Skip to content
2000
Volume 32, Issue 19
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

The aim of this study was to evaluate the combined and comparative efficacy of Caffeic acid phenethyl ester (CAPE) and curcumin in breast cancer.

Background

CAPE and curcumin are a class of phenolics. While curcumin is obtained from turmeric, CAPE is found in and . Both agents are reported to produce activities in some cancer types. The combined and comparative effects of the two agents in breast cancer have not yet reported.

Objective

We evaluated the potential of CAPE and curcumin in both and breast cancer models.

Methods

Human breast cancer cell lines, MDA-MB-231 and MCF-7, were exposed to CAPE and curcumin, followed by functional assays such as cell cytotoxicity, cell proliferation and colony formation, cell cycle, mitochondrial membrane potential, apoptosis, and monodansylcadaverine (MDC) staining for autophagy. Computational analyses and mouse models were also used.

Results

Employing computational analyses, both agents were found to exhibit drug-like properties. Both molecules interacted with the key molecules of the NF-κB pathway. CAPE and curcumin inhibited cell proliferation, colony formation, and invasion, triggering apoptosis in breast cancer cells. CAPE was found to be more effective than curcumin. Two agents working together were more effective than each agent working alone. Both agents suppressed the expression of survivin, Bcl-xL and GLUT-1. The level of cleaved PARP was increased by both agents. Both phenolics observed an induction in ROS generation. Further, both molecules triggered a dissipation in mitochondrial membrane potential. In mice models implanted with Ehrlich-Lettre ascites carcinoma (EAC) cells, both drugs inhibited the growth of the tumour. The phenolics also modulated the metabolic parameters in tumour-bearing mice.

Conclusion

The observations suggest that the combination of curcumin plus CAPE may be better in comparison to individual molecules.

Other

The study opens a window for analysing the efficacy of the combination of CAPE and curcumin in animal studies. This will provide a basis for examining the combined efficacy of two agents in a clinical trial.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673284600231230093955
2024-03-21
2025-10-11
Loading full text...

Full text loading...

References

  1. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  2. WildC.P. StewartB.W. WildC. World cancer report 2014.SwitzerlandWorld Health Organization Geneva20141681
    [Google Scholar]
  3. ProgrammeN.C.R. Indian Council of Medical ResearchNew Delhi2013
  4. MalviaS. BagadiS.A. DubeyU.S. SaxenaS. Epidemiology of breast cancer in Indian women.Asia Pac. J. Clin. Oncol.201713428929510.1111/ajco.1266128181405
    [Google Scholar]
  5. OnitiloA.A. EngelJ.M. GreenleeR.T. MukeshB.N. Breast cancer subtypes based on ER/PR and Her2 expression: Comparison of clinicopathologic features and survival.Clin. Med. Res.200971-241310.3121/cmr.2008.82519574486
    [Google Scholar]
  6. ChioreanR. BraicuC. Berindan-NeagoeI. Another review on triple negative breast cancer. Are we on the right way towards the exit from the labyrinth?Breast20132261026103310.1016/j.breast.2013.08.00724063766
    [Google Scholar]
  7. TomuleasaC. BraicuC. IrimieA. CraciunL. Berindan-NeagoeI. Nanopharmacology in translational hematology and oncology.Int. J. Nanomedicine201493465347925092977
    [Google Scholar]
  8. JurjA. BraicuC. PopL.A. TomuleasaC. GhermanC. Berindan-NeagoeI. The new era of nanotechnology, an alternative to change cancer treatment.Drug Des. Devel. Ther.2017112871289010.2147/DDDT.S14233729033548
    [Google Scholar]
  9. DemirY. TürkeşC. KüfrevioğluÖ.İ. BeydemirŞ. Molecular docking studies and the effect of fluorophenylthiourea derivatives on glutathione-dependent enzymes.Chem. Biodivers.2023201e20220065610.1002/cbdv.20220065636538730
    [Google Scholar]
  10. YıldızM.L. DemirY. KüfrevioğluÖ.I. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase enzymes.J. Mol. Recognit.20223512e298710.1002/jmr.298736326002
    [Google Scholar]
  11. AggarwalB.B. GehlotP. Inflammation and cancer: How friendly is the relationship for cancer patients?Curr. Opin. Pharmacol.20099435136910.1016/j.coph.2009.06.02019665429
    [Google Scholar]
  12. GuptaS.C. SundaramC. ReuterS. AggarwalB.B. Inhibiting NF-κB activation by small molecules as a therapeutic strategy.Biochim. Biophys. Acta. Gene Regul. Mech.2010179910-1277578710.1016/j.bbagrm.2010.05.00420493977
    [Google Scholar]
  13. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  14. ZaidH. AntonescuC.N. RandhawaV.K. KlipA. Insulin action on glucose transporters through molecular switches, tracks and tethers.Biochem. J.2008413220121510.1042/BJ2008072318570632
    [Google Scholar]
  15. SommermannT.G. O’NeillK. PlasD.R. Cahir-McFarlandE. IKKβ and NF-κB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1.Cancer Res.201171237291730010.1158/0008‑5472.CAN‑11‑171521987722
    [Google Scholar]
  16. MauroC. LeowS.C. AnsoE. RochaS. ThotakuraA.K. TornatoreL. MorettiM. De SmaeleE. BegA.A. TergaonkarV. ChandelN.S. FranzosoG. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration.Nat. Cell Biol.201113101272127910.1038/ncb232421968997
    [Google Scholar]
  17. BeydemirŞ. DemirY. Antiepileptic drugs: Impacts on human serum paraoxonase-1.J. Biochem. Mol. Toxicol.2017316e2188910.1002/jbt.2188928032682
    [Google Scholar]
  18. TürkeşC. DemirY. BeydemirŞ. Some calcium-channel blockers: Kinetic and in silico studies on paraoxonase-I.J. Biomol. Struct. Dyn.2022401778510.1080/07391102.2020.180692732783605
    [Google Scholar]
  19. AlımZ. KılıçD. DemirY. Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: In vitro inhibition and molecular modeling studies.Arch. Physiol. Biochem.2019125538739510.1080/13813455.2018.147064629741961
    [Google Scholar]
  20. SeverB. AltıntopM.D. DemirY. YılmazN. Akalın ÇiftçiG. BeydemirŞ. ÖzdemirA. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines.Chem. Biol. Interact.202134510957610.1016/j.cbi.2021.10957634252406
    [Google Scholar]
  21. AcharyaJ.D. GhaskadbiS.S. Islets and their antioxidant defense.Islets20102422523510.4161/isl.2.4.1221921099317
    [Google Scholar]
  22. GuptaS.C. HeviaD. PatchvaS. ParkB. KohW. AggarwalB.B. Upsides and downsides of reactive oxygen species for cancer: The roles of reactive oxygen species in tumorigenesis, prevention, and therapy.Antioxid. Redox Signal.201216111295132210.1089/ars.2011.441422117137
    [Google Scholar]
  23. D’SouzaL.C. MishraS. ChakrabortyA. ShekherA. SharmaA. GuptaS.C. Oxidative stress and cancer development: Are noncoding RNAs the missing links?Antioxid. Redox Signal.202033171209122910.1089/ars.2019.798731891666
    [Google Scholar]
  24. BayrakS. ÖztürkC. DemirY. AlımZ. KüfreviogluÖ.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity.Protein Pept. Lett.202027318719210.2174/092986652666619100214230131577197
    [Google Scholar]
  25. TürkeşC. DemirY. BeydemirŞ. In vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as ar and sdh inhibitors.ChemistrySelect2022748e20220405010.1002/slct.202204050
    [Google Scholar]
  26. PalabıyıkE. SulumerA.N. UguzH. AvcıB. AskınS. AskınH. DemirY. Assessment of hypolipidemic and anti-inflammatory properties of walnut ( Juglans regia ) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart.J. Mol. Recognit.2023363e300410.1002/jmr.300436537558
    [Google Scholar]
  27. DemirY. CeylanH. TürkeşC. BeydemirŞ. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes.J. Biomol. Struct. Dyn.20224022120081202110.1080/07391102.2021.196719534424822
    [Google Scholar]
  28. AwastheeN. RaiV. VermaS.S. Sajin FrancisK. NairM.S. GuptaS.C. Anti-cancer activities of Bharangin against breast cancer: Evidence for the role of NF-κB and lncRNAs.Biochim. Biophys. Acta, Gen. Subj.20181862122738274910.1016/j.bbagen.2018.08.01630251663
    [Google Scholar]
  29. ChouT.C. Drug combination studies and their synergy quantification using the Chou-talalay method.Cancer Res.201070244044610.1158/0008‑5472.CAN‑09‑194720068163
    [Google Scholar]
  30. MishraS. VermaS.S. RaiV. AwastheeN. AryaJ.S. MaitiK.K. GuptaS.C. Curcuma raktakanda induces apoptosis and suppresses migration in cancer cells: Role of reactive oxygen species.Biomolecules20199415910.3390/biom904015931018580
    [Google Scholar]
  31. BognarZ. FeketeK. AntusC. HocsakE. BognarR. TapodiA. BoronkaiA. FarkasN. GallyasF.Jr SumegiB. SzantoA. Desethylamiodarone-A metabolite of amiodarone-Induces apoptosis on T24 human bladder cancer cells via multiple pathways.PLoS One20171212e018947010.1371/journal.pone.018947029220397
    [Google Scholar]
  32. TangB. LiQ. ZhaoX. WangH. LiN. FangY. WangK. JiaY. ZhuP. GuJ. LiJ. JiaoY. TongW. WangM. ZouQ. ZhuF. MaoX. Shiga toxins induce autophagic cell death in intestinal epithelial cells via the endoplasmic reticulum stress pathway.Autophagy201511234435410.1080/15548627.2015.102368225831014
    [Google Scholar]
  33. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)- 00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  34. ChengF. LiW. ZhouY. ShenJ. WuZ. LiuG. LeeP.W. TangY. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties.J. Chem. Inf. Model.201252113099310510.1021/ci300367a23092397
    [Google Scholar]
  35. VermaS.S. RaiV. AwastheeN. DhasmanaA. RajalaksmiD.S. NairM.S. GuptaS.C. Isodeoxyelephantopin, a sesquiterpene lactone induces ROS generation, suppresses NF-κB activation, modulates LncRNA expression and exhibit activities against breast cancer.Sci. Rep.2019911798010.1038/s41598‑019‑52971‑331784542
    [Google Scholar]
  36. O’BoyleN.M. BrewertonS.C. TaylorR. Using buriedness to improve discrimination between actives and inactives in docking.J. Chem. Inf. Model.20084861269127810.1021/ci800045218533645
    [Google Scholar]
  37. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  38. DhasmanaA. JamalQ.M.S. GuptaR. SiddiquiM.H. KesariK.K. WadhwaG. khanS. HaqueS. LohaniM. Titanium dioxide nanoparticles provide protection against polycyclic aromatic hydrocarbon BaP and chrysene-induced perturbation of DNA repair machinery: A computational biology approach.Biotechnol. Appl. Biochem.201663449751310.1002/bab.138825913286
    [Google Scholar]
  39. RaoS.N. HeadM.S. KulkarniA. LaLondeJ.M. Validation studies of the site-directed docking program LibDock.J. Chem. Inf. Model.20074762159217110.1021/ci600429917985863
    [Google Scholar]
  40. DhasmanaA. UniyalS. Anukriti KashyapV.K. SomvanshiP. GuptaM. BhardwajU. JaggiM. YallapuM.M. HaqueS. ChauhanS.C. Topological and system-level protein interaction network (PIN) analyses to deduce molecular mechanism of curcumin.Sci. Rep.20201011204510.1038/s41598‑020‑69011‑032694520
    [Google Scholar]
  41. TomaykoM.M. ReynoldsC.P. Determination of subcutaneous tumor size in athymic (nude) mice.Cancer Chemother. Pharmacol.198924314815410.1007/BF003002342544306
    [Google Scholar]
  42. HousmanG. BylerS. HeerbothS. LapinskaK. LongacreM. SnyderN. SarkarS. Drug resistance in cancer: An overview.Cancers2014631769179210.3390/cancers603176925198391
    [Google Scholar]
  43. WangZ. SunW. HuangC.K. WangL. iaM-M. CuiX. HuG.X. WangZ.S. Inhibitory effects of curcumin on activity of cytochrome P450 2C9 enzyme in human and 2C11 in rat liver microsomes.Drug Dev. Ind. Pharm.201541461361610.3109/03639045.2014.88669724517573
    [Google Scholar]
  44. ZhangF. AltorkiN.K. MestreJ.R. SubbaramaiahK. DannenbergA.J. Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells.Carcinogenesis199920344545110.1093/carcin/20.3.44510190560
    [Google Scholar]
  45. HassanN.A. El-BassossyH.M. MahmoudM.F. FahmyA. Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: Effect on vascular reactivity and stiffness.Chem. Biol. Interact.2014213283610.1016/j.cbi.2014.01.01924508943
    [Google Scholar]
  46. KuoY.Y. HuoC. LinC.Y. LinH.P. LiuJ.S. WangW.C. ChangC.R. ChuuC.P. Caffeic acid phenethyl ester suppresses androgen receptor signaling and stability via inhibition of phosphorylation on Ser81 and Ser213.Cell Commun. Signal.201917110010.1186/s12964‑019‑0404‑931429764
    [Google Scholar]
  47. SinghS. AggarwalB.B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane).J. Biol. Chem.199527042249952500010.1074/jbc.270.42.249957559628
    [Google Scholar]
  48. BhartiA.C. DonatoN. SinghS. AggarwalB.B. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor–κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis.Blood200310131053106210.1182/blood‑2002‑05‑132012393461
    [Google Scholar]
  49. PhilipS. KunduG.C. Osteopontin induces nuclear factor kappa B-mediated promatrix metalloproteinase-2 activation through I kappa B alpha /IKK signaling pathways, and curcumin (diferulolyl methane) down-regulates these pathways.J. Biol. Chem.200327816144871449710.1074/jbc.M20730920012473670
    [Google Scholar]
  50. NatarajanK. SinghS. BurkeT.R.Jr GrunbergerD. AggarwalB.B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B.Proc. Natl. Acad. Sci.199693179090909510.1073/pnas.93.17.90908799159
    [Google Scholar]
  51. LiangY. FengG. WuL. ZhongS. GaoX. TongY. CuiW. QinY. XuW. XiaoX. ZhangZ. HuangG. ZhouX. Caffeic acid phenethyl ester suppressed growth and metastasis of nasopharyngeal carcinoma cells by inactivating the NF-κB pathway.Drug Des. Devel. Ther.2019131335134510.2147/DDDT.S19918231118570
    [Google Scholar]
  52. TraceyL. Pérez-RosadoA. ArtigaM.J. CamachoF.I. RodríguezA. MartínezN. Ruiz-BallesterosE. MollejoM. MartinezB. CuadrosM. GarciaJ.F. LawlerM. PirisM.Á. Expression of the NF-κB targets BCL2 and BIRC5/Survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively.J. Pathol.2005206212313410.1002/path.176815880597
    [Google Scholar]
  53. WangW. ManiA.M. WuZ.H. DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression.J. Cancer Metastasis Treat.201733455910.20517/2394‑4722.2017.0328626800
    [Google Scholar]
  54. PangP. ZhangS. Dasatinib enhances curcumin-induced cytotoxicity, apoptosis and protective autophagy in human schwannoma cells HEI-193: The role of Akt/mTOR/p70S6K signalling pathway.Acta Pharm.202272340341410.2478/acph‑2022‑002536651538
    [Google Scholar]
  55. ChangH. WangY. YinX. LiuX. XuanH. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy.BMC Complement. Altern. Med.201717147110.1186/s12906‑017‑1984‑928950845
    [Google Scholar]
  56. ZhangP. TangY. LiN.G. ZhuY. DuanJ.A. Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives.Molecules20141910164581647610.3390/molecules19101645825314606
    [Google Scholar]
  57. WatabeM. HishikawaK. TakayanagiA. ShimizuN. NakakiT. Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells.J. Biol. Chem.200427976017602610.1074/jbc.M30604020014625298
    [Google Scholar]
  58. LiY. JiangF. ChenL. YangY. CaoS. YeY. WangX. MuJ. LiZ. LiL. Blockage of TGFβ-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo.FEBS Open Bio20155146647510.1016/j.fob.2015.05.00926106521
    [Google Scholar]
  59. GuptaS.C. PrasadS. KimJ.H. PatchvaS. WebbL.J. PriyadarsiniI.K. AggarwalB.B. Multitargeting by curcumin as revealed by molecular interaction studies.Nat. Prod. Rep.201128121937195510.1039/c1np00051a21979811
    [Google Scholar]
  60. AggarwalB.B. GuptaS.C. SungB. Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory biomarkers.Br. J. Pharmacol.201316981672169210.1111/bph.1213123425071
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673284600231230093955
Loading
/content/journals/cmc/10.2174/0109298673284600231230093955
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Apoptosis; breast cancer; caffeic acid phenethyl ester; curcumin; NF-κB; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test