Skip to content
2000
Volume 32, Issue 21
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Commercial Minoxidil (MXD) is commonly used as a vasodilator agent of hair follicles for providing direct dermal papilla cell proliferation and consequently enhancing the rate of hair growth.

Objective

The current study attempted to improve the bioactivity and water solubility of MXD by producing nanocrystal structures and investigating the obtained hair growth-stimulating activity on C57BL/6 mice.

Methods

The MXD nanoparticles (MXD-NPs) were prepared through a bead mill and ultrasonic process and characterized by DLS, XRD, UV-Vis, FTIR, FESEM, TEM, and Zeta-potential techniques.

Results

The cytotoxicity of MXD-NPs was studied on human dermal fibroblast (HDF) by MTT assay. Lastly, we analyzed the comparative hair growth inductive activity of certain MXD-NPs concentrations on C57BL/6 mice. The stabled MXD-NPs (-46 mV, 21.9 nm) caused a significant increase in the hair growth rate of C57BL/6 mice by running a safe site-specific delivery mechanism on the targeted pilosebaceous follicles when compared to MXD.

Conclusion

The MXD-NPs-receiving mice exhibited a greater rate of anagen/telogen follicular when compared with MXD-treated types, which verified the improvement of their hair re-growing and follicular-stimulative activities. Therefore, these outcomes confirmed the potential of MXD-NPs for substituting its commercial solution format as a safe and efficient iso-formulation structure.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673283413240116065844
2024-02-15
2025-10-09
Loading full text...

Full text loading...

References

  1. Falto-AizpuruaL. ChoudharyS. TostiA. Emerging treatments in alopecia.Expert Opin. Emerg. Drugs201419454555610.1517/14728214.2014.97455025330928
    [Google Scholar]
  2. RogersN.E. AvramM.R. Medical treatments for male and female pattern hair loss.J. Am. Acad. Dermatol.200859454756610.1016/j.jaad.2008.07.00118793935
    [Google Scholar]
  3. HigginsC.A. ChristianoA.M. Regenerative medicine and hair loss: How hair follicle culture has advanced our understanding of treatment options for androgenetic alopecia.Regen. Med.20149110111110.2217/rme.13.8724351010
    [Google Scholar]
  4. SousaR.A. Dos-SantosS.X. CavalheiroE.T.G. BrettC.M.A. Graphite-polyurethane and graphite-silicone rubber composite electrodes for electrochemical characterization and determination of minoxidil.Electroanalysis201325370671510.1002/elan.201200606
    [Google Scholar]
  5. ShorterK. FarjoN.P. PicksleyS.M. RandallV.A.I Human hair follicles contain two forms of ATP- sensitive potassium channels, only one of which is sensitive to minoxidil.FASEB J.20082261725173610.1096/fj.07‑09942418258787
    [Google Scholar]
  6. XuD. WangL. DaiW. LuL. A requirement for K+-channel activity in growth factor-mediated extracellular signal-regulated kinase activation in human myeloblastic leukemia ML-1 cells.Blood199994113914510.1182/blood.V94.1.139.413k11_139_14510381506
    [Google Scholar]
  7. MalhiH. IraniA.N. RajvanshiP. SuadicaniS.O. SprayD.C. McDonaldT.V. GuptaS. KATP channels regulate mitogenically induced proliferation in primary rat hepatocytes and human liver cell lines. Implications for liver growth control and potential therapeutic targeting.J. Biol. Chem.200027534260502605710.1074/jbc.M00157620010862612
    [Google Scholar]
  8. MessengerA.G. RundegrenJ. Minoxidil: Mechanisms of action on hair growth.Br. J. Dermatol.2004150218619410.1111/j.1365‑2133.2004.05785.x14996087
    [Google Scholar]
  9. Al-AttarT.S. KawtherK. Al-NeamiM.A. AbdulSahibW.S. Colored asphalt and street print are decorating paving in public spaces.MATEC Web of Conferences201816205027
    [Google Scholar]
  10. MirzaeeiS. PirhayatiF.H. MohammadiG. RahimpourE. MartinezF. JouybanA. Solubility of minoxidil in binary mixture of ethanol + water at various temperatures.Phys. Chem. Liquids201957678879910.1080/00319104.2018.1528596
    [Google Scholar]
  11. AljuffaliI.A. SungC.T. ShenF.M. HuangC.T. FangJ.Y. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells.AAPS J.201416114015010.1208/s12248‑013‑9550‑y24307611
    [Google Scholar]
  12. NagaiN. IwaiY. SakamotoA. OtakeH. OakuY. AbeA. NagahamaT. Drug delivery system based on minoxidil nanoparticles promotes hair growth in C57BL/6 mice.Int. J. Nanomedicine2019147921793110.2147/IJN.S22549631632009
    [Google Scholar]
  13. DesaiC. Meyler’s side effects of drugs: The international encyclopedia of adverse drug reactions and interactions.Indian J. Pharmacol.2016482224
    [Google Scholar]
  14. SuchonwanitP. ThammaruchaS. LeerunyakulK. Minoxidil and its use in hair disorders: A review.Drug Des. Devel. Ther.2019132777278610.2147/DDDT.S21490731496654
    [Google Scholar]
  15. RathnayakeD. SinclairR. Male androgenetic alopecia.Expert Opin. Pharmacother.20101181295130410.1517/1465656100375273020426708
    [Google Scholar]
  16. BassinoE. GasparriF. MunaronL. Protective role of nutritional plants containing flavonoids in hair follicle disruption: A review.Int. J. Mol. Sci.202021252310.3390/ijms2102052331947635
    [Google Scholar]
  17. RossiA. CantisaniC. MelisL. IorioA. ScaliE. CalvieriS. Minoxidil use in dermatology, side effects and recent patents.Recent Pat. Inflamm. Allergy Drug Discov.20126213013610.2174/18722131280016685922409453
    [Google Scholar]
  18. BeloquiA. SolinísM.Á. Rodríguez-GascónA. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine201612114316110.1016/j.nano.2015.09.00426410277
    [Google Scholar]
  19. RuelaA.L.M. PerissinatoA.G. LinoM.E.S. MudrikP.S. PereiraG.R. Evaluation of skin absorption of drugs from topical and transdermal formulations.Braz. J. Pharm. Sci.201652352754410.1590/s1984‑82502016000300018
    [Google Scholar]
  20. DesaiP.R. ShahP.P. HaydenP. SinghM. Investigation of follicular and non-follicular pathways for polyarginine and oleic acid-modified nanoparticles.Pharm. Res.20133041037104910.1007/s11095‑012‑0939‑623187866
    [Google Scholar]
  21. Singh MalikD. MitalN. KaurG. Topical drug delivery systems: A patent review.Expert Opin. Ther. Pat.201626221322810.1517/13543776.2016.113126726651499
    [Google Scholar]
  22. SinicoC. FaddaA.M. Vesicular carriers for dermal drug delivery.Expert Opin. Drug Deliv.20096881382510.1517/1742524090307102919569979
    [Google Scholar]
  23. CoscoD. CeliaC. CilurzoF. TrapassoE. PaolinoD. Colloidal carriers for the enhanced delivery through the skin.Expert Opin. Drug Deliv.20085773775510.1517/17425247.5.7.73718590459
    [Google Scholar]
  24. CilurzoF. CristianoM. Di MarzioL. CoscoD. CarafaM. VenturaC. FrestaM. PaolinoD. Influence of the supramolecular micro-assembly of multiple emulsions on their biopharmaceutical features and in vivo therapeutic response.Curr. Drug Targets201516141612162210.2174/13894501161415111912423426601721
    [Google Scholar]
  25. BalakrishnanP. ShanmugamS. LeeW.S. LeeW.M. KimJ.O. OhD.H. KimD.D. KimJ.S. YooB.K. ChoiH.G. WooJ.S. YongC.S. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery.Int. J. Pharm.20093771-21810.1016/j.ijpharm.2009.04.02019394413
    [Google Scholar]
  26. SunY. ZhangY. LiuX. TingtingY. ShenL. YeD. KongX. SuY. TianQ. The preparation of high minoxidil loaded transfersomes and its gel for effective topical treatment of alopecia.J. Drug Deliv. Sci. Technol.20238410445810.1016/j.jddst.2023.104458
    [Google Scholar]
  27. LauterbachA. Müller-GoymannC.C. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route.Eur. J. Pharm. Biopharm.201597Pt A15216310.1016/j.ejpb.2015.06.02026144664
    [Google Scholar]
  28. JungS. OtbergN. ThiedeG. RichterH. SterryW. PanznerS. LademannJ. Innovative liposomes as a transfollicular drug delivery system: Penetration into porcine hair follicles.J. Invest. Dermatol.200612681728173210.1038/sj.jid.570032316645589
    [Google Scholar]
  29. JainB. SinghB. KatareO.P. VyasS.P. Development and characterization of minoxidil-loaded liposomal system for delivery to pilosebaceous units.J. Liposome Res.201020210511410.3109/0898210090316144919698000
    [Google Scholar]
  30. TollR. JacobiU. RichterH. LademannJ. SchaeferH. Blume-PeytaviU. Penetration profile of microspheres in follicular targeting of terminal hair follicles.J. Invest. Dermatol.2004123116817610.1111/j.0022‑202X.2004.22717.x15191557
    [Google Scholar]
  31. Mardhiah AdibZ. GhanbarzadehS. KouhsoltaniM. Yari KhosroshahiA. HamishehkarH. The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: A histological study.Adv. Pharm. Bull.201661313610.15171/apb.2016.0627123415
    [Google Scholar]
  32. FrestaM. MancusoA. CristianoM.C. UrbanekK. CilurzoF. CoscoD. IannoneM. PaolinoD. Targeting of the pilosebaceous follicle by liquid crystal nanocarriers: In vitro and in vivo effects of the entrapped minoxidil.Pharmaceutics20201211112710.3390/pharmaceutics1211112733266444
    [Google Scholar]
  33. LiJ.J. LiZ. GuL.J. ChoiK.J. KimD.S. KimH.K. SungC.K. The promotion of hair regrowth by topical application of a Perilla frutescens extract through increased cell viability and antagonism of testosterone and dihydrotestosterone.J. Nat. Med.20187219610510.1007/s11418‑017‑1116‑328905175
    [Google Scholar]
  34. LeeB.H. LeeJ.S. KimY.C. Hair growth-promoting effects of lavender oil in C57BL/6 mice.Toxicol. Res.201632210310810.5487/TR.2016.32.2.10327123160
    [Google Scholar]
  35. FuD. HuangJ. LiK. ChenY. HeY. SunY. GuoY. DuL. QuQ. MiaoY. HuZ. Dihydrotestosterone-induced hair regrowth inhibition by activating androgen receptor in C57BL6 mice simulates androgenetic alopecia.Biomed. Pharmacother.202113711124710.1016/j.biopha.2021.11124733517191
    [Google Scholar]
  36. ElsayedI. AbdelbaryA.A. ElshafeeyA.H. Nanosizing of a poorly soluble drug: Technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers.Int. J. Nanomedicine201492943295324971006
    [Google Scholar]
  37. RaviP.R. AdityaN. KathuriaH. MalekarS. VatsR. Lipid nanoparticles for oral delivery of raloxifene: Optimization, stability, in vivo evaluation and uptake mechanism.Eur. J. Pharm. Biopharm.201487111412410.1016/j.ejpb.2013.12.01524378615
    [Google Scholar]
  38. ParhiR. TerapalliB.R. TejaB. Formulation and in vitro evaluation of minoxidil topical gel.Turk J. Pharm. Sci.2014112153162
    [Google Scholar]
  39. de SousaR.A. SemaanF.S. CerviniP. CavalheiroÉ.T.G. Determination of minoxidil by bleaching the permanganate carrier solution in a flow-based spectrophotometric system.Anal. Lett.2011441-334935910.1080/00032719.2010.500778
    [Google Scholar]
  40. De SousaR.A. SemaanF.S. BaioJ.A.F. CavalheiroÉ.T.G. Fast determination of minoxidil by photometric flow titration.Eclét. Quím.2005303798410.26850/1678‑4618eqj.v30.3.2005.p79‑84
    [Google Scholar]
  41. SousaR.A. CavalheiroÉ.T.G. Determination of minoxidil in pharmaceutical formulations using permanganometry.Eclect. Chem.2009343414910.1590/S0100‑46702009000300005
    [Google Scholar]
  42. XiaoL. ZhangX. ChenZ. LiJ. LiB. LiL. Molecular pathways involved in promoting activity of timosaponin BII on hair growth in C57BL/6 mice. BioMed Res. Int.20202020
    [Google Scholar]
  43. ZhangY. WangJ. QuF. ZhangY. SuG. ZhaoY. Hair growth promotion effect of cedrol cream and its dermatopharmacokinetics.RSC Adv.2018873421704217810.1039/C8RA08667B35558774
    [Google Scholar]
  44. ParkS.O. ParkB.S. NohG.Y. Action mechanism of natural plant extracts for hair loss prevention and hair growth promotion in C57BL/6 mice.Int. J. Pharmacol.201511658859510.3923/ijp.2015.588.595
    [Google Scholar]
  45. RajendranR.L. GangadaranP. BakS.S. OhJ.M. KalimuthuS. LeeH.W. BaekS.H. ZhuL. SungY.K. JeongS.Y. LeeS.W. LeeJ. AhnB.C. Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice.Sci. Rep.2017711556010.1038/s41598‑017‑15505‑329138430
    [Google Scholar]
  46. ChiW. WuE. MorganB.A. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline.Development201314081676168310.1242/dev.09066223487317
    [Google Scholar]
  47. SchneiderM.R. Schmidt-UllrichR. PausR. The hair follicle as a dynamic miniorgan.Curr. Biol.2009193R132R14210.1016/j.cub.2008.12.00519211055
    [Google Scholar]
  48. KwonT.R. OhC.T. ParkH.M. HanH.J. JiH.J. KimB.J. Potential synergistic effects of human placental extract and minoxidil on hair growth-promoting activity in C57BL/6J mice.Clin. Exp. Dermatol.201540667268110.1111/ced.1260125787854
    [Google Scholar]
  49. AldhalimiM.A. HadiN.R. GhafilF.A. Promotive effect of topical ketoconazole, minoxidil, and minoxidil with tretinoin on hair growth in male mice. Int. Sch. Res. Notices.20142014.10.1155/2014/575423
    [Google Scholar]
  50. ChoiN. ShinS. SongS. SungJ.H. Minoxidil promotes hair growth through stimulation of growth factor release from adipose-derived stem cells.Int. J. Mol. Sci.201819369110.3390/ijms1903069129495622
    [Google Scholar]
  51. BergerR.S. FuJ.L. SmilesK.A. TurnerC.B. SchnellB.M. WerchowskiK.M. LammersK.M. The effects of minoxidil, 1% pyrithione zinc and a combination of both on hair density: A randomized controlled trial.Br. J. Dermatol.2003149235436210.1046/j.1365‑2133.2003.05435.x12932243
    [Google Scholar]
  52. TricaricoD. MaqoudF. CurciA. CamerinoG. ZizzoN. DenoraN. CutrignelliA. LaquintanaV. LopalcoA. la ForgiaF. FontanaS. FrancoM. LopedotaA. Characterization of minoxidil/hydroxypropyl-β-cyclodextrin inclusion complex in aqueous alginate gel useful for alopecia management: Efficacy evaluation in male rat.Eur. J. Pharm. Biopharm.201812214615710.1016/j.ejpb.2017.10.01529079420
    [Google Scholar]
  53. ChandrashekarB.S. NandhiniT. VasanthV. SriramR. NavaleS. Topical minoxidil fortified with finasteride: An account of maintenance of hair density after replacing oral finasteride.Indian Dermatol. Online J.201561172010.4103/2229‑5178.14892525657911
    [Google Scholar]
  54. MaheY.F. ChenitiA. TacheauC. AntonelliR. Planard-LuongL. de BernardS. BuffatL. BarbaratP. Kanoun-CopyL. Low-level light therapy downregulates scalp inflammatory biomarkers in men with androgenetic alopecia and boosts minoxidil 2% to bring a sustainable hair regrowth activity.Lasers Surg. Med.20215391208121910.1002/lsm.2339833973663
    [Google Scholar]
  55. ZappacostaA.R. Reversal of baldness in patient receiving minoxidil for hypertension.N. Engl. J. Med.1980303251480148110.1056/NEJM1980121830325167432414
    [Google Scholar]
  56. LimasC.J. FreisE.D. Minoxidil in severe hypertension with renal failure.Am. J. Cardiol.197331335536110.1016/0002‑9149(73)90268‑34687850
    [Google Scholar]
  57. MehtaP.K. MamdaniB. ShanskyR.M. MahurkarS.D. DuneaG. Severe hypertension.JAMA1975233324925210.1001/jama.1975.032600300390181173832
    [Google Scholar]
  58. BodenW.E. KorrK.S. BoughE.W. Nifedipine-induced hypotension and myocardial ischemia in refractory angina pectoris.JAMA198525381131113510.1001/jama.1985.033503200550162857206
    [Google Scholar]
  59. WesterR.C. MaibachH.I. GuyR.H. NovakE. Minoxidil stimulates cutaneous blood flow in human balding scalps: Pharmacodynamics measured by laser Doppler velocimetry and photopulse plethysmography.J. Invest. Dermatol.198482551551710.1111/1523‑1747.ep122610846239893
    [Google Scholar]
  60. BunkerC.B. DowdP.M. Alterations in scalp blood flow after the epicutaneous application of 3% minoxidil and 0.1% hexyl nicotinate in alopecia.Br. J. Dermatol.1987117566866910.1111/j.1365‑2133.1987.tb07505.x3689690
    [Google Scholar]
  61. FangC.L. AljuffaliI.A. LiY.C. FangJ.Y. Delivery and targeting of nanoparticles into hair follicles.Ther. Deliv.201459991100610.4155/tde.14.6125375342
    [Google Scholar]
  62. MatosB.N. ReisT.A. GratieriT. GelfusoG.M. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles.Int. J. Biol. Macromol.20157522522910.1016/j.ijbiomac.2015.01.03625647618
    [Google Scholar]
  63. MarubayashiA. NakayaY. FukuiK. LiM. AraseS. Minoxidil-induced hair growth is mediated by adenosine in cultured dermal papilla cells: possible involvement of sulfonylurea receptor 2B as a target of minoxidil.J. Invest. Dermatol.200111761594160010.1046/j.0022‑202x.2001.01570.x11886528
    [Google Scholar]
  64. LopedotaA. DenoraN. LaquintanaV. CutrignelliA. LopalcoA. TricaricoD. MaqoudF. CurciA. MastrodonatoM. la ForgiaF. FontanaS. FrancoM. Alginate-based hydrogel containing minoxidil/hydroxypropyl-β-cyclodextrin inclusion complex for topical alopecia treatment.J. Pharm. Sci.201810741046105410.1016/j.xphs.2017.11.01629183744
    [Google Scholar]
  65. MaliN. DarandaleS. VaviaP. Niosomes as a vesicular carrier for topical administration of minoxidil: Formulation and in vitro assessment.Drug Deliv. Transl. Res.20133658759210.1007/s13346‑012‑0083‑125786376
    [Google Scholar]
  66. MuraS. ManconiM. SinicoC. ValentiD. FaddaA.M. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil.Int. J. Pharm.20093801-2727910.1016/j.ijpharm.2009.06.04019589377
    [Google Scholar]
  67. MuraS. ManconiM. ValentiD. SinicoC. VilaA.O. FaddaA.M. Transcutol containing vesicles for topical delivery of minoxidil.J. Drug Target.201119318919610.3109/1061186X.2010.48351620446805
    [Google Scholar]
  68. ZhaoY. BrownM.B. JonesS.A. The effects of particle properties on nanoparticle drug retention and release in dynamic minoxidil foams.Int. J. Pharm.20103831-227728410.1016/j.ijpharm.2009.09.02919772905
    [Google Scholar]
  69. UpritS. Kumar SahuR. RoyA. PareA. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia.Saudi Pharm. J.201321437938510.1016/j.jsps.2012.11.00524227958
    [Google Scholar]
  70. PadoisK. CantiéniC. BertholleV. BardelC. PirotF. FalsonF. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.Int. J. Pharm.2011416130030410.1016/j.ijpharm.2011.06.01421704140
    [Google Scholar]
  71. Blume-PeytaviU. MassoudyL. PatzeltA. LademannJ. DietzE. RasulevU. Garcia BartelsN. Follicular and percutaneous penetration pathways of topically applied minoxidil foam.Eur. J. Pharm. Biopharm.201076345045310.1016/j.ejpb.2010.06.01020600888
    [Google Scholar]
  72. LiaoA.H. LuY.J. LinY.C. ChenH.K. SytwuH.K. WangC.H. Effectiveness of a layer-by-layer microbubbles-based delivery system for applying minoxidil to enhance hair growth.Theranostics20166681782710.7150/thno.1493227162552
    [Google Scholar]
  73. LimS.H. KathuriaH. TanJ.J.Y. KangL. 3D printed drug delivery and testing systems-A passing fad or the future?Adv. Drug Deliv. Rev.201813213916810.1016/j.addr.2018.05.00629778901
    [Google Scholar]
  74. KathuriaH. LiH. PanJ. LimS.H. KochharJ.S. WuC. KangL. Large size microneedle patch to deliver lidocaine through skin.Pharm. Res.201633112653266710.1007/s11095‑016‑1991‑427401408
    [Google Scholar]
  75. KathuriaH. FongM.H.M. KangL. Fabrication of photomasks consisting microlenses for the production of polymeric microneedle array.Drug Deliv. Transl. Res.20155443845010.1007/s13346‑015‑0245‑z26208649
    [Google Scholar]
  76. KathuriaH. KochharJ.S. KangL. Micro and nanoneedles for drug delivery and biosensing. Ther. Deliv.201879489492
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673283413240116065844
Loading
/content/journals/cmc/10.2174/0109298673283413240116065844
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test