201117367768310.1007/s12253‑011‑9368‑921455638
    [Google Scholar]
  29. TsimogiannisK.E. TellisC.C. TselepisA.D. Pappas-GogosG.K. TsimoyiannisE.C. BasdanisG. Toll-like receptors in the inflammatory response during open and laparoscopic colectomy for colorectal cancer.Surg. Endosc.201226233033610.1007/s00464‑011‑1871‑221898023
    [Google Scholar]
  30. EiróN. GonzálezL. GonzálezL.O. AndicoecheaA. Fernández-DíazM. AltadillA. VizosoF.J. Study of the expression of toll-like receptors in different histological types of colorectal polyps and their relationship with colorectal cancer.J. Clin. Immunol.201232484885410.1007/s10875‑012‑9666‑322371291
    [Google Scholar]
  31. WoodsD.C. WhiteY.A.R. DauC. JohnsonA.L. TLR4 activates NF-κB in human ovarian granulosa tumor cells.Biochem. Biophys. Res. Commun.2011409467568010.1016/j.bbrc.2011.05.06321616060
    [Google Scholar]
  32. SamaraK. AntoniouK.M. KaragiannisK. MargaritopoulosG. LasithiotakiI. KoutalaE. SiafakasN.M. Expression profiles of Toll-like receptors in non-small cell lung cancer and idiopathic pulmonary fibrosis.Int. J. Oncol.20124051397140410.3892/ijo.2012.137422344343
    [Google Scholar]
  33. González-ReyesS. FernándezJ.M. GonzálezL.O. AguirreA. SuárezA. GonzálezJ.M. EscaffS. VizosoF.J. Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence.Cancer Immunol. Immunother.201160221722610.1007/s00262‑010‑0931‑020978888
    [Google Scholar]
  34. TheodoropoulosG.E. SaridakisV. KarantanosT. MichalopoulosN.V. ZagouriF. KontogianniP. LymperiM. GazouliM. ZografosG.C. Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development.Breast201221453453810.1016/j.breast.2012.04.00122560646
    [Google Scholar]
  35. CaiZ. SanchezA. ShiZ. ZhangT. LiuM. ZhangD. Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth.Cancer Res.20117172466247510.1158/0008‑5472.CAN‑10‑199321427357
    [Google Scholar]
  36. RohY.S. SekiE. Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis.J. Gastroenterol. Hepatol.201328S11384210.1111/jgh.1201923855294
    [Google Scholar]
  37. JunjieX. SongyaoJ. MinminS. YanyanS. BaiyongS. XiaxingD. JiabinJ. XiZ. HaoC. The association between Toll-like receptor 2 single-nucleotide polymorphisms and hepatocellular carcinoma susceptibility.BMC Cancer20121215710.1186/1471‑2407‑12‑5722309608
    [Google Scholar]
  38. de MatosL.G.G. CândidoE.B. VidigalP.V.T. BordoniP.H.C. LamaitaR.M. CarneiroM.M. da Silva-FilhoA.L. Association between Toll-like receptor and tumor necrosis factor immunological pathways in uterine cervical neoplasms.Tumori20171031818610.5301/tj.500057628009429
    [Google Scholar]
  39. KellyM.G. AlveroA.B. ChenR. SilasiD.A. AbrahamsV.M. ChanS. VisintinI. RutherfordT. MorG. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer.Cancer Res.20066673859386810.1158/0008‑5472.CAN‑05‑394816585214
    [Google Scholar]
  40. EhrchenJ.M. SunderkötterC. FoellD. VoglT. RothJ. The endogenous Toll–like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer.J. Leukoc. Biol.200986355756610.1189/jlb.100864719451397
    [Google Scholar]
  41. DeCarloC.A. RosaB. JacksonR. NiccoliS. EscottN.G. ZehbeI. Toll-like receptor transcriptome in the HPV-positive cervical cancer microenvironment.Clin. Develop. Immunol.2012201210.1155/2012/785825
    [Google Scholar]
  42. Tavares-MurtaB.M. de ResendeA.D. CunhaF.Q. MurtaE.F.C. Local profile of cytokines and nitric oxide in patients with bacterial vaginosis and cervical intraepithelial neoplasia.Eur. J. Obstet. Gynecol. Reprod. Biol.20081381939910.1016/j.ejogrb.2007.06.01517683845
    [Google Scholar]
  43. FaheyJ.M. GirottiA.W. Accelerated migration and invasion of prostate cancer cells after a photodynamic therapy-like challenge: Role of nitric oxide.Nitric Oxide201549475510.1016/j.niox.2015.05.00626068242
    [Google Scholar]
  44. RanganathanS. KrishnanA. SivasithambaramN.D. Significance of twist and iNOS expression in human breast carcinoma.Mol. Cell. Biochem.20164121-2414710.1007/s11010‑015‑2606‑926590086
    [Google Scholar]
  45. DongJ. ChengM. SunH. Function of inducible nitric oxide synthase in the regulation of cervical cancer cell proliferation and the expression of vascular endothelial growth factor.Mol. Med. Rep.20149258358910.3892/mmr.2013.183824297386
    [Google Scholar]
  46. XiaoJ. GuoQ. WangX. XieF. ZhangH. SuiL. Study on the expression and signification of TLR4/NO pathway in cervical tumorigenesis with high risk HPV infection.Zhonghua Fu Chan Ke Za Zhi2015501414725877424
    [Google Scholar]
  47. LenzE.M. WilsonI.D. Analytical strategies in metabonomics.J. Proteome Res.20076244345810.1021/pr060521717269702
    [Google Scholar]
  48. MadsenR. LundstedtT. TryggJ. Chemometrics in metabolomics: A review in human disease diagnosis.Anal. Chim. Acta20106591-2233310.1016/j.aca.2009.11.04220103103
    [Google Scholar]
  49. SitterB. BathenT. HagenB. ArentzC. SkjeldestadF.E. GribbestadI.S. Cervical cancer tissue characterized by high-resolution magic angle spinning MR spectroscopy.MAGMA200416417418110.1007/s10334‑003‑0025‑514999565
    [Google Scholar]
  50. HasimA. AliM. MamtiminB. MaJ.Q. LiQ.Z. AbudulaA. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by 1H NMR spectroscopy.Exp. Ther. Med.20123694595110.3892/etm.2012.50922969997
    [Google Scholar]
  51. SpratlinJ.L. SerkovaN.J. EckhardtS.G. Clinical applications of metabolomics in oncology: A review.Clin. Cancer Res.200915243144010.1158/1078‑0432.CCR‑08‑105919147747
    [Google Scholar]
  52. HasimA. AiliA. MaimaitiA. mamtiminB. AbudulaA. UpurH. Plasma-free amino acid profiling of cervical cancer and cervical intraepithelial neoplasia patients and its application for early detection.Mol. Biol. Rep.201340105853585910.1007/s11033‑013‑2691‑324068431
    [Google Scholar]
  53. YinM. TanS. LiX. HouY. CaoG. LiK. KouJ. LouG. Identification of phosphatidylcholine and lysophosphatidylcholine as novel biomarkers for cervical cancers in a prospective cohort study.Tumour Biol.20163745485549210.1007/s13277‑015‑4164‑x26566624
    [Google Scholar]
  54. KhanI. NamM. KwonM. SeoS. JungS. HanJ.S. HwangG.S. KimM.K. LC/MS-based polar metabolite profiling identified unique biomarker signatures for cervical cancer and cervical intraepithelial neoplasia using global and targeted metabolomics.Cancers201911451110.3390/cancers1104051130974861
    [Google Scholar]
  55. IlhanZ.E. ŁaniewskiP. ThomasN. RoeD.J. ChaseD.M. Herbst-KralovetzM.M. Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling.EBioMedicine20194467569010.1016/j.ebiom.2019.04.02831027917
    [Google Scholar]
  56. YangK. XiaB. WangW. ChengJ. YinM. XieH. LiJ. MaL. YangC. LiA. FanX. DhillonH.S. HouY. LouG. LiK. A comprehensive analysis of metabolomics and transcriptomics in cervical cancer.Sci. Rep.2017714335310.1038/srep4335328225065
    [Google Scholar]
  57. AbudulaA. RouziN. XuL. YangY. HasimuA. Tissue-based metabolomics reveals potential biomarkers for cervical carcinoma and HPV infection.Bosn. J. Basic Med. Sci.2020201788731465717
    [Google Scholar]
  58. KoriM. Yalcin ArgaK. Potential biomarkers and therapeutic targets in cervical cancer: Insights from the meta-analysis of transcriptomics data within network biomedicine perspective.PLoS One2018137e020071710.1371/journal.pone.020071730020984
    [Google Scholar]
  59. ZhuH. ZhuH. TianM. WangD. HeJ. XuT. DNA methylation and hydroxymethylation in cervical cancer: diagnosis, prognosis and treatment.Front. Genet.20201134710.3389/fgene.2020.0034732328088
    [Google Scholar]
  60. LaiH.C. LinY.W. HuangT.H.M. YanP. HuangR.L. WangH.C. LiuJ. ChanM.W.Y. ChuT.Y. SunC.A. ChangC.C. YuM.H. Identification of novel DNA methylation markers in cervical cancer.Int. J. Cancer2008123116116710.1002/ijc.2351918398837
    [Google Scholar]
  61. ZhangW. XuJ. DNA methyltransferases and their roles in tumorigenesis.Biomark. Res.2017511810.1186/s40364‑017‑0081‑z28127428
    [Google Scholar]
  62. FengC. DongJ. ChangW. CuiM. XuT. The progress of methylation regulation in gene expression of cervical cancer.Int. J. Genom.2018201810.1155/2018/8260652
    [Google Scholar]
  63. KohliR.M. ZhangY. TET enzymes, TDG and the dynamics of DNA demethylation.Nature2013502747247247910.1038/nature1275024153300
    [Google Scholar]
  64. ItoS. ShenL. DaiQ. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.Science2011333604713001303
    [Google Scholar]
  65. LuY. KrishnanA. BrommerB. TianX. MeerM. VeraD.L. WangC. ZengQ. YuD. BonkowskiM.S. Reversal of ageing-and injury-induced vision loss by Tet-dependent epigenetic reprogramming.BioRxiv201971021010.1101/710210
    [Google Scholar]
  66. HolubekovaV. KolkovaZ. KasubovaI. SamecM. MazurakovaA. KoklesovaL. KubatkaP. RokosT. KozubikE. BiringerK. KudelaE. Interaction of cervical microbiome with epigenome of epithelial cells: Significance of inflammation to primary healthcare.Biomol. Concepts2022131618010.1515/bmc‑2022‑000535245973
    [Google Scholar]
  67. DabinJ. FortunyA. PoloS.E. Epigenome maintenance in response to DNA damage.Mol. Cell201662571272710.1016/j.molcel.2016.04.00627259203
    [Google Scholar]
  68. YangS. WuY. WangS. XuP. DengY. WangM. LiuK. TianT. ZhuY. LiN. ZhouL. DaiZ. KangH. HPV-related methylation-based reclassification and risk stratification of cervical cancer.Mol. Oncol.20201492124214110.1002/1878‑0261.1270932408396
    [Google Scholar]
  69. SenP. GangulyP. GangulyN. Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer.Oncol. Lett.2018151112229285184
    [Google Scholar]
  70. de la Cruz-HernándezE. Pérez-CárdenasE. Contreras-ParedesA. CantúD. MoharA. LizanoM. Dueñas-GonzálezA. The effects of DNA methylation and histone deacetylase inhibitors on human papillomavirus early gene expression in cervical cancer, an in vitro and clinical study.Virol. J.2007411810.1186/1743‑422X‑4‑1817324262
    [Google Scholar]
  71. DumitrescuR.G. Early epigenetic markers for precision medicine.Canc. Epigen. Prec. Med.201831710.1007/978‑1‑4939‑8751‑1_1
    [Google Scholar]
  72. AmabebeE. AnumbaD.O.C. Female gut and genital tract microbiota-induced crosstalk and differential effects of short-chain fatty acids on immune sequelae.Front. Immunol.202011218410.3389/fimmu.2020.0218433013918
    [Google Scholar]
  73. SommerF. NookaewI. SommerN. FogelstrandP. BäckhedF. Site-specific programming of the host epithelial transcriptome by the gut microbiota.Genome Biol.20151616210.1186/s13059‑015‑0614‑425887251
    [Google Scholar]
  74. Gury-BenAriM. ThaissC.A. SerafiniN. WinterD.R. GiladiA. Lara-AstiasoD. LevyM. SalameT.M. WeinerA. DavidE. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome.Cell201616651231124610.1016/j.cell.2016.07.043
    [Google Scholar]
  75. RichardsA.L. MuehlbauerA.L. AlaziziA. BurnsM.B. FindleyA. MessinaF. GouldT.J. CascardoC. Pique-RegiR. BlekhmanR. LucaF. Gut microbiota has a widespread and modifiable effect on host gene regulation.mSystems201945e00323-1810.1128/mSystems.00323‑1831481602
    [Google Scholar]
  76. GhadimiD. HelwigU. SchrezenmeirJ. HellerK.J. de VreseM. Epigenetic imprinting by commensal probiotics inhibits the IL-23/IL-17 axis in an in vitro model of the intestinal mucosal immune system.J. Leukoc. Biol.201292489591110.1189/jlb.061128622730546
    [Google Scholar]
  77. van der HeeB. WellsJ.M. Microbial regulation of host physiology by short-chain fatty acids.Trends Microbiol.202129870071210.1016/j.tim.2021.02.00133674141
    [Google Scholar]
  78. YuD.H. GadkariM. ZhouQ. YuS. GaoN. GuanY. SchadyD. RoshanT.N. ChenM.H. LaritskyE. GeZ. WangH. ChenR. WestwaterC. BryL. WaterlandR.A. MoriartyC. HwangC. SwennesA.G. MooreS.R. ShenL. Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome.Genome Biol.201516121110.1186/s13059‑015‑0763‑526420038
    [Google Scholar]
  79. ElliottE.N. SheafferK.L. SchugJ. StappenbeckT.S. KaestnerK.H. Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium.Development2015142122163217210.1242/dev.11734126023099
    [Google Scholar]
  80. SheafferK.L. KimR. AokiR. ElliottE.N. SchugJ. BurgerL. SchübelerD. KaestnerK.H. DNA methylation is required for the control of stem cell differentiation in the small intestine.Genes Dev.201428665266410.1101/gad.230318.11324637118
    [Google Scholar]
  81. PanW.H. SommerF. Falk-PaulsenM. UlasT. BestP. FazioA. KachrooP. LuziusA. JentzschM. RehmanA. MüllerF. LengauerT. WalterJ. KünzelS. BainesJ.F. SchreiberS. FrankeA. SchultzeJ.L. BäckhedF. RosenstielP. Exposure to the gut microbiota drives distinct methylome and transcriptome changes in intestinal epithelial cells during postnatal development.Genome Med.20181012710.1186/s13073‑018‑0534‑529653584
    [Google Scholar]
  82. AnsariI. RaddatzG. GutekunstJ. RidnikM. CohenD. Abu-RemailehM. TuganbaevT. ShapiroH. PikarskyE. ElinavE. LykoF. BergmanY. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation.Nat. Microbiol.20205461061910.1038/s41564‑019‑0659‑332015497
    [Google Scholar]
  83. PacisA. TailleuxL. MorinA.M. LambourneJ. MacIsaacJ.L. YotovaV. DumaineA. DanckaertA. LucaF. GrenierJ.C. HansenK.D. GicquelB. YuM. PaiA. HeC. TungJ. PastinenT. KoborM.S. Pique-RegiR. GiladY. BarreiroL.B. Bacterial infection remodels the DNA methylation landscape of human dendritic cells.Genome Res.201525121801181110.1101/gr.192005.11526392366
    [Google Scholar]
  84. QinW. SciclunaB.P. van der PollT. The role of host cell DNA methylation in the immune response to bacterial infection.Front. Immunol.20211269628010.3389/fimmu.2021.69628034394088
    [Google Scholar]
  85. NenéN.R. BarrettJ. JonesA. EvansI. ReiselD. TimmsJ.F. PaprotkaT. LeimbachA. FranchiD. ColomboN. BjørgeL. ZikanM. CibulaD. WidschwendterM. DNA methylation signatures to predict the cervicovaginal microbiome status.Clin. Epigenetics202012118010.1186/s13148‑020‑00966‑733228781
    [Google Scholar]
  86. HurK. NiwaT. ToyodaT. TsukamotoT. TatematsuM. YangH.K. UshijimaT. Insufficient role of cell proliferation in aberrant DNA methylation induction and involvement of specific types of inflammation.Carcinogenesis2011321354110.1093/carcin/bgq21920980348
    [Google Scholar]
  87. SuP.H. HsuY.W. HuangR.L. ChenL.Y. ChaoT.K. LiaoC.C. ChenC.W. WuT.I. MaoS.P. BalchC. LaiH.C. TET1 promotes 5hmC-dependent stemness, and inhibits a 5hmC-independent epithelial-mesenchymal transition, in cervical precancerous lesions.Cancer Lett.2019450536210.1016/j.canlet.2019.01.03330771438
    [Google Scholar]
  88. EdwardsV.L. SmithS.B. McCombE.J. TamarelleJ. MaB. HumphrysM.S. GajerP. GwilliamK. SchaeferA.M. LaiS.K. TerplanM. MarkK.S. BrotmanR.M. ForneyL.J. BavoilP.M. RavelJ. The cervicovaginal microbiota-host interaction modulates Chlamydia trachomatis infection.MBio2019104e01548-1910.1128/mBio.01548‑1931409678
    [Google Scholar]
  89. ChenZ. WongP.Y. NgC.W.K. LanL. FungS. LiJ.W. CaiL. LeiP. MouQ. WongS.H. WuW.K.K. LiR.J. MeehanK. LuiV.W.Y. ChowC. LoK.W. ChanA.B.W. BoonS.S. LauE.H.L. YeungZ. ChanK.C.A. WongE.W.Y. ChengA.S.L. YuJ. ChanP.K.S. ChanJ.Y.K. The intersection between oral microbiota, host gene methylation and patient outcomes in head and neck squamous cell carcinoma.Cancers20201211342510.3390/cancers1211342533218162
    [Google Scholar]
  90. HuangS.T. ChenJ. LianL.Y. CaiH.H. ZengH.S. ZhengM. LiuM.B. Intratumoral levels and prognostic significance of Fusobacterium nucleatum in cervical carcinoma.Aging20201222233372335010.18632/aging.10418833197886
    [Google Scholar]
  91. RiscutaG. XiD. Pierre-VictorD. Starke-ReedP. KhalsaJ. DuffyL. Diet, microbiome, and epigenetics in the era of precision medicine.Methods Mol. Biol.2018185614115610.1007/978‑1‑4939‑8751‑1_8
    [Google Scholar]
  92. ClaytonE. DoupéD.P. KleinA.M. WintonD.J. SimonsB.D. JonesP.H. A single type of progenitor cell maintains normal epidermis.Nature2007446713218518910.1038/nature0557417330052
    [Google Scholar]
  93. DoupéD.P. AlcoleaM.P. RoshanA. ZhangG. KleinA.M. SimonsB.D. JonesP.H. A single progenitor population switches behavior to maintain and repair esophageal epithelium.Science201233760981091109310.1126/science.121883522821983
    [Google Scholar]
  94. RyserM.D. MyersE.R. DurrettR. HPV clearance and the neglected role of stochasticity.PLOS Comput. Biol.2015113e100411310.1371/journal.pcbi.100411325769112
    [Google Scholar]
  95. MuñozN. CastellsaguéX. de GonzálezA.B. GissmannL. Chapter 1: HPV in the etiology of human cancer.Vaccine2006243S1S10, 1-1010.1016/j.vaccine.2006.05.11516949995
    [Google Scholar]
  96. KranjecC. DoorbarJ. Human papillomavirus infection and induction of neoplasia: A matter of fitness.Curr. Opin. Virol.20162012913610.1016/j.coviro.2016.08.01127600900
    [Google Scholar]
  97. KaretaM.S. GorgesL.L. HafeezS. BenayounB.A. MarroS. ZmoosA.F. CecchiniM.J. SpacekD. BatistaL.F.Z. O’BrienM. NgY.H. AngC.E. VakaD. ArtandiS.E. DickF.A. BrunetA. SageJ. WernigM. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis.Cell Stem Cell2015161395010.1016/j.stem.2014.10.01925467916
    [Google Scholar]
  98. LinT. ChaoC. SaitoS. MazurS.J. MurphyM.E. AppellaE. XuY. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression.Nat. Cell Biol.20057216517110.1038/ncb121115619621
    [Google Scholar]
  99. BrehmA. OhboK. SchölerH. The carboxy-terminal transactivation domain of Oct-4 acquires cell specificity through the POU domain.Mol. Cell. Biol.199717115416210.1128/MCB.17.1.1548972195
    [Google Scholar]
  100. BrehmA. OhboK. ZwerschkeW. BotquinV. Jansen-DürrP. SchölerH.R. Synergism with germ line transcription factor Oct-4: viral oncoproteins share the ability to mimic a stem cell-specific activity.Mol. Cell. Biol.19991942635264310.1128/MCB.19.4.263510082529
    [Google Scholar]
  101. Organista-NavaJ. Gómez-GómezY. Ocadiz-DelgadoR. García-VillaE. Bonilla-DelgadoJ. Lagunas-MartínezA. TapiaJ.S.O. LambertP.F. García-CarrancáA. GariglioP. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal.Virology201649923024210.1016/j.virol.2016.09.02027693927
    [Google Scholar]
  102. GunasekharanV.K. LiY. AndradeJ. LaiminsL.A. Post-transcriptional regulation of KLF4 by high-risk human papillomaviruses is necessary for the differentiation-dependent viral life cycle.PLoS Pathog.2016127e100574710.1371/journal.ppat.100574727386862
    [Google Scholar]
  103. TyagiA. VishnoiK. MahataS. VermaG. SrivastavaY. MasaldanS. RoyB.G. BhartiA.C. DasB.C. Cervical cancer stem cells selectively overexpress HPV oncoprotein E6 that controls stemness and self-renewal through upregulation of HES1.Clin. Cancer Res.201622164170418410.1158/1078‑0432.CCR‑15‑257426988248
    [Google Scholar]
  104. KranjecC. HolleywoodC. LibertD. GriffinH. MahmoodR. IsaacsonE. DoorbarJ. Modulation of basal cell fate during productive and transforming HPV-16 infection is mediated by progressive E6-driven depletion of Notch.J. Pathol.2017242444846210.1002/path.491728497579
    [Google Scholar]
  105. MarthalerA.M. PodgorskaM. FeldP. FingerleA. Knerr-RuppK. GrässerF. SmolaH. RoemerK. EbertE. KimY.J. BohleR.M. MüllerC.S.L. ReichrathJ. VogtT. MalejczykM. MajewskiS. SmolaS. Identification of C/EBPα as a novel target of the HPV8 E6 protein regulating miR-203 in human keratinocytes.PLoS Pathog.2017136e100640610.1371/journal.ppat.100640628640877
    [Google Scholar]
  106. MeyersJ.M. UberoiA. GraceM. LambertP.F. MungerK. Cutaneous HPV8 and MmuPV1 E6 proteins target the NOTCH and TGF-β tumor suppressors to inhibit differentiation and sustain keratinocyte proliferation.PLoS Pathog.2017131e100617110.1371/journal.ppat.100617128107544
    [Google Scholar]
  107. McLaughlin-DrubinM.E. CrumC.P. MüngerK. Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming.Proc. Natl. Acad. Sci. USA201110852130213510.1073/pnas.100993310821245294
    [Google Scholar]
  108. HufbauerM. BiddleA. BorgognaC. GariglioM. DoorbarJ. StoreyA. PfisterH. MackenzieI. AkgülB. Expression of betapapillomavirus oncogenes increases the number of keratinocytes with stem cell-like properties.J. Virol.20138722121581216510.1128/JVI.01510‑1324006432
    [Google Scholar]
  109. LindquistD. NäsmanA. TarjánM. HenrikssonR. TotT. DalianisT. HedmanH. Expression of LRIG1 is associated with good prognosis and human papillomavirus status in oropharyngeal cancer.Br. J. Cancer201411071793180010.1038/bjc.2014.8724548859
    [Google Scholar]
  110. OliveroC. LanfrediniS. BorgognaC. GariglioM. PatelG.K. HPV-induced field cancerisation: Transformation of adult tissue stem cell into cancer stem cell.Front. Microbiol.2018954610.3389/fmicb.2018.0054629632522
    [Google Scholar]
  111. SudhalkarN. RathodN.P. MathewsA. ChopraS. SriramH. ShrivastavaS.K. GodaJ.S. Potential role of cancer stem cells as biomarkers and therapeutic targets in cervical cancer.Cancer Rep.201922e114410.1002/cnr2.114432721115
    [Google Scholar]
  112. Di FioreR. SuleimanS. Drago-FerranteR. SubbannayyaY. PentimalliF. GiordanoA. Calleja-AgiusJ. Cancer Stem cells and their possible implications in cervical cancer: A short review.Int. J. Mol. Sci.2022239516710.3390/ijms2309516735563557
    [Google Scholar]
  113. WangH.Y. SunJ.M. LuH.F. ShiD.R. OuZ.L. RenY.L. FuS.Q. Micrometastases detected by cytokeratin 19 expression in sentinel lymph nodes of patients with early-stage cervical cancer.Int. J. Gynecol. Cancer200616264364810.1111/j.1525‑1438.2006.00381.x16681740
    [Google Scholar]
  114. IkedaK. TateG. SuzukiT. MitsuyaT. Coordinate expression of cytokeratin 8 and cytokeratin 17 immunohistochemical staining in cervical intraepithelial neoplasia and cervical squamous cell carcinoma: An immunohistochemical analysis and review of the literature.Gynecol. Oncol.2008108359860210.1016/j.ygyno.2007.11.04218191996
    [Google Scholar]
  115. WangY. WangM. ZengQ. LvY. BaoB. Isolation and biological characteristics of human cervical cancer side population cells.Int. J. Clin. Exp. Pathol.2017102869876
    [Google Scholar]
  116. ZhangQ. ShiS. YenY. BrownJ. TaJ.Q. LeA.D. A subpopulation of CD133+ cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy.Cancer Lett.2010289215116010.1016/j.canlet.2009.08.01019748175
    [Google Scholar]
  117. TakaishiS. OkumuraT. TuS. WangS.S.W. ShibataW. VigneshwaranR. GordonS.A.K. ShimadaY. WangT.C. Identification of gastric cancer stem cells using the cell surface marker CD44.Stem Cells20092751006102010.1002/stem.3019415765
    [Google Scholar]
  118. SuY.J. LaiH.M. ChangY.W. ChenG.Y. LeeJ.L. Direct reprogramming of stem cell properties in colon cancer cells by CD44.EMBO J.201130153186319910.1038/emboj.2011.21121701559
    [Google Scholar]
  119. HiragaT. ItoS. NakamuraH. Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production.Cancer Res.201373134112412210.1158/0008‑5472.CAN‑12‑380123633482
    [Google Scholar]
  120. Ortiz-SánchezE. Santiago-LópezL. Cruz-DomínguezV.B. Toledo-GuzmánM.E. Hernández-CuetoD. Muñiz-HernándezS. GarridoE. De LeónD.C. García-CarrancáA. Characterization of cervical cancer stem cell-like cells: Phenotyping, stemness, and human papilloma virus co-receptor expression.Oncotarget2016722319433195410.18632/oncotarget.821827008711
    [Google Scholar]
  121. HouT. ZhangW. TongC. KazobinkaG. HuangX. HuangY. ZhangY. Putative stem cell markers in cervical squamous cell carcinoma are correlated with poor clinical outcome.BMC Cancer201515178510.1186/s12885‑015‑1826‑426499463
    [Google Scholar]
  122. Arizmendi-IzazagaA. Navarro-TitoN. Jiménez-WencesH. Mendoza-CatalánM.A. Martínez-CarrilloD.N. Zacapala-GómezA.E. Olea-FloresM. Dircio-MaldonadoR. Torres-RojasF.I. Soto-FloresD.G. Illades-AguiarB. Ortiz-OrtizJ. Metabolic reprogramming in cancer: role of HPV 16 variants.Pathogens202110334710.3390/pathogens1003034733809480
    [Google Scholar]
  123. HuC. LiuX. ZengY. LiuJ. WuF. DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: Mechanism and clinical application.Clin. Epigenetics202113116610.1186/s13148‑021‑01154‑x34452630
    [Google Scholar]
  124. PathaniaR. RamachandranS. MariappanG. ThakurP. ShiH. ChoiJ.H. ManicassamyS. KolheR. PrasadP.D. SharmaS. LokeshwarB.L. GanapathyV. ThangarajuM. Combined inhibition of DNMT and HDAC blocks the tumorigenicity of cancer stem-like cells and attenuates mammary tumor growth.Cancer Res.201676113224323510.1158/0008‑5472.CAN‑15‑224927197203
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673257429231108072717
Loading
/content/journals/cmc/10.2174/0109298673257429231108072717
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test