Skip to content
2000
Volume 32, Issue 19
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background and Objectives

Hesperetin (HSE) is a natural flavonoid derived from the hydrolysis of Hesperidin, which is mainly found in traditional natural Chinese herbs, such as Chenpi and Hovenia caryophyllus. HSE displays anti-inflammatory and antioxidant activities. However, its potential mechanism of action on bladder cancer (BLCA) remains unknown. The aim of this study was to investigate the potential mechanism of action of HSE on BLCA cells.

Methods

Network pharmacology analysis was used to construct a composite target network, combined with Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify HSE-induced cell death patterns and signaling pathway alterations. Cytotoxicity evaluation was determined by CCK-8 assay. A clone formation assay was performed to assess cell proliferative capacity. Scratch and Transwell assays were performed to evaluate cell migration and invasion ability. Hoechst 33342 staining was visualized to observe morphological features of apoptosis. Apoptosis, cycle distribution, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) changes were examined by flow cytometry. Western blot analysis was performed to analyze the expression of key proteins associated with cell proliferation, apoptosis, cycle block, PI3K/AKT/FoxOa and endoplasmic reticulum (ER) stress-mitochondrial pathways.

Results

Network pharmacology analysis was performed to identify 155 potential candidate targets of HSE-BLCA, and further topological analysis was performed to obtain 34 hub-gene. Enrichment analysis yielded patterns of death and key pathways, revealing that the anti-BLCA effect of HSE may be related to the positive regulation of PI3K/AKT/FoxOa and ER stress-mitochondrial pathways. results showed that HSE blocked cell proliferation, migration, and invasion in a concentration-dependent manner and triggered apoptosis, G0/G1 phase blockade, ROS production, and MMP depolarization. In addition, Western blot results showed that HSE downregulated phosphorylated (p)-3-phosphoinositide-dependent kinase-1 (PI3K), phosphorylated (p)-AKT serine/threonine kinase 1 (AKT), phosphorylated (p)-Forkhead box Oa (FoxOa), anti-apoptotic proteins, proliferation-associated proteins, and cell cycle promoters, whereas the levels of proteins related to the expression of cell cycle regulators, pro-apoptotic proteins, and ER stress-mitochondrial pathway were up-regulated in BLCA cells by the intervention of HSE. PI3K agonist (YS-49) and ER stress inhibitor (4-PBA) partially or completely reversed HSE-mediated proliferation, apoptosis, and cycle blockade in BLCA cells.

Conclusion

The anticancer effects of HSE in BLCA may be attributed to its coordination of actions, inhibiting cell proliferation, migration, and invasion, inducing apoptosis, G0/G1 phase arrest, generating reactive oxygen species, causing MMP loss, and engaging the caspase protein family. These actions are likely mediated through the PI3K/AKT/FoxOa and ER stress-mitochondrial pathways. Thus, our findings suggest that HSE is a promising novel therapeutic candidate for the prevention and treatment of BLCA.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673283888231217174702
2024-02-13
2025-10-11
Loading full text...

Full text loading...

References

  1. BorhaniS. BorhaniR. Kajdacsy-BallaA. Artificial intelligence: A promising frontier in bladder cancer diagnosis and outcome prediction.Crit. Rev. Oncol. Hematol.202217110360110.1016/j.critrevonc.2022.10360135065220
    [Google Scholar]
  2. MoschiniM. GandagliaG. DehòF. SaloniaA. BrigantiA. MontorsiF. Bladder cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up.Ann. Oncol.202233556110.1016/j.annonc.2022.01.07535121006
    [Google Scholar]
  3. CaoR. YuanL. MaB. WangG. QiuW. TianY. An EMT-related gene signature for the prognosis of human bladder cancer.J. Cell. Mol. Med.202024160561710.1111/jcmm.1476731657881
    [Google Scholar]
  4. Martins-LimaC. ChianeseU. BenedettiR. AltucciL. JerónimoC. CorreiaM.P. Tumor microenvironment and epithelial-mesenchymal transition in bladder cancer: Cytokines in the game?Front. Mol. Biosci.20239107038310.3389/fmolb.2022.1070383
    [Google Scholar]
  5. RizzutoI. GhazalyE. PetersG.J. Pharmacological factors affecting accumulation of gemcitabine’s active metabolite, gemcitabine triphosphate.Pharmacogenomics201718991192510.2217/pgs‑2017‑003428594276
    [Google Scholar]
  6. HussainS.A. LesterJ.F. JacksonR. GornallM. QureshiM. ElliottA. CrabbS.J. HuddartR.A. VasudevN. BirtleA.J. WorldingJ. JamesN.D. ParikhO. Vilarino-VarelaM. AlonziR. LinchM.D. RiazI.B. CattoJ.W.F. PowlesT. JonesR.J. Addition of nintedanib or placebo to neoadjuvant gemcitabine and cisplatin in locally advanced muscle-invasive bladder cancer (NEOBLADE): A double-blind, randomised, phase 2 trial.Lancet Oncol.202223565065810.1016/S1470‑2045(22)00158‑935421369
    [Google Scholar]
  7. RuW. WangD. XuY. HeX. SunY.E. QianL. ZhouX. QinY. Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.).Drug Discov. Ther.201591233210.5582/ddt.2015.0100425788049
    [Google Scholar]
  8. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010.J. Nat. Prod.201275331133510.1021/np200906s22316239
    [Google Scholar]
  9. ChibaH. KimH. MatsumotoA. AkiyamaS. IshimiY. SuzukiK. UeharaM. Hesperidin prevents androgen deficiency-induced bone loss in male mice.Phytother. Res.201428228929510.1002/ptr.500123674260
    [Google Scholar]
  10. HassanA.K. El-KalaawyA.M. Abd El-TwabS.M. AlblihedM.A. AhmedO.M. Hesperetin and capecitabine abate 1,2 dimethylhydrazine-induced colon carcinogenesis in wistar rats via suppressing oxidative stress and enhancing antioxidant, anti-inflammatory and apoptotic actions.Life202313498410.3390/life1304098437109513
    [Google Scholar]
  11. Samandari-BahrasemanM.R. KhorsandB. ZareeiS. AmanlouM. RostamabadiH. Various concentrations of hesperetin induce different types of programmed cell death in human breast cancerous and normal cell lines in a ROS-dependent manner.Chem. Biol. Interact.202338211064210.1016/j.cbi.2023.11064237487865
    [Google Scholar]
  12. BidehM. SafariS. KhedriA. ZangooeiM. The effect of hesperetin on estrogen receptor gene expression and its relationship with the downstream pathways of estrogen receptor alpha.Mol. Biol. Rep.20235097225723610.1007/s11033‑023‑08616‑w37418087
    [Google Scholar]
  13. JingS. WangX. ZhangZ. CaoD. HuangK. WangY. LiuZ. SuS. WangQ. Hesperetin attenuates cognitive dysfunction via SIRT6/NLRP3 pathway in scopolamine-induced mice.Metab. Brain Dis.20233872443245610.1007/s11011‑023‑01250‑237382831
    [Google Scholar]
  14. AhmedO.M. SalehA.S. AhmedE.A. GhoneimM.M. EbrahimH.A. AbdelgawadM.A. Abdel-GabbarM. Efficiency of bone marrow-derived mesenchymal stem cells and hesperetin in the treatment of streptozotocin-induced type 1 diabetes in wistar rats.Pharmaceuticals202316685910.3390/ph1606085937375806
    [Google Scholar]
  15. KLi GYou. KJiang. RWang. WLi. YMeng. YFang WChen GZhu JSong WWang. HSu. BHu FSun ZJia CLi JZhu. Root extract of Hemsleya amabilis Diels suppresses renal cell carcinoma cell growth through inducing apoptosis and G2/M phase arrest via PI3K/AKT signaling pathway. J. Ethnopharmacol2024318Pt B11701410.1016/j.jep.2023.117014
    [Google Scholar]
  16. NakkaV.P. GusainA. RaghubirR. Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats.Neurotox. Res.201017218920210.1007/s12640‑009‑9110‑519763736
    [Google Scholar]
  17. LiuB. DanW. WeiY. ZhangY. WangC. LeiY. HouT. ZhangY. GaoY. β-asarone inhibits the migration, invasion, and EMT of bladder cancer through activating ER stress.Cancer Med.20231212136101362210.1002/cam4.605937306628
    [Google Scholar]
  18. Malek-EsfandiariZ. Rezvani-NoghaniA. SohrabiT. MokaberiP. Amiri-TehranizadehZ. ChamaniJ. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus dna with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway.J. Fluoresc.20233341537155710.1007/s10895‑023‑03169‑436787038
    [Google Scholar]
  19. HsuY.H. ChangC.C. YangN.J. LeeY.H. JuanS.H. RhoA-mediated inhibition of vascular endothelial cell mobility: Positive feedback through reduced cytosolic p21 and p27.J. Cell. Physiol.2014229101455146510.1002/jcp.2458324535918
    [Google Scholar]
  20. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.11818936753
    [Google Scholar]
  21. ChangH.C. YangY.R. WangP.S. WangR.Y. Quercetin enhances exercise-mediated neuroprotective effects in brain ischemic rats.Med. Sci. Sports Exerc.201446101908191610.1249/MSS.000000000000031024561812
    [Google Scholar]
  22. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa97133151290
    [Google Scholar]
  23. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13
    [Google Scholar]
  24. LiuX. OuyangS. YuB. LiuY. HuangK. GongJ. ZhengS. LiZ. LiH. JiangH. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic. Acids. Res.,201038Web Server issueW609W61410.1093/nar/gkq300
    [Google Scholar]
  25. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz38231106366
    [Google Scholar]
  26. BatemanA. MartinM-J. OrchardS. MagraneM. AgivetovaR. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. BursteinasB. Bye-A-JeeH. CoetzeeR. CukuraA. Da SilvaA. DennyP. DoganT. EbenezerT.G. FanJ. CastroL.G. GarmiriP. GeorghiouG. GonzalesL. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JokinenP. JoshiV. JyothiD. LockA. LopezR. LucianiA. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MenchiM. MishraA. MoulangK. NightingaleA. OliveiraC.S. PundirS. QiG. RajS. RiceD. LopezM.R. SaidiR. SampsonJ. SawfordT. SperettaE. TurnerE. TyagiN. VasudevP. VolynkinV. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA. PouxS. RedaschiN. AimoL. Argoud-PuyG. AuchinclossA. AxelsenK. BansalP. BaratinD. BlatterM-C. BollemanJ. BoutetE. BreuzaL. Casals-CasasC. de CastroE. EchioukhK.C. CoudertE. CucheB. DocheM. DornevilD. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GehantS. GerritsenV. GosA. Gruaz-GumowskiN. HinzU. HuloC. Hyka-NouspikelN. JungoF. KellerG. KerhornouA. LaraV. Le MercierP. LieberherrD. LombardotT. MartinX. MassonP. MorgatA. NetoT.B. PaesanoS. PedruzziI. PilboutS. PourcelL. PozzatoM. PruessM. RivoireC. SigristC. SonessonK. StutzA. SundaramS. TognolliM. VerbregueL. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. GaravelliJ.S. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. YehL-S. ZhangJ. RuchP. TeodoroD. UniProt Consortium UniProt: The universal protein knowledgebase in 2021.Nucleic Acids Res.202149D1D480D48910.1093/nar/gkaa110033237286
    [Google Scholar]
  27. PiñeroJ. BravoÀ. Queralt-RosinachN. Gutiérrez-SacristánA. Deu-PonsJ. CentenoE. García-GarcíaJ. SanzF. FurlongL.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants.Nucleic Acids Res.201745D1D833D83910.1093/nar/gkw94327924018
    [Google Scholar]
  28. SafranM. Chalifa-CaspiV. ShmueliO. OlenderT. LapidotM. RosenN. ShmoishM. PeterY. GlusmanG. FeldmesserE. AdatoA. PeterI. KhenM. AtarotT. GronerY. LancetD. Human gene-centric databases at the weizmann institute of science: GeneCards, UDB, CroW 21 and HORDE.Nucleic Acids Res.200331114214610.1093/nar/gkg05012519968
    [Google Scholar]
  29. HamoshA. ScottA.F. AmbergerJ.S. BocchiniC.A. McKusickV.A. Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders.Nucleic Acids Res.200433Database issueD514D51710.1093/nar/gki03315608251
    [Google Scholar]
  30. MeringC. HuynenM. JaeggiD. SchmidtS. BorkP. SnelB. STRING: A database of predicted functional associations between proteins.Nucleic Acids Res.200331125826110.1093/nar/gkg03412519996
    [Google Scholar]
  31. Dennis-GJr. ShermanB.T. HosackD.A. YangJ. GaoW. LaneH.C. LempickiR.A. DAVID: Database for annotation, visualization, and integrated discovery.Genome Biol.2003453
    [Google Scholar]
  32. BiY. ShiX. YiM. HanX. RenJ. Pirarubicin-loaded CalliSpheres® drug-eluting beads for the treatment of patients with stage III–IV lung cancer.Acta Radiol.202263331131810.1177/028418512199429833615822
    [Google Scholar]
  33. LiuY. LiD. GuoX. XuH. LiZ. ZhangY. SongC. FanR. TangX. ZhangZ. A pH-responsive prodrug delivery system of 10-HCPT for controlled release and tumor targeting.Int. J. Nanomedicine2017122227224210.2147/IJN.S125849
    [Google Scholar]
  34. NadalR. ApoloA.B. GirardiD.M. HahnN.M. BellmuntJ. Systemic therapy issues: Immunotherapy in nonmetastatic urothelial cancer.Urol. Oncol.2023411273410.1016/j.urolonc.2020.10.00434756410
    [Google Scholar]
  35. ChoiD. KimC.L. KimJ.E. MoJ.S. JeongH.S. Hesperetin inhibit EMT in TGF-β treated podocyte by regulation of mTOR pathway.Biochem. Biophys. Res. Commun.2020528115415910.1016/j.bbrc.2020.05.08732451085
    [Google Scholar]
  36. IkramM. MuhammadT. RehmanS.U. KhanA. JoM.G. AliT. KimM.O. hesperetin confers neuroprotection by regulating Nrf2/TLR4/NF-κB signaling in an Aβ mouse model.Mol. Neurobiol.20195696293630910.1007/s12035‑019‑1512‑730756299
    [Google Scholar]
  37. WangX. SongY. YuL. XueX. PangM. LiY. LuoX. HuaZ. LuC. LuA. LiuY. Co-delivery of hesperetin and cisplatin via hyaluronic acid-modified liposome for targeted inhibition of aggression and metastasis of triple-negative breast cancer.ACS Appl. Mater. Interfaces20231529343603437710.1021/acsami.3c0323337432741
    [Google Scholar]
  38. WangJ. ChenH. HuZ. MaK. WangH. Hesperetin regulates transforming growth factor-β1/Smads pathway to suppress epithelial-mesenchymal transition -mediated invasion and migration in cervical cancer cell.Anticancer Drugs202132993093810.1097/CAD.000000000000108534016833
    [Google Scholar]
  39. MohiuddinM.D. KasaharaK. Pemetrexed disodium heptahydrate induces apoptosis and cell-cycle arrest in non-small-cell lung cancer carrying an EGFR exon 19 deletion.Anticancer Res.20214162963297710.21873/anticanres.1507834083287
    [Google Scholar]
  40. DongL. YuL. BaiC. LiuL. LongH. ShiL. LinZ. USP27-mediated Cyclin E stabilization drives cell cycle progression and hepatocellular tumorigenesis.Oncogene201837202702271310.1038/s41388‑018‑0137‑z29497124
    [Google Scholar]
  41. FarshadiE. YanJ. LeclereP. GoldbeterA. ChavesI. van der HorstG.T.J. The positive circadian regulators CLOCK and BMAL1 control G2/M cell cycle transition through Cyclin B1.Cell Cycle2019181163310.1080/15384101.2018.155863830558467
    [Google Scholar]
  42. GaoY. NieZ. CaoH. HuangD. ChenM. XiangY. YuX. ZhangS. Scabertopin derived from Elephantopus scaber L. Mediates necroptosis by inducing reactive oxygen species production in bladder cancer in vitro.Cancers20221423597610.3390/cancers1423597636497458
    [Google Scholar]
  43. NazeriM. Mirzaie-aslA. SaidijamM. MoradiM. Methanolic extract of Artemisia absinthium prompts apoptosis, enhancing expression of Bax/Bcl-2 ratio, cell cycle arrest, caspase-3 activation and mitochondrial membrane potential destruction in human colorectal cancer HCT-116 cells.Mol. Biol. Rep.202047118831884010.1007/s11033‑020‑05933‑233141288
    [Google Scholar]
  44. TanejaN. TjalkensR. PhilbertM.A. RehemtullaA. Irradiation of mitochondria initiates apoptosis in a cell free system.Oncogene200120216717710.1038/sj.onc.120405411313941
    [Google Scholar]
  45. LiY. HouH. LiuZ. TangW. WangJ. LuL. FuJ. GaoD. ZhaoF. GaoX.Q. LingP. WangF. SunF. TanH. CD44 targeting nanodrug based on chondroitin sulfate for melanoma therapy by inducing mitochondrial apoptosis pathways.Carbohydr. Polym.202332012125510.1016/j.carbpol.2023.121255
    [Google Scholar]
  46. Yenmi̇şG. BeşliN. Yaprak SaraçE. Hocaoğlu EmreF.S. ŞenolK. Kanigür SultuybekG. Metformin promotes apoptosis in primary breast cancer cells by downregulation of cyclin D1 and upregulation of P53 through an AMPK-alpha independent mechanism.Turk. J. Med. Sci.202151282683410.3906/sag‑1908‑11233350292
    [Google Scholar]
  47. HuangS. YueY. FengK. HuangX. LiH. HouJ. YangS. HuangS. LiangM. ChenG. WuZ. Conditioned medium from M2b macrophages modulates the proliferation, migration, and apoptosis of pulmonary artery smooth muscle cells by deregulating the PI3K/Akt/FoxO3a pathway.PeerJ20208e911010.7717/peerj.911032411539
    [Google Scholar]
  48. LiA. WangJ. WuM. ZhangX. ZhangH. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: Persistent p27Kip1 induction by interfering with PI3K/Akt/FoxO3a signaling pathway.Eur. J. Pharmacol.2015747718710.1016/j.ejphar.2014.11.04025498792
    [Google Scholar]
  49. ZhangX.F. SunR. JiaY. ChenQ. TuR.F. LiK. ZhangX.D. DuR.L. CaoR. Synthesis and mechanisms of action of novel harmine derivatives as potential antitumor agents.Sci. Rep.2016613320410.1038/srep3320427625151
    [Google Scholar]
  50. XuM. ChenX. LinK. ZengK. LiuX. XuX. PanB. XuT. SunL. HeB. PanY. SunH. WangS. lncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer.J. Hematol. Oncol.2019121310.1186/s13045‑018‑0690‑530626446
    [Google Scholar]
  51. KempK. PoeC. Stressed: The unfolded protein response in T cell development, activation, and function.Int. J. Mol. Sci.2019207179210.3390/ijms2007179230978945
    [Google Scholar]
  52. NakadaE.M. SunR. FujiiU. MartinJ.G. The impact of endoplasmic reticulum-associated protein modifications, folding and degradation on lung structure and function.Front. Physiol.20211266562210.3389/fphys.2021.66562234122136
    [Google Scholar]
  53. MaB. ZhangL. LiJ. XingT. JiangY. GaoF. Dietary taurine supplementation ameliorates muscle loss in chronic heat stressed broilers via suppressing the perk signaling and reversing endoplasmic reticulum-stress-induced apoptosis.J. Sci. Food Agric.202110152125213410.1002/jsfa.1083532978773
    [Google Scholar]
  54. PaoH.P. LiaoW.I. TangS.E. WuS.Y. HuangK.L. ChuS.J. Suppression of endoplasmic reticulum stress by 4-PBA protects against hyperoxia-induced acute lung injury via up-regulating claudin-4 expression.Front. Immunol.20211267431610.3389/fimmu.2021.67431634122432
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673283888231217174702
Loading
/content/journals/cmc/10.2174/0109298673283888231217174702
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test