Skip to content
2000
Volume 32, Issue 21
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Objective

This study aimed to examine the role of ferroptosis on the pathogenesis and progression of COVID-19.

Materials and Methods

A total of 127 patients who were hospitalized for COVID-19 were categorized into two groups according to the intensity of oxygen therapy (high-flow or low-flow). Clinical characteristics, laboratory parameters, plasma markers, and peripheral blood mononuclear cell (PBMC) markers were measured at baseline and one or two weeks after treatment. Telephone follow-up was performed 3 months after discharge to assess long COVID.

Results

Patients receiving high-flow oxygen therapy had greater levels of neutrophils, D-dimer, C reactive protein, procalcitonin, plasma protein levels of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), IL-17, acyl-CoA synthetase long-chain family member 4 (ACSL4), and PBMC mRNA level of TNF-α but had lower levels of lymphocytes and plasma glutathione peroxidase 4 (GPX4). There were negative correlations of plasma GPX4 and cystine/glutamate transporter-11 (SLC7A11) with TNF-α, IL-6, and IL-17 and positive correlations of ACSL4 with inflammatory markers in plasma and PBMCs. The plasma levels of TNF-α, IL-6, IL-17, and ACSL4 were significantly lower after treatment than at baseline, but there were higher post-treatment levels of lymphocytes, GPX4, and SLC7A11. Patients with long COVID had a lower baseline level of plasma SLC7A11.

Conclusion

Ferroptosis is activated during the progression of COVID-19, and a low baseline level of a ferroptosis marker (SLC7A11) may indicate an increased risk for long COVID-19. Ferroptosis has potential as a clinical indicator of long COVID and as a therapeutic target.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673281662231208102354
2024-02-09
2025-10-09
Loading full text...

Full text loading...

References

  1. Coronavirus Disease (COVID-19) Situation ReportsAvailable from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (Accessed August 4, 2023).
  2. DucheneS. FeatherstoneL. Haritopoulou-SinanidouM. RambautA. LemeyP. BaeleG. Temporal signal and the phylodynamic threshold of SARS-CoV-2.Virus Evol.202062veaa06110.1093/ve/veaa06133235813
    [Google Scholar]
  3. WorobeyM. PekarJ. LarsenB.B. NelsonM.I. HillV. JoyJ.B. RambautA. SuchardM.A. WertheimJ.O. LemeyP. The emergence of SARS-CoV-2 in Europe and North America.Science2020370651656457010.1126/science.abc816932912998
    [Google Scholar]
  4. LiX. WangL. LiuJ. FangE. LiuX. PengQ. ZhangZ. LiM. LiuX. WuX. ZhaoD. YangL. LiJ. CaoS. HuangY. ShiL. XuH. WangY. SuoY. YueG. NieJ. HuangW. LiW. LiY. Combining intramuscular and intranasal homologous prime-boost with a chimpanzee adenovirus-based COVID-19 vaccine elicits potent humoral and cellular immune responses in mice.Emerg. Microbes Infect.20221111890189910.1080/22221751.2022.209747935775819
    [Google Scholar]
  5. MenniC. ValdesA.M. PolidoriL. AntonelliM. PenamakuriS. NogalA. LoucaP. MayA. FigueiredoJ.C. HuC. MolteniE. CanasL. ÖsterdahlM.F. ModatM. SudreC.H. FoxB. HammersA. WolfJ. CapdevilaJ. ChanA.T. DavidS.P. StevesC.J. OurselinS. SpectorT.D. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: A prospective observational study from the ZOE COVID study.Lancet2022399103351618162410.1016/S0140‑6736(22)00327‑035397851
    [Google Scholar]
  6. CallawayE. What Omicron’s BA.4 and BA.5 variants mean for the pandemic.Nature2022606791684884910.1038/d41586‑022‑01730‑y35750920
    [Google Scholar]
  7. BrüssowH. COVID-19: Omicron - The latest, the least virulent, but probably not the last variant of concern of SARS-CoV-2.Microb. Biotechnol.20221571927193910.1111/1751‑7915.1406435443078
    [Google Scholar]
  8. BhattacharyaM. ChatterjeeS. SharmaA.R. LeeS.S. ChakrabortyC. Delta variant (B.1.617.2) of SARS- CoV-2: Current understanding of infection, transmission, immune escape, and mutational landscape.Folia Microbiol.2023681172810.1007/s12223‑022‑01001‑335962276
    [Google Scholar]
  9. BouzidD. VisseauxB. KassasseyaC. DaoudA. FémyF. HermandC. TruchotJ. BeauneS. JavaudN. PeyronyO. ChauvinA. Vaittinada AyarP. BourgA. RiouB. MarotS. BloomB. CachanadoM. SimonT. FreundY. SalmonaM. Le GoffJ. VeyerD. ChocronR. AugustinC. RozenbergF. MeritetJ-F. SchnurigerA. FouratiS. KhellafM. CoulombA. GindreF. AlouiK. JacquierH. EyerX. ChoquetC. IngV. PavlovskyT. Houhou-FidouhN. FerréV. LandraudL. GouletH. YordanovY. BerardL. RousseauA. MorelT. VieuxT. CahenS. SaibM. Comparison of patients infected with delta versus omicron COVID-19 variants presenting to paris emergency departments.Ann. Intern. Med.2022175683183710.7326/M22‑030835286147
    [Google Scholar]
  10. KneidingerN. HeckerM. BessaV. HettichI. WaldA. WegeS. NoldeA.B. OldigsM. SyunyaevaZ. WilkensH. GottliebJ. Outcome of lung transplant recipients infected with SARS-CoV-2/Omicron/B.1.1.529: A Nationwide German study.Infection202351374975710.1007/s15010‑022‑01914‑836083405
    [Google Scholar]
  11. FeikinD.R. Abu-RaddadL.J. AndrewsN. DaviesM.A. HigdonM.M. OrensteinW.A. PatelM.K. Assessing vaccine effectiveness against severe COVID-19 disease caused by omicron variant. Report from a meeting of the World Health Organization.Vaccine202240263516352710.1016/j.vaccine.2022.04.06935595662
    [Google Scholar]
  12. HabibH.M. IbrahimS. ZaimA. IbrahimW.H. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators.Biomed. Pharmacother.202113611122810.1016/j.biopha.2021.11122833454595
    [Google Scholar]
  13. Schulte-SchreppingJ. ReuschN. PaclikD. BaßlerK. SchlickeiserS. ZhangB. KrämerB. KrammerT. BrumhardS. BonaguroL. De DomenicoE. WendischD. GrasshoffM. KapellosT.S. BeckstetteM. PechtT. SaglamA. DietrichO. MeiH.E. SchulzA.R. ConradC. KunkelD. VafadarnejadE. XuC.J. HorneA. HerbertM. DrewsA. ThibeaultC. PfeifferM. HippenstielS. HockeA. Müller-RedetzkyH. HeimK.M. MachleidtF. UhrigA. Bosquillon de JarcyL. JürgensL. StegemannM. GlösenkampC.R. VolkH.D. GoffinetC. LandthalerM. WylerE. GeorgP. SchneiderM. Dang-HeineC. NeuwingerN. KappertK. TauberR. CormanV. RaabeJ. KaiserK.M. VinhM.T. RiekeG. MeiselC. UlasT. BeckerM. GeffersR. WitzenrathM. DrostenC. SuttorpN. von KalleC. KurthF. HändlerK. SchultzeJ.L. AschenbrennerA.C. LiY. NattermannJ. SawitzkiB. SalibaA.E. SanderL.E. AngelovA. BalsR. BartholomäusA. BeckerA. BezdanD. BonifacioE. BorkP. ClavelT. Colome-TatcheM. DiefenbachA. DiltheyA. FischerN. FörstnerK. FrickJ-S. GagneurJ. GoesmannA. HainT. HummelM. JanssenS. KalinowskiJ. KalliesR. KehrB. KellerA. Kim-HellmuthS. KleinC. KohlbacherO. KorbelJ.O. KurthI. LandthalerM. LiY. LudwigK. MakarewiczO. MarzM. McHardyA. MertesC. NöthenM. NürnbergP. OhlerU. OssowskiS. OvermannJ. PeterS. PfefferK. PoetschA.R. PühlerA. RajewskyN. RalserM. RießO. RipkeS. Nunes da RochaU. RosenstielP. SalibaA-E. SanderL.E. SawitzkiB. SchifferP. SchulteE-C. SchultzeJ.L. SczyrbaA. StegleO. StoyeJ. TheisF. VehreschildJ. VogelJ. von KleistM. WalkerA. WalterJ. WieczorekD. ZiebuhrJ. Severe COVID-19 is marked by a dysregulated myeloid cell compartment.Cell2020182614191440.e2310.1016/j.cell.2020.08.00132810438
    [Google Scholar]
  14. MeradM. MartinJ.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages.Nat. Rev. Immunol.202020635536210.1038/s41577‑020‑0331‑432376901
    [Google Scholar]
  15. XuG. QiF. LiH. YangQ. WangH. WangX. LiuX. ZhaoJ. LiaoX. LiuY. LiuL. ZhangS. ZhangZ. The differential immune responses to COVID-19 in peripheral and lung revealed by single-cell RNA sequencing.Cell Discov.2020617310.1038/s41421‑020‑00225‑233101705
    [Google Scholar]
  16. Kuri-CervantesL. PampenaM.B. MengW. RosenfeldA.M. IttnerC.A.G. WeismanA.R. AgyekumR.S. MathewD. BaxterA.E. VellaL.A. KuthuruO. ApostolidisS.A. BershawL. DoughertyJ. GreenplateA.R. PattekarA. KimJ. HanN. GoumaS. WeirickM.E. ArevaloC.P. BoltonM.J. GoodwinE.C. AndersonE.M. HensleyS.E. JonesT.K. MangalmurtiN.S. Luning PrakE.T. WherryE.J. MeyerN.J. BettsM.R. Comprehensive mapping of immune perturbations associated with severe COVID-19.Sci. Immunol.2020549eabd711410.1126/sciimmunol.abd711432669287
    [Google Scholar]
  17. LiG. FanY. LaiY. HanT. LiZ. ZhouP. PanP. WangW. HuD. LiuX. ZhangQ. WuJ. Coronavirus infections and immune responses.J. Med. Virol.202092442443210.1002/jmv.2568531981224
    [Google Scholar]
  18. ReadR. Flawed methods in "COVID-19: Attacks the 1- Beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism".ChemRxiv202020201212091210.26434/chemrxiv.12120912.v2
    [Google Scholar]
  19. MoreiraA.C. MesquitaG. GomesM.S. Ferritin: An inflammatory player keeping iron at the core of pathogen-host interactions.Microorganisms20208458910.3390/microorganisms804058932325688
    [Google Scholar]
  20. CassatJ.E. SkaarE.P. Iron in infection and immunity.Cell Host Microbe201313550951910.1016/j.chom.2013.04.01023684303
    [Google Scholar]
  21. ChakurkarV. RajapurkarM. LeleS. MukhopadhyayB. LoboV. InjarapuR. SheikhM. DholuB. GhoshA. JhaV. Increased serum catalytic iron may mediate tissue injury and death in patients with COVID-19.Sci. Rep.20211111961810.1038/s41598‑021‑99142‑x34608227
    [Google Scholar]
  22. SunC. HanY. ZhangR. LiuS. WangJ. ZhangY. ChenX. JiangC. WangJ. FanX. WangJ. Regulated necrosis in COVID-19: A double-edged sword.Front. Immunol.20221391714110.3389/fimmu.2022.91714136090995
    [Google Scholar]
  23. CavezziA. TroianiE. CorraoS. COVID-19: Hemoglobin, iron, and hypoxia beyond inflammation. A narrative review.Clin. Pract.2020102127110.4081/cp.2020.127132509258
    [Google Scholar]
  24. RieglerA. BensonP. LongK. Differential activation of programmed cell death in patients with severe SARS- CoV-2 infection.Res. Sq.202310.21203/rs.3.rs‑3059466/v1
    [Google Scholar]
  25. LeeE.E. HwangW. SongK.H. JungJ. KangC.K. KimJ.H. OhH.S. KangY.M. LeeE.B. ChinB.S. SongW. KimN.J. ParkJ.K. Predication of oxygen requirement in COVID-19 patients using dynamic change of inflammatory markers: CRP, hypertension, age, neutrophil and lymphocyte (CHANeL).Sci. Rep.20211111302610.1038/s41598‑021‑92418‑234158545
    [Google Scholar]
  26. COVID-19 rapid guideline: Managing the long-term effects of COVID-19.LondonNational Institute for Health and Care Excellence (NICE)2020
    [Google Scholar]
  27. SudreC.H. MurrayB. VarsavskyT. GrahamM.S. PenfoldR.S. BowyerR.C. PujolJ.C. KlaserK. AntonelliM. CanasL.S. MolteniE. ModatM. Jorge CardosoM. MayA. GaneshS. DaviesR. NguyenL.H. DrewD.A. AstleyC.M. JoshiA.D. MerinoJ. TsereteliN. FallT. GomezM.F. DuncanE.L. MenniC. WilliamsF.M.K. FranksP.W. ChanA.T. WolfJ. OurselinS. SpectorT. StevesC.J. Attributes and predictors of long COVID.Nat. Med.202127462663110.1038/s41591‑021‑01292‑y33692530
    [Google Scholar]
  28. CarfìA. BernabeiR. LandiF. Persistent symptoms in patients after acute COVID-19.JAMA2020324660360510.1001/jama.2020.1260332644129
    [Google Scholar]
  29. Wulf HansonS. AbbafatiC. AertsJ.G. Al-AlyZ. AshbaughC. BallouzT. BlyussO. BobkovaP. BonselG. BorzakovaS. BuonsensoD. ButnaruD. CarterA. ChuH. De RoseC. DiabM.M. EkbomE. El TantawiM. FominV. FrithiofR. GamirovaA. GlybochkoP.V. HaagsmaJ.A. Haghjooy JavanmardS. HamiltonE.B. HarrisG. Heijenbrok-KalM.H. HelbokR. HellemonsM.E. HillusD. HuijtsS.M. HultströmM. JassatW. KurthF. LarssonI.M. LipcseyM. LiuC. LoflinC.D. MalinovschiA. MaoW. MazankovaL. McCullochD. MengesD. MohammadifardN. MunblitD. NekliudovN.A. OgbuojiO. OsmanovI.M. PeñalvoJ.L. PetersenM.S. PuhanM.A. RahmanM. RassV. ReinigN. RibbersG.M. RicchiutoA. RubertssonS. SamitovaE. SarrafzadeganN. ShikhalevaA. SimpsonK.E. SinattiD. SorianoJ.B. SpiridonovaE. SteinbeisF. SvistunovA.A. ValentiniP. van de WaterB.J. van den Berg-EmonsR. WallinE. WitzenrathM. WuY. XuH. ZollerT. AdolphC. AlbrightJ. AmlagJ.O. AravkinA.Y. Bang-JensenB.L. BisignanoC. CastellanoR. CastroE. ChakrabartiS. CollinsJ.K. DaiX. DaoudF. DapperC. DeenA. DuncanB.B. EricksonM. EwaldS.B. FerrariA.J. FlaxmanA.D. FullmanN. GamkrelidzeA. GilesJ.R. GuoG. HayS.I. HeJ. HelakM. HullandE.N. KereselidzeM. KrohnK.J. Lazzar-AtwoodA. LindstromA. LozanoR. MaltaD.C. MånssonJ. Mantilla HerreraA.M. MokdadA.H. MonastaL. NomuraS. PasovicM. PigottD.M. ReinerR.C.Jr ReinkeG. RibeiroA.L.P. SantomauroD.F. SholokhovA. SpurlockE.E. WalcottR. WalkerA. WiysongeC.S. ZhengP. BettgerJ.P. MurrayC.J.L. VosT. Estimated global proportions of individuals with persistent fatigue, cognitive, and respiratory symptom clusters following symptomatic COVID-19 in 2020 and 2021.JAMA2022328161604161510.1001/jama.2022.1893136215063
    [Google Scholar]
  30. GroffD. SunA. SsentongoA.E. BaD.M. ParsonsN. PoudelG.R. LekoubouA. OhJ.S. EricsonJ.E. SsentongoP. ChinchilliV.M. Short-term and long-term rates of postacute sequelae of SARS-CoV-2 infection.JAMA Netw. Open2021410e212856810.1001/jamanetworkopen.2021.2856834643720
    [Google Scholar]
  31. HirschtickJ.L. TitusA.R. SlocumE. PowerL.E. HirschtickR.E. ElliottM.R. McKaneP. FleischerN.L. Population-based estimates of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) Infection (PASC) prevalence and characteristics.Clin. Infect. Dis.202173112055206410.1093/cid/ciab40834007978
    [Google Scholar]
  32. TaquetM. DerconQ. LucianoS. GeddesJ.R. HusainM. HarrisonP.J. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19.PLoS Med.2021189e100377310.1371/journal.pmed.100377334582441
    [Google Scholar]
  33. SaikarthikJ. SaraswathiI. AlarifiA. Al-AtramA.A. MickeymarayS. ParamasivamA. ShaikhS. JeraudM. AlothaimA.S. Role of neuroinflammation mediated potential alterations in adult neurogenesis as a factor for neuropsychiatric symptoms in post-acute COVID-19 syndrome-A narrative review.Peer J.202210e1422710.7717/peerj.1422736353605
    [Google Scholar]
  34. SherifZ.A. GomezC.R. ConnorsT.J. HenrichT.J. ReevesW.B. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC).eLife202312e8600210.7554/eLife.8600236947108
    [Google Scholar]
  35. ZhangR. SunC. ChenX. HanY. ZangW. JiangC. WangJ. WangJ. COVID-19-related brain injury: The potential role of ferroptosis.J. Inflamm. Res.2022152181219810.2147/JIR.S35346735411172
    [Google Scholar]
  36. CuiY. ZhangY. ZhaoX. ShaoL. LiuG. SunC. XuR. ZhangZ. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation.Brain Behav. Immun.20219331232110.1016/j.bbi.2021.01.00333444733
    [Google Scholar]
  37. SousaR.A.L. YehiaA. AbulseoudO.A. Attenuation of ferroptosis as a potential therapeutic target for neuropsychiatric manifestations of post-COVID syndrome.Front. Neurosci.202317123715310.3389/fnins.2023.1237153
    [Google Scholar]
  38. JankauskasS.S. KansakarU. SarduC. VarzidehF. AvvisatoR. WangX. MatareseA. MarfellaR. ZiosiM. GambardellaJ. SantulliG. COVID-19 causes ferroptosis and oxidative stress in human endothelial cells.Antioxidants202312232610.3390/antiox1202032636829885
    [Google Scholar]
  39. HigashiY. Roles of oxidative stress and inflammation in vascular endothelial dysfunction-related disease.Antioxidants20221110195810.3390/antiox1110195836290681
    [Google Scholar]
  40. Del ValleD.M. Kim-SchulzeS. HuangH.H. BeckmannN.D. NirenbergS. WangB. LavinY. SwartzT.H. MadduriD. StockA. MarronT.U. XieH. PatelM. TuballesK. Van OekelenO. RahmanA. KovatchP. AbergJ.A. SchadtE. JagannathS. MazumdarM. CharneyA.W. Firpo-BetancourtA. MenduD.R. JhangJ. ReichD. SigelK. Cordon-CardoC. FeldmannM. ParekhS. MeradM. GnjaticS. An inflammatory cytokine signature predicts COVID-19 severity and survival.Nat. Med.202026101636164310.1038/s41591‑020‑1051‑932839624
    [Google Scholar]
  41. PengJ.J. SongW.T. YaoF. ZhangX. PengJ. LuoX.J. XiaX.B. Involvement of regulated necrosis in blinding diseases: Focus on necroptosis and ferroptosis.Exp. Eye Res.202019110792210.1016/j.exer.2020.10792231923413
    [Google Scholar]
  42. PelemanC. Van CoillieS. LigthartS. ChoiS.M. De WaeleJ. DepuydtP. BenoitD. SchaubroeckH. FrancqueS.M. DamsK. JacobsR. RobertD. RoelandtR. SeurinckR. SaeysY. RajapurkarM. JorensP.G. HosteE. Vanden BergheT. Ferroptosis and pyroptosis signatures in critical COVID-19 patients.Cell Death Differ.20233092066207710.1038/s41418‑023‑01204‑237582864
    [Google Scholar]
  43. SuriawinataE. MehtaK.J. Iron and iron-related proteins in COVID-19.Clin. Exp. Med.202223496999110.1007/s10238‑022‑00851‑y35849261
    [Google Scholar]
  44. Barratt-DueA. OlsenI.C. Nezvalova-HenriksenK. KåsineT. Lund-JohansenF. HoelH. HoltenA.R. TveitaA. MathiessenA. HaugliM. EikenR. KildalA.B. BergÅ. JohannessenA. HeggelundL. DahlT.B. SkåraK.H. MielnikP. LeL.A.K. ThoresenL. ErnstG. HoffD.A.L. SkudalH. KittangB.R. OlsenR.B. TholinB. YstrømC.M. SkeiN.V. TranT. DudmanS. AndersenJ.T. HannulaR. DalgardO. FinbråtenA.K. TonbyK. BlombergB. AballiS. FladebyC. SteffensenA. MüllerF. Dyrhol-RiiseA.M. TrøseidM. AukrustP. Evaluation of the effects of remdesivir and hydroxychloroquine on viral clearance in COVID-19.Ann. Intern. Med.202117491261126910.7326/M21‑065334251903
    [Google Scholar]
  45. KamjaiP. HemvimolS. BordeeratN.K. SrimanoteP. AngkasekwinaiP. Evaluation of emerging inflammatory markers for predicting oxygen support requirement in COVID-19 patients.PLoS One20221711e027814510.1371/journal.pone.027814536441688
    [Google Scholar]
  46. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑531986264
    [Google Scholar]
  47. QinC. ZhouL. HuZ. ZhangS. YangS. TaoY. XieC. MaK. ShangK. WangW. TianD.S. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China.Clin. Infect. Dis.2020711576276810.1093/cid/ciaa24832161940
    [Google Scholar]
  48. ChenG. WuD. GuoW. CaoY. HuangD. WangH. WangT. ZhangX. ChenH. YuH. ZhangX. ZhangM. WuS. SongJ. ChenT. HanM. LiS. LuoX. ZhaoJ. NingQ. Clinical and immunological features of severe and moderate coronavirus disease 2019.J. Clin. Invest.202013052620262910.1172/JCI13724432217835
    [Google Scholar]
  49. GadottiA.C. de Castro DeusM. TellesJ.P. WindR. GoesM. Garcia Charello OssoskiR. de PaduaA.M. de NoronhaL. Moreno-AmaralA. BaenaC.P. TuonF.F. IFN-γ is an independent risk factor associated with mortality in patients with moderate and severe COVID-19 infection.Virus Res.202028919817110.1016/j.virusres.2020.19817132979474
    [Google Scholar]
  50. ToturaA.L. BaricR.S. SARS coronavirus pathogenesis: Host innate immune responses and viral antagonism of interferon.Curr. Opin. Virol.20122326427510.1016/j.coviro.2012.04.00422572391
    [Google Scholar]
  51. PetroneL. PetruccioliE. VaniniV. CuzziG. Najafi FardS. AlonziT. CastillettiC. PalmieriF. GualanoG. VittozziP. NicastriE. LeporeL. AntinoriA. VergoriA. CaccamoN. CantiniF. GirardiE. IppolitoG. GrifoniA. GolettiD. A whole blood test to measure SARS-CoV-2-specific response in COVID-19 patients.Clin. Microbiol. Infect.2021272286.e7286.e1310.1016/j.cmi.2020.09.05133045370
    [Google Scholar]
  52. De SanctisJ.B. GarcíaA.H. MorenoD. HajduchM. Coronavirus infection: An immunologists’ perspective.Scand. J. Immunol.2021936e1304310.1111/sji.1304333783027
    [Google Scholar]
  53. TayM.Z. PohC.M. RéniaL. MacAryP.A. NgL.F.P. The trinity of COVID-19: Immunity, inflammation and intervention.Nat. Rev. Immunol.202020636337410.1038/s41577‑020‑0311‑832346093
    [Google Scholar]
  54. LucasC. WongP. KleinJ. CastroT.B.R. SilvaJ. SundaramM. EllingsonM.K. MaoT. OhJ.E. IsraelowB. TakahashiT. TokuyamaM. LuP. VenkataramanA. ParkA. MohantyS. WangH. WyllieA.L. VogelsC.B.F. EarnestR. LapidusS. OttI.M. MooreA.J. MuenkerM.C. FournierJ.B. CampbellM. OdioC.D. Casanovas-MassanaA. ObaidA. Lu-CulliganA. NelsonA. BritoA. NunezA. MartinA. WatkinsA. GengB. KalinichC. HardenC. TodeasaC. JensenC. KimD. McDonaldD. ShepardD. CourchaineE. WhiteE.B. SongE. SilvaE. KudoE. DeIuliisG. RahmingH. ParkH-J. MatosI. NouwsJ. ValdezJ. FauverJ. LimJ. RoseK-A. AnastasioK. BrowerK. GlickL. SharmaL. SewananL. KnaggsL. MinasyanM. BatsuM. PetroneM. KuangM. NakahataM. CampbellM. LinehanM. AskenaseM.H. SimonovM. SmolgovskyM. SonnertN. NaushadN. VijayakumarP. MartinelloR. DattaR. HandokoR. BermejoS. ProphetS. BickertonS. VelazquezS. AlpertT. RiceT. Khoury-HanoldW. PengX. YangY. CaoY. StrongY. HerbstR. ShawA.C. MedzhitovR. SchulzW.L. GrubaughN.D. Dela CruzC. FarhadianS. KoA.I. OmerS.B. IwasakiA. Longitudinal analyses reveal immunological misfiring in severe COVID-19.Nature2020584782146346910.1038/s41586‑020‑2588‑y32717743
    [Google Scholar]
  55. ThiemeC.J. AnftM. PaniskakiK. Blazquez-NavarroA. DoevelaarA. SeibertF.S. HoelzerB. KonikM.J. BergerM.M. BrennerT. TempferC. WatzlC. MeisterT.L. PfaenderS. SteinmannE. DolffS. DittmerU. WesthoffT.H. WitzkeO. StervboU. RochT. BabelN. Robust T cell response toward spike, membrane, and nucleocapsid SARS-CoV-2 proteins is not associated with recovery in critical COVID-19 patients.Cell Rep. Med.20201610009210.1016/j.xcrm.2020.10009232904468
    [Google Scholar]
  56. WilsonJ.G. SimpsonL.J. FerreiraA.M. Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis.JCI Insight.2020517e14028910.1172/jci.insight.140289
    [Google Scholar]
  57. YuanH. LiX. ZhangX. KangR. TangD. Identification of ACSL4 as a biomarker and contributor of ferroptosis.Biochem. Biophys. Res. Commun.201647831338134310.1016/j.bbrc.2016.08.12427565726
    [Google Scholar]
  58. DollS. PronethB. TyurinaY.Y. PanziliusE. KobayashiS. IngoldI. IrmlerM. BeckersJ. AichlerM. WalchA. ProkischH. TrümbachD. MaoG. QuF. BayirH. FüllekrugJ. ScheelC.H. WurstW. SchickJ.A. KaganV.E. AngeliJ.P.F. ConradM. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition.Nat. Chem. Biol.2017131919810.1038/nchembio.223927842070
    [Google Scholar]
  59. StockwellB.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications.Cell2022185142401242110.1016/j.cell.2022.06.00335803244
    [Google Scholar]
  60. WangB. ShenW.B. YangP. TuranS. SARS-CoV-2 infection induces activation of ferroptosis in human placenta.Front. Cell Dev. Biol.202210102274710.3389/fcell.2022.102274736425527
    [Google Scholar]
  61. MaT.L. ZhouY. WangC. WangL. ChenJ.X. YangH.H. ZhangC.Y. ZhouY. GuanC.X. Targeting ferroptosis for lung diseases: Exploring novel strategies in ferroptosis-associated mechanisms.Oxid. Med. Cell. Longev.2021202112110.1155/2021/109897034630843
    [Google Scholar]
  62. GaoJ. WangQ. TangY.D. ZhaiJ. HuW. ZhengC. When ferroptosis meets pathogenic infections.Trends Microbiol.202331546847910.1016/j.tim.2022.11.00636496309
    [Google Scholar]
  63. QuX. LiangT. WuD. LaiN. DengR. MaC. LiX. LiH. LiuY. ShenH. ChenG. Acyl-CoA synthetase long chain family member 4 plays detrimental role in early brain injury after subarachnoid hemorrhage in rats by inducing ferroptosis.CNS Neurosci. Ther.202127444946310.1111/cns.1354833314758
    [Google Scholar]
  64. LiuL. KangX. ACSL4 is overexpressed in psoriasis and enhances inflammatory responses by activating ferroptosis.Biochem. Biophys. Res. Commun.20226231810.1016/j.bbrc.2022.07.04135868067
    [Google Scholar]
  65. ShouY. YangL. YangY. XuJ. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation.Cell Death Dis.20211211100910.1038/s41419‑021‑04284‑534707088
    [Google Scholar]
  66. WuJ. FengZ. ChenL. LiY. BianH. GengJ. ZhengZ.H. FuX. PeiZ. QinY. YangL. ZhaoY. WangK. ChenR. HeQ. NanG. JiangX. ChenZ.N. ZhuP. TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models.Nat. Commun.202213167610.1038/s41467‑021‑27948‑435115492
    [Google Scholar]
  67. JeongH.W. LeeJ.S. KoJ.H. HongS. OhS.T. ChoiS. PeckK.R. YangJ.H. ChungS. KimS.H. KimY.S. ShinE.C. Corticosteroids reduce pathologic interferon responses by downregulating STAT1 in patients with high-risk COVID-19.Exp. Mol. Med.202355365366410.1038/s12276‑023‑00964‑836941461
    [Google Scholar]
  68. PerriconeC. BartoloniE. BursiR. CafaroG. GuidelliG.M. ShoenfeldY. GerliR. COVID-19 as part of the hyperferritinemic syndromes: The role of iron depletion therapy.Immunol. Res.202068421322410.1007/s12026‑020‑09145‑532681497
    [Google Scholar]
  69. ChangR. NgT.B. SunW.Z. Lactoferrin as potential preventative and adjunct treatment for COVID-19.Int. J. Antimicrob. Agents202056310611810.1016/j.ijantimicag.2020.10611832738305
    [Google Scholar]
  70. RaineyN.E. MoustaphaA. SaricA. NicolasG. SureauF. PetitP.X. Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation.Cell Death Discov.20195115010.1038/s41420‑019‑0234‑y31839992
    [Google Scholar]
  71. AugustinM. SchommersP. StecherM. DewaldF. GieselmannL. GruellH. HornC. VanshyllaK. CristanzianoV.D. OseboldL. RoventaM. RiazT. TschernosterN. AltmuellerJ. RoseL. SalomonS. PriesnerV. LuersJ.C. AlbusC. RosenkranzS. GathofB. FätkenheuerG. HallekM. KleinF. SuárezI. LehmannC. Post-COVID syndrome in non-hospitalised patients with COVID-19: A longitudinal prospective cohort study.Lancet Reg. Health Eur.2021610012210.1016/j.lanepe.2021.10012234027514
    [Google Scholar]
  72. PelusoM.J. KellyJ.D. LuS. GoldbergS.A. DavidsonM.C. MathurS. DurstenfeldM.S. SpinelliM.A. HohR. TaiV. FehrmanE.A. TorresL. HernandezY. WilliamsM.C. ArreguinM.I. NgoL.H. DeswalM. MunterS.E. MartinezE.O. AnglinK.A. RomeroM.D. TavsJ. RugartP.R. ChenJ.Y. SansH.M. MurrayV.W. EllisP.K. DonohueK.C. MassachiJ.A. WeissJ.O. MehdiI. Pineda-RamirezJ. TangA.F. WengerM.A. AssenzioM.T. YuanY. KroneM.R. RutishauserR.L. Rodriguez-BarraquerI. GreenhouseB. SaucedaJ.A. GandhiM. SchefflerA.W. HsueP.Y. HenrichT.J. DeeksS.G. MartinJ.N. Persistence, magnitude, and patterns of postacute symptoms and quality of life following onset of SARS-CoV-2 Infection: Cohort description and approaches for measurement.Open Forum Infect. Dis.202292ofab64010.1093/ofid/ofab64035106317
    [Google Scholar]
  73. RemsikJ. WilcoxJ.A. BabadyN.E. McMillenT.A. VachhaB.A. HalpernN.A. DhawanV. RosenblumM. Iacobuzio-DonahueC.A. AvilaE.K. SantomassoB. BoireA. Inflammatory leptomeningeal cytokines mediate COVID-19 neurologic symptoms in cancer patients.Cancer Cell2021392276283.e310.1016/j.ccell.2021.01.00733508216
    [Google Scholar]
  74. FabbriL. MossS. KhanF.A. ChiW. XiaJ. RobinsonK. SmythA.R. JenkinsG. StewartI. Parenchymal lung abnormalities following hospitalisation for COVID-19 and viral pneumonitis: A systematic review and meta-analysis.Thorax202378219120110.1136/thoraxjnl‑2021‑21827535338102
    [Google Scholar]
  75. GonçalvesN.G. AlibertiM.J.R. BertolaL. Avelino-SilvaT. DiasM.B. ApolinarioD. BusattoG. ForlenzaO. NitriniR. BruckiS.M.D. BrunoniA.R. VidalK.S.M. Jacob-FilhoW. SuemotoC.K. Dissipating the fog: Cognitive trajectories and risk factors 1 year after COVID-19 hospitalization.Alzheimers Dement.20231993771378210.1002/alz.1299336861807
    [Google Scholar]
  76. MuhammadY. KaniY.A. IliyaS. MuhammadJ.B. BinjiA. El-Fulaty AhmadA. KabirM.B. Umar BindawaK. AhmedA. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross- sectional comparative study in Jigawa, Northwestern Nigeria.SAGE Open Med.20219205031212199124610.1177/205031212199124633614035
    [Google Scholar]
  77. YangM. LaiC.L. SARS-CoV-2 infection: Can ferroptosis be a potential treatment target for multiple organ involvement?Cell Death Discov.20206113010.1038/s41420‑020‑00369‑w33251029
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673281662231208102354
Loading
/content/journals/cmc/10.2174/0109298673281662231208102354
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): biomarkers; COVID-19; Ferroptosis; inflammation response; long COVID; oxygen therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test