Skip to content
2000
Volume 32, Issue 19
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Colorectal cancer (CRC) cases with advanced or distal metastases experience a survival rate of less than 20%, with the lack of spectral therapeutic targets and prognostic markers posing a significant challenge for CRC treatment. may be a CRC-targeted therapy for which there is currently inadequate evidence.

Aim

In this report, we performed a comprehensive analysis of data on colorectal cancer (CRC) to elucidate the association among Solute Carrier Family 4 Member 4 () and the abundance of immunological features and immune cell infiltration in CRC and to explore the impact of SLC4A4 on the CRC tumor microenvironment.

Objective

The objective of this study was to systematically reveal the characteristics of the tumor microenvironment created by .

Methods

We downloaded RNA sequencing files from the Cancer Genome Atlas (TCGA-COADREAD). The correlations of SLC4A4 with immune-related characteristics were analyzed. A Limma package was applied for selecting /immunity-related differentially expressed genes (DEGs). An assessment system for predicting CRC prognosis was constructed based on univariate COX and multivariate COX analyses. A nomogram was also designed to assess the survival risk status of CRC. Besides, we evaluated the potential association of to immunotherapy through TIDE analysis.

Results

We found that expression was positively correlated with immune checkpoint expression (). promoted the infiltration of CD8 T cells, dendritic cells, macrophages, NK cells, and Th1 cells in CRC, shaping the inflammatory tumor microenvironment. Up-regulated might improve drug response to anti- therapy, anti- therapy, nivolumab, and ipilimumab in CRC patients, and down-regulated might promote drug response to anti-EGFR therapy and Aflibercept drug response. The constructed RiskScore model showed excellent predictive effect and robustness. RiskScore presented a trend of negative correlation with , which was consistent with the trend of the effect of on CRC survival. TIDE analysis further disclosed that high-risk groups with high levels of SLC4A4 were possible for immune escape. Finally, the constructed nomogram also showed potential clinical value.

Conclusion

Overall, upregulation of expression promoted an inflammatory tumor microenvironment in CRC, and RiskScore predicted therapeutic expectancy. could be a potentially clinically valuable target for CRC therapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673277357231218070812
2024-02-15
2025-10-11
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  2. ZhangH. WangX. YuY. YangZ. Progression of exosome-mediated chemotherapy resistance in cancer.Oncologie202224224725910.32604/oncologie.2022.020993
    [Google Scholar]
  3. BillerL.H. SchragD. Diagnosis and treatment of metastatic colorectal cancer.JAMA2021325766968510.1001/jama.2021.010633591350
    [Google Scholar]
  4. IslamiF. Goding SauerA. MillerK.D. SiegelR.L. FedewaS.A. JacobsE.J. McCulloughM.L. PatelA.V. MaJ. SoerjomataramI. FlandersW.D. BrawleyO.W. GapsturS.M. JemalA. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States.CA Cancer J. Clin.2018681315410.3322/caac.2144029160902
    [Google Scholar]
  5. PeddareddigariV.G. WangD. DuBoisR.N. The tumor microenvironment in colorectal carcinogenesis.Cancer Microenviron.20103114916610.1007/s12307‑010‑0038‑321209781
    [Google Scholar]
  6. YiM. NiuM. XuL. LuoS. WuK. Regulation of PD-L1 expression in the tumor microenvironment.J. Hematol. Oncol.20211411010.1186/s13045‑020‑01027‑533413496
    [Google Scholar]
  7. PeiL. LiuY. LiuL. GaoS. GaoX. FengY. SunZ. ZhangY. WangC. Roles of cancer-associated fibroblasts (CAFs) in anti- PD-1/PD-L1 immunotherapy for solid cancers.Mol. Cancer20232212910.1186/s12943‑023‑01731‑z36759842
    [Google Scholar]
  8. GaneshK. StadlerZ.K. CercekA. MendelsohnR.B. ShiaJ. SegalN.H. DiazL.A.Jr. Immunotherapy in colorectal cancer: Rationale, challenges and potential.Nat. Rev. Gastroenterol. Hepatol.201916636137510.1038/s41575‑019‑0126‑x30886395
    [Google Scholar]
  9. WengJ. LiS. ZhuZ. LiuQ. ZhangR. YangY. LiX. Exploring immunotherapy in colorectal cancer.J. Hematol. Oncol.20221519510.1186/s13045‑022‑01294‑435842707
    [Google Scholar]
  10. MaS. ZhuX. XinC. CaoF. XuM. HanX. SuiJ. ChangW. ZhangW. RCN3 expression indicates prognosis in colorectal cancers.Oncologie202224482383310.32604/oncologie.2022.025411
    [Google Scholar]
  11. HuynhK.W. JiangJ. AbuladzeN. TsirulnikovK. KaoL. ShaoX. NewmanD. AzimovR. PushkinA. ZhouZ.H. KurtzI. CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1.Nat. Commun.20189190010.1038/s41467‑018‑03271‑329500354
    [Google Scholar]
  12. LiJ. LeeS. ZafarR. ShinE. ChoiI. Sodium bicarbonate transporter NBCe1 regulates proliferation and viability of human prostate cancer cells LNCaP and PC3.Oncol. Rep.202146112910.3892/or.2021.808034013380
    [Google Scholar]
  13. McIntyreA. HulikovaA. LedakiI. SnellC. SingletonD. SteersG. SedenP. JonesD. BridgesE. WigfieldS. LiJ.L. RussellA. SwietachP. HarrisA.L. Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth.Cancer Res.201676133744375510.1158/0008‑5472.CAN‑15‑186227197160
    [Google Scholar]
  14. ParksS.K. PouyssegurJ. The Na+/HCO3 − Co-Transporter SLC4A4 plays a role in growth and migration of colon and breast cancer cells.J. Cell. Physiol.201523081954196310.1002/jcp.2493025612232
    [Google Scholar]
  15. XiaoW. WangX. WangT. XingJ. MiR-223-3p promotes cell proliferation and metastasis by downregulating SLC4A4 in clear cell renal cell carcinoma.Aging (Albany NY)201911261563310.18632/aging.10176330668544
    [Google Scholar]
  16. ZhangX. TanP. ZhuangY. DuL. hsa_circRNA_001587 upregulates SLC4A4 expression to inhibit migration, invasion, and angiogenesis of pancreatic cancer cells via binding to microRNA-223.Am. J. Physiol. Gastrointest. Liver Physiol.20203196G703G71710.1152/ajpgi.00118.202032878470
    [Google Scholar]
  17. ChenL. LuD. SunK. XuY. HuP. LiX. XuF. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.Gene201969211912510.1016/j.gene.2019.01.00130654001
    [Google Scholar]
  18. RuiS. WangD. HuangY. XuJ. ZhouH. ZhangH. Prognostic value of SLC4A4 and its correlation with the microsatellite instability in colorectal cancer.Front. Oncol.202313117912010.3389/fonc.2023.117912037152025
    [Google Scholar]
  19. ChenX. ChenJ. FengY. GuanW. Prognostic value of SLC4A4 and its correlation with immune infiltration in colon adenocarcinoma.Med. Sci. Monit.202026e92501610.12659/MSM.92501632949121
    [Google Scholar]
  20. ZhuJ. LiC. JiW. Identification of genes in ulcerative colitis associated colorectal cancer based on centrality analysis of co-expression network.Neoplasma201562575676410.4149/neo_2015_09026278145
    [Google Scholar]
  21. ZhengY. ZengJ. LinD. XiaH. WangX. ChenL. ChenH. HuangL. ZengC. Extracellular vesicles derived from cancer-associated fibroblast carries miR-224-5p targeting SLC4A4 to promote the proliferation, invasion and migration of colorectal cancer cells.Carcinogenesis20214291143115310.1093/carcin/bgab05534170291
    [Google Scholar]
  22. ShenW. SongZ. ZhongX. HuangM. ShenD. GaoP. QianX. WangM. HeX. WangT. LiS. SongX. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform.iMeta202213e3610.1002/imt2.36
    [Google Scholar]
  23. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  24. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  25. BarbieD.A. TamayoP. BoehmJ.S. KimS.Y. MoodyS.E. DunnI.F. SchinzelA.C. SandyP. MeylanE. SchollC. FröhlingS. ChanE.M. SosM.L. MichelK. MermelC. SilverS.J. WeirB.A. ReilingJ.H. ShengQ. GuptaP.B. WadlowR.C. LeH. HoerschS. WittnerB.S. RamaswamyS. LivingstonD.M. SabatiniD.M. MeyersonM. ThomasR.K. LanderE.S. MesirovJ.P. RootD.E. GillilandD.G. JacksT. HahnW.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.Nature2009462726910811210.1038/nature0846019847166
    [Google Scholar]
  26. RuB. WongC.N. TongY. ZhongJ.Y. ZhongS.S.W. WuW.C. ChuK.C. WongC.Y. LauC.Y. ChenI. ChanN.W. ZhangJ. TISIDB: An integrated repository portal for tumor-immune system interactions.Bioinformatics201935204200420210.1093/bioinformatics/btz21030903160
    [Google Scholar]
  27. DanilovaL. HoW.J. ZhuQ. VithayathilT. De Jesus-AcostaA. AzadN.S. LaheruD.A. FertigE.J. AndersR. JaffeeE.M. YarchoanM. Programmed cell death ligand-1 (PD-L1) and CD8 expression profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival.Cancer Immunol. Res.20197688689510.1158/2326‑6066.CIR‑18‑082231043417
    [Google Scholar]
  28. XuL. DengC. PangB. ZhangX. LiuW. LiaoG. YuanH. ChengP. LiF. LongZ. YanM. ZhaoT. XiaoY. LiX. TIP: A web server for resolving tumor immunophenotype profiling.Cancer Res.201878236575658010.1158/0008‑5472.CAN‑18‑068930154154
    [Google Scholar]
  29. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  30. HuJ. YuA. OthmaneB. QiuD. LiH. LiC. LiuP. RenW. ChenM. GongG. GuoX. ZhangH. ChenJ. ZuX. Siglec15 shapes a non-inflamed tumor microenvironment and predicts the molecular subtype in bladder cancer.Theranostics20211173089310810.7150/thno.5364933537076
    [Google Scholar]
  31. MayakondaA. LinD.C. AssenovY. PlassC. KoefflerH.P. Maftools: efficient and comprehensive analysis of somatic variants in cancer.Genome Res.201828111747175610.1101/gr.239244.11830341162
    [Google Scholar]
  32. ThorssonV. GibbsD.L. BrownS.D. WolfD. BortoneD.S. Ou YangT.H. Porta-PardoE. GaoG.F. PlaisierC.L. EddyJ.A. ZivE. CulhaneA.C. PaullE.O. SivakumarI.K.A. GentlesA.J. MalhotraR. FarshidfarF. ColapricoA. ParkerJ.S. MoseL.E. VoN.S. LiuJ. LiuY. RaderJ. DhankaniV. ReynoldsS.M. BowlbyR. CalifanoA. CherniackA.D. AnastassiouD. BedognettiD. MokrabY. NewmanA.M. RaoA. ChenK. KrasnitzA. HuH. MaltaT.M. NoushmehrH. PedamalluC.S. BullmanS. OjesinaA.I. LambA. ZhouW. ShenH. ChoueiriT.K. WeinsteinJ.N. GuinneyJ. SaltzJ. HoltR.A. RabkinC.S. LazarA.J. SerodyJ.S. DemiccoE.G. DisisM.L. VincentB.G. ShmulevichI. Caesar-JohnsonS.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. Sanchez-VegaF. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbrotE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. Longatto-FilhoA. ReisR.M. Scapulatempo-NetoC. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. Barnholtz-SloanJ.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van MeirE.G. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. GonzalezA.M.A. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. Stretch SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. PineroE.M.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. Fantacone-CampbellJ.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. The immune landscape of cancer.Immunity2018484812830.e1410.1016/j.immuni.2018.03.02329628290
    [Google Scholar]
  33. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  34. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  35. TherneauT.M. LumleyT. Package ‘survival’.R Top Doc2015128102833
    [Google Scholar]
  36. RipleyB. Package ‘mass’.Cran r201353813120
    [Google Scholar]
  37. BlancheP. DartiguesJ.F. Jacqmin-GaddaH. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks.Stat. Med.201332305381539710.1002/sim.595824027076
    [Google Scholar]
  38. SmithJ.J. DeaneN.G. WuF. MerchantN.B. ZhangB. JiangA. LuP. JohnsonJ.C. SchmidtC. BaileyC.E. EschrichS. KisC. LevyS. WashingtonM.K. HeslinM.J. CoffeyR.J. YeatmanT.J. ShyrY. BeauchampR.D. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer.Gastroenterology2010138395896810.1053/j.gastro.2009.11.00519914252
    [Google Scholar]
  39. HuY. GaedckeJ. EmonsG. BeissbarthT. GradeM. JoP. YeagerM. ChanockS.J. WolffH. CampsJ. GhadimiB.M. RiedT. Colorectal cancer susceptibility loci as predictive markers of rectal cancer prognosis after surgery.Genes Chromosomes Cancer201857314014910.1002/gcc.2251229119627
    [Google Scholar]
  40. ChatilaW.K. KimJ.K. WalchH. MarcoM.R. ChenC.T. WuF. OmerD.M. KhalilD.N. GaneshK. QuX. LuthraA. ChoiS.H. HoY.J. KundraR. GrovesK.I. ChowO.S. CercekA. WeiserM.R. WidmarM. WeiI.H. PappouE.P. NashG.M. PatyP.B. ShiQ. VakianiE. Duygu SelcukluS. DonoghueM.T.A. SolitD.B. BergerM.F. ShiaJ. PelossofR. RomesserP.B. YaegerR. SmithJ.J. SchultzN. Sanchez-VegaF. Garcia-AguilarJ. Genomic and transcriptomic determinants of response to neoadjuvant therapy in rectal cancer.Nat. Med.20222881646165510.1038/s41591‑022‑01930‑z35970919
    [Google Scholar]
  41. JiangP. GuS. PanD. FuJ. SahuA. HuX. LiZ. TraughN. BuX. LiB. LiuJ. FreemanG.J. BrownM.A. WucherpfennigK.W. LiuX.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.Nat. Med.201824101550155810.1038/s41591‑018‑0136‑130127393
    [Google Scholar]
  42. WeiC. YangC. WangS. ShiD. ZhangC. LinX. LiuQ. DouR. XiongB. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis.Mol. Cancer20191816410.1186/s12943‑019‑0976‑430927925
    [Google Scholar]
  43. GajewskiT.F. CorralesL. WilliamsJ. HortonB. SivanA. SprangerS. Cancer immunotherapy targets based on understanding the t cell-inflamed versus Non-T cell-inflamed tumor microenvironment.Adv. Exp. Med. Biol.20171036193110.1007/978‑3‑319‑67577‑0_229275462
    [Google Scholar]
  44. TumehP.C. HarviewC.L. YearleyJ.H. ShintakuI.P. TaylorE.J.M. RobertL. ChmielowskiB. SpasicM. HenryG. CiobanuV. WestA.N. CarmonaM. KivorkC. SejaE. CherryG. GutierrezA.J. GroganT.R. MateusC. TomasicG. GlaspyJ.A. EmersonR.O. RobinsH. PierceR.H. ElashoffD.A. RobertC. RibasA. PD-1 blockade induces responses by inhibiting adaptive immune resistance.Nature2014515752856857110.1038/nature1395425428505
    [Google Scholar]
  45. HegdeP.S. KaranikasV. EversS. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition.Clin. Cancer Res.20162281865187410.1158/1078‑0432.CCR‑15‑150727084740
    [Google Scholar]
  46. ZhangC. ChangQ. HuY. ChangW. GuoX. FuL. TangG. ChenC. MiR-222-3p promotes the proliferation, migration and invasion of papillary thyroid carcinoma cells through targeting SLC4A4.Histol. Histopathol.202136111199120734708859
    [Google Scholar]
  47. AbdulrahmanZ. SantegoetsS.J. SturmG. CharoentongP. IjsselsteijnM.E. SomarakisA. HölltT. FinotelloF. TrajanoskiZ. van EgmondS.L. MustafaD.A.M. WeltersM.J.P. de MirandaN.F.C.C. van der BurgS.H. Tumor-specific T cells support chemokine-driven spatial organization of intratumoral immune microaggregates needed for long survival.J. Immunother. Cancer2022102e00434610.1136/jitc‑2021‑00434635217577
    [Google Scholar]
  48. McLaughlinM. PatinE.C. PedersenM. WilkinsA. DillonM.T. MelcherA.A. HarringtonK.J. Inflammatory microenvironment remodelling by tumour cells after radiotherapy.Nat. Rev. Cancer202020420321710.1038/s41568‑020‑0246‑132161398
    [Google Scholar]
  49. WuJ. FangS. LuK.T. WackmanK. SchwartzmanM.L. DikalovS.I. GrobeJ.L. SigmundC.D. EP3 (E-Prostanoid 3) receptor mediates impaired vasodilation in a mouse model of salt-sensitive hypertension.Hypertension20217741399141110.1161/HYPERTENSIONAHA.120.1651833641369
    [Google Scholar]
  50. VandorosG.P. KonstantinopoulosP.A. Sotiropoulou-BonikouG. KomineaA. PapachristouG.I. KaramouzisM.V. GkermpesiM. VarakisI. PapavassiliouA.G. PPAR-gamma is expressed and NF-kB pathway is activated and correlates positively with COX-2 expression in stromal myofibroblasts surrounding colon adenocarcinomas.J. Cancer Res. Clin. Oncol.20061322768410.1007/s00432‑005‑0042‑z16215757
    [Google Scholar]
  51. SabatinoL. ZiccardiP. CerchiaC. MuccilloL. PiemonteseL. LoiodiceF. ColantuoniV. LupoA. LavecchiaA. Chiral phenoxyacetic acid analogues inhibit colon cancer cell proliferation acting as PPARγ partial agonists.Sci. Rep.201991543410.1038/s41598‑019‑41765‑230931956
    [Google Scholar]
  52. FriedrichT. SöhnM. GuttingT. JanssenK.P. BehrensH.M. RöckenC. EbertM.P.A. BurgermeisterE. Subcellular compartmentalization of docking protein-1 contributes to progression in colorectal cancer.EBioMedicine2016815917210.1016/j.ebiom.2016.05.00327428427
    [Google Scholar]
  53. HodiF.S. ChesneyJ. PavlickA.C. RobertC. GrossmannK.F. McDermottD.F. LinetteG.P. MeyerN. GiguereJ.K. AgarwalaS.S. ShaheenM. ErnstoffM.S. MinorD.R. SalamaA.K. TaylorM.H. OttP.A. HorakC. GagnierP. JiangJ. WolchokJ.D. PostowM.A. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial.Lancet Oncol.201617111558156810.1016/S1470‑2045(16)30366‑727622997
    [Google Scholar]
  54. EcksteinM. StrisselP. StrickR. WeyererV. WirtzR. PfannstielC. WullweberA. LangeF. ErbenP. StoehrR. BertzS. GeppertC.I. FuhrichN. TaubertH. WachS. BreyerJ. OttoW. BurgerM. BolenzC. KeckB. WullichB. HartmannA. SikicD. Cytotoxic T-cell-related gene expression signature predicts improved survival in muscle-invasive urothelial bladder cancer patients after radical cystectomy and adjuvant chemotherapy.J. Immunother. Cancer202081e00016210.1136/jitc‑2019‑00016232448798
    [Google Scholar]
  55. ThommenD.S. SchumacherT.N. T cell dysfunction in cancer.Cancer Cell201833454756210.1016/j.ccell.2018.03.01229634943
    [Google Scholar]
  56. CappellessoF. OrbanM.P. ShirgaonkarN. BerardiE. SerneelsJ. NeveuM.A. Di MolfettaD. PiccapaneF. CaroppoR. DebellisL. OstynT. JoudiouN. MignionL. RichiardoneE. JordanB.F. GallezB. CorbetC. RoskamsT. DasGuptaR. TejparS. Di MatteoM. TavernaD. ReshkinS.J. TopalB. VirgaF. MazzoneM. Targeting the bicarbonate transporter SLC4A4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancer.Nat. Can.20223121464148310.1038/s43018‑022‑00470‑236522548
    [Google Scholar]
  57. ChenD.S. MellmanI. Elements of cancer immunity and the cancer–immune set point.Nature2017541763732133010.1038/nature2134928102259
    [Google Scholar]
  58. PioR. AjonaD. Ortiz-EspinosaS. MantovaniA. LambrisJ.D. Complementing the cancer-immunity cycle.Front. Immunol.20191077410.3389/fimmu.2019.0077431031765
    [Google Scholar]
  59. LinA. ZhangJ. LuoP. Crosstalk between the msi status and tumor microenvironment in colorectal cancer.Front. Immunol.202011203910.3389/fimmu.2020.0203932903444
    [Google Scholar]
  60. EdwardsT.L. ShrubsoleM.J. CaiQ. LiG. DaiQ. RexD.K. UlbrightT.M. FuZ. MurffH.J. SmalleyW. NessR. ZhengW. A study of prostaglandin pathway genes and interactions with current nonsteroidal anti-inflammatory drug use in colorectal adenoma.Cancer Prev. Res.20125685586310.1158/1940‑6207.CAPR‑11‑045922551900
    [Google Scholar]
  61. SteinmannS. KunzeP. HampelC. EcksteinM. Bertram BramsenJ. MuenznerJ.K. CarléB. NdreshkjanaB. KemenesS. GaspariniP. FriedrichO. AndersenC. GeppertC. WangS. EyupogluI. BäuerleT. HartmannA. Schneider-StockR. DAPK1 loss triggers tumor invasion in colorectal tumor cells.Cell Death Dis.2019101289510.1038/s41419‑019‑2122‑z31772156
    [Google Scholar]
  62. WuB. TaoL. YangD. LiW. XuH. HeQ. Development of an immune infiltration-related eight-gene prognostic signature in colorectal cancer microenvironment.BioMed Res. Int.2020202014310.1155/2020/271973932908876
    [Google Scholar]
  63. BlomA.M. GialeliC. HagerlingC. BerntssonJ. JirströmK. PapadakosK.S. Expression of cartilage oligomeric matrix protein in colorectal cancer is an adverse prognostic factor and correlates negatively with infiltrating immune cells and PD-L1 expression.Front. Immunol.202314116765910.3389/fimmu.2023.116765937207219
    [Google Scholar]
  64. YangP. LiJ. PengC. TanY. ChenR. PengW. GuQ. ZhouJ. WangL. TangJ. FengY. SunY. TCONS_00012883 promotes proliferation and metastasis via DDX3/YY1/MMP1/PI3K-AKT axis in colorectal cancer.Clin. Transl. Med.2020106e21110.1002/ctm2.21133135346
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673277357231218070812
Loading
/content/journals/cmc/10.2174/0109298673277357231218070812
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Colorectal cancer; CRC therapy; immunogenicity; immunotherapy; prognosis; SLC4A4
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test