Skip to content
2000
Volume 32, Issue 21
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Diffuse midline gliomas (DMG) pose a grave threat as a malignant tumor primarily affecting children in the pons region. These tumors exhibit a distinct and heightened resistance to therapeutic interventions, coupled with exceptionally aggressive behavior.

Methods

In this study, we accessed DMG data from the Gene Expression Omnibus (GEO) database. Subsequently, we performed functional annotation and conducted pathway enrichment analysis as well as gene set enrichment analysis (GSEA). Constructing a protein-protein interaction (PPI) network, we identified pivotal hub genes. To evaluate the impact of these hub genes on immune infiltration, we employed the CIBERSORT algorithm. Furthermore, to bolster our findings, we conducted a single-cell analysis.

Results

Our findings indicate the involvement of CD8A, IL7R, and ICAM1 in immune responses targeting diverse immune cell types, such as T cells, neutrophils, NK cells, dendritic cells, T cells, and Macrophages M1. Additionally, the presence of immune checkpoints, including IDO1 and TIGIT, likely contributes to intratumoral immunosuppression, thereby fostering the development of an aggressive phenotype and resistance in pediatric DMG.

Conclusion

In conclusion, the collective findings of our study suggest the potential role of CD8A, IL7R, and ICAM1 as innovative biomarkers for diagnosing and prognosticating pediatric DMG. Moreover, these molecules hold promise as therapeutic targets in the management of this disease. The implications of our research underscore the importance of exploring these novel avenues for improved patient outcomes.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673280120240108045926
2024-01-12
2025-10-09
Loading full text...

Full text loading...

References

  1. LouisD.N. PerryA. ReifenbergerG. von DeimlingA. Figarella-BrangerD. CaveneeW.K. OhgakiH. WiestlerO.D. KleihuesP. EllisonD.W. The 2016 world health organization classification of tumors of the central nervous system: A summary.Acta Neuropathol.2016131680382010.1007/s00401‑016‑1545‑127157931
    [Google Scholar]
  2. LouisD.N. PerryA. WesselingP. BratD.J. CreeI.A. Figarella-BrangerD. HawkinsC. NgH.K. PfisterS.M. ReifenbergerG. SoffiettiR. von DeimlingA. EllisonD.W. The 2021 WHO classification of tumors of the central nervous system: A summary.Neuro-oncol.20212381231125110.1093/neuonc/noab10634185076
    [Google Scholar]
  3. NzwaloH. Espirito SantoV. PassosJ. NunesS. SalgadoD. Remission of pediatric diffuse intrinsic pontine glioma: Case report and review of the literature.J. Pediatr. Neurosci.20211611410.4103/jpn.JPN_85_2034316300
    [Google Scholar]
  4. WuG. BroniscerA. McEachronT.A. LuC. PaughB.S. BecksfortJ. QuC. DingL. HuetherR. ParkerM. ZhangJ. GajjarA. DyerM.A. MullighanC.G. GilbertsonR.J. MardisE.R. WilsonR.K. DowningJ.R. EllisonD.W. ZhangJ. BakerS.J. St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas.Nat. Genet.201244325125310.1038/ng.110222286216
    [Google Scholar]
  5. AjuyahP. MayohC. LauL.M.S. BarahonaP. WongM. ChambersH. Valdes-MoraF. SenapatiA. GiffordA.J. D’ArcyC. HansfordJ.R. ManoharanN. NichollsW. WilliamsM.M. WoodP.J. CowleyM.J. TyrrellV. HaberM. EkertP.G. ZieglerD.S. Khuong-QuangD.A. Histone H3-wild type diffuse midline gliomas with H3K27me3 loss are a distinct entity with exclusive EGFR or ACVR1 mutation and differential methylation of homeobox genes.Sci. Rep.2023131377510.1038/s41598‑023‑30395‑436882456
    [Google Scholar]
  6. CooneyT.M. LubanszkyE. PrasadR. HawkinsC. MuellerS. Diffuse midline glioma: Review of epigenetics.J. Neurooncol.20201501273410.1007/s11060‑020‑03553‑132804378
    [Google Scholar]
  7. LarsonJ.D. KasperL.H. PaughB.S. JinH. WuG. KwonC.H. FanY. ShawT.I. SilveiraA.B. QuC. XuR. ZhuX. ZhangJ. RussellH.R. PetersJ.L. FinkelsteinD. XuB. LinT. TinkleC.L. PatayZ. Onar-ThomasA. PoundsS.B. McKinnonP.J. EllisonD.W. ZhangJ. BakerS.J. Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression.Cancer Cell2019351140155.e710.1016/j.ccell.2018.11.01530595505
    [Google Scholar]
  8. QiJ. EsfahaniD.R. HuangT. OzarkP. BartomE. HashizumeR. BonnerE.R. AnS. HorbinskiC.M. JamesC.D. SaratsisA.M. Tenascin-C expression contributes to pediatric brainstem glioma tumor phenotype and represents a novel biomarker of disease.Acta Neuropathol. Commun.2019717510.1186/s40478‑019‑0727‑131092287
    [Google Scholar]
  9. LiJ. MaY.Y. FengJ. ZhaoD. DingF. TianL. ChenR. ZhaoR. Diffuse midline gliomas with H3K27 alteration in children: A clinicopathological analysis of forty-one cases.Zhonghua Bing Li Xue Za Zhi202251431932535359043
    [Google Scholar]
  10. RobisonN.J. KieranM.W. Diffuse intrinsic pontine glioma: A reassessment.J. Neurooncol.2014119171510.1007/s11060‑014‑1448‑824792486
    [Google Scholar]
  11. NikolaevA. FiveashJ.B. YangE.S. Combined targeting of mutant p53 and jumonji family histone demethylase augments therapeutic efficacy of radiation in H3K27M DIPG.Int. J. Mol. Sci.202021249010.3390/ijms2102049031940975
    [Google Scholar]
  12. KatagiH. LouisN. UnruhD. SasakiT. HeX. ZhangA. MaQ. PiuntiA. ShimazuY. LamanoJ.B. CarcabosoA.M. TianX. SeluanovA. GorbunovaV. LaurieK.L. KondoA. WadhwaniN.R. LullaR. GoldmanS. VennetiS. BecherO.J. ZouL. ShilatifardA. HashizumeR. Radiosensitization by histone H3 demethylase inhibition in diffuse intrinsic pontine glioma.Clin. Cancer Res.201925185572558310.1158/1078‑0432.CCR‑18‑389031227500
    [Google Scholar]
  13. WanY.C.E. LiuJ. ChanK.M. Histone H3 mutations in cancer.Curr. Pharmacol. Rep.20184429230010.1007/s40495‑018‑0141‑630101054
    [Google Scholar]
  14. MohammadF. WeissmannS. LeblancB. PandeyD.P. HøjfeldtJ.W. CometI. ZhengC. JohansenJ.V. RapinN. PorseB.T. TvardovskiyA. JensenO.N. OlacireguiN.G. LavarinoC. SuñolM. de TorresC. MoraJ. CarcabosoA.M. HelinK. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas.Nat. Med.201723448349210.1038/nm.429328263309
    [Google Scholar]
  15. FilbinM.G. TiroshI. HovestadtV. ShawM.L. EscalanteL.E. MathewsonN.D. NeftelC. FrankN. PeltonK. HebertC.M. HaberlerC. YizhakK. GojoJ. EgervariK. MountC. van GalenP. BonalD.M. NguyenQ.D. BeckA. SinaiC. CzechT. DorferC. GoumnerovaL. LavarinoC. CarcabosoA.M. MoraJ. MylvaganamR. LuoC.C. PeyrlA. PopovićM. AziziA. BatchelorT.T. FroschM.P. Martinez-LageM. KieranM.W. BandopadhayayP. BeroukhimR. FritschG. GetzG. Rozenblatt-RosenO. WucherpfennigK.W. LouisD.N. MonjeM. SlavcI. LigonK.L. GolubT.R. RegevA. BernsteinB.E. SuvàM.L. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq.Science2018360638633133510.1126/science.aao475029674595
    [Google Scholar]
  16. YangJ. NieJ. MaX. WeiY. PengY. WeiX. Targeting PI3K in cancer: Mechanisms and advances in clinical trials.Mol. Cancer20191812610.1186/s12943‑019‑0954‑x30782187
    [Google Scholar]
  17. RossJ.L. ChenZ. HertingC.J. GrabovskaY. SzulzewskyF. PuigdellosesM. MonterrozaL. SwitchenkoJ. WadhwaniN.R. CiminoP.J. MackayA. JonesC. ReadR.D. MacDonaldT.J. SchniederjanM. BecherO.J. HambardzumyanD. Platelet-derived growth factor beta is a potent inflammatory driver in paediatric high-grade glioma.Brain20211441536910.1093/brain/awaa38233300045
    [Google Scholar]
  18. GaoY. FangP. LiW.J. ZhangJ. WangG.P. JiangD.F. ChenF.P. LncRNA NEAT1 sponges miR-214 to regulate M2 macrophage polarization by regulation of B7-H3 in multiple myeloma.Mol. Immunol.2020117202810.1016/j.molimm.2019.10.02631731055
    [Google Scholar]
  19. MajznerR.G. RamakrishnaS. YeomK.W. PatelS. ChinnasamyH. SchultzL.M. RichardsR.M. JiangL. BarsanV. MancusiR. GeraghtyA.C. GoodZ. MochizukiA.Y. GillespieS.M. TolandA.M.S. MahdiJ. ReschkeA. NieE.H. ChauI.J. RotirotiM.C. MountC.W. BaggottC. MavroukakisS. EgelerE. MoonJ. EricksonC. GreenS. KunickiM. FujimotoM. EhlingerZ. ReynoldsW. KurraS. WarrenK.E. PrabhuS. VogelH. RasmussenL. CornellT.T. PartapS. FisherP.G. CampenC.J. FilbinM.G. GrantG. SahafB. DavisK.L. FeldmanS.A. MackallC.L. MonjeM. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas.Nature2022603790393494110.1038/s41586‑022‑04489‑435130560
    [Google Scholar]
  20. GieryngA. PszczolkowskaD. WalentynowiczK.A. RajanW.D. KaminskaB. Immune microenvironment of gliomas.Lab. Invest.201797549851810.1038/labinvest.2017.1928287634
    [Google Scholar]
  21. PriceG. BourasA. HambardzumyanD. HadjipanayisC.G. Current knowledge on the immune microenvironment and emerging immunotherapies in diffuse midline glioma.E.Bio.Medicine20216910345310.1016/j.ebiom.2021.10345334157482
    [Google Scholar]
  22. LinG.L. NagarajaS. FilbinM.G. SuvàM.L. VogelH. MonjeM. Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma.Acta Neuropathol. Commun.2018615110.1186/s40478‑018‑0553‑x29954445
    [Google Scholar]
  23. LiebermanN.A.P. DeGolierK. KovarH.M. DavisA. HoglundV. StevensJ. WinterC. DeutschG. FurlanS.N. VitanzaN.A. LearyS.E.S. CraneC.A. Characterization of the immune microenvironment of diffuse intrinsic pontine glioma: implications for development of immunotherapy.Neuro-oncol.2019211839410.1093/neuonc/noy14530169876
    [Google Scholar]
  24. OckC.Y. KeamB. KimS. LeeJ.S. KimM. KimT.M. JeonY.K. KimD.W. ChungD.H. HeoD.S. Pan-cancer immunogenomic perspective on the tumor microenvironment based on PD-L1 and CD8 T-cell infiltration.Clin. Cancer Res.20162292261227010.1158/1078‑0432.CCR‑15‑283426819449
    [Google Scholar]
  25. MaK. QiaoY. WangH. WangS. Comparative expression analysis of PD-1, PD-L1, and CD8A in lung adenocarcinoma.Ann. Transl. Med.2020822147810.21037/atm‑20‑648633313223
    [Google Scholar]
  26. NiuD. ChenY. MiH. MoZ. PangG. The epiphany derived from T-cell–inflamed profiles: Pan-cancer characterization of CD8A as a biomarker spanning clinical relevance, cancer prognosis, immunosuppressive environment, and treatment responses.Front. Genet.20221397441610.3389/fgene.2022.97441636035168
    [Google Scholar]
  27. LeiM. SiemersN.O. PandyaD. ChangH. SanchezT. HarbisonC. SzaboP.M. JanjigianY. OttP.A. SharmaP. BendellJ. EvansT.R.J. de BraudF. ChauI. BoydZ. Analyses of PD-L1 and inflammatory gene expression association with efficacy of nivolumab ± ipilimumab in gastric cancer/gastroesophageal junction cancer.Clin. Cancer Res.202127143926393510.1158/1078‑0432.CCR‑20‑279033782030
    [Google Scholar]
  28. ZhengZ. GuoY. HuangX. LiuJ. WangR. QiuX. LiuS. CD8A as a prognostic and immunotherapy predictive biomarker can be evaluated by MRI radiomics features in bladder cancer.Cancers20221419486610.3390/cancers1419486636230788
    [Google Scholar]
  29. ZhangL. YuH. XueY. LiuY. Decreased natural killer cells in diffuse intrinsic pontine glioma patients.Childs Nerv. Syst.20203671345134610.1007/s00381‑020‑04665‑932418048
    [Google Scholar]
  30. BoutilierA.J. ElsawaS.F. Macrophage polarization states in the tumor microenvironment.Int. J. Mol. Sci.20212213699510.3390/ijms2213699534209703
    [Google Scholar]
  31. AllavenaP. SicaA. SolinasG. PortaC. MantovaniA. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages.Crit. Rev. Oncol. Hematol.20086611910.1016/j.critrevonc.2007.07.00417913510
    [Google Scholar]
  32. PearsonC. SilvaA. SeddonB. Exogenous amino acids are essential for interleukin-7 induced CD8 T cell growth. [corrected].PLoS One201274e3399810.1371/journal.pone.003399822529903
    [Google Scholar]
  33. BarataJ.T. DurumS.K. SeddonB. Flip the coin: IL-7 and IL-7R in health and disease.Nat. Immunol.201920121584159310.1038/s41590‑019‑0479‑x31745336
    [Google Scholar]
  34. WangC. KongL. KimS. LeeS. OhS. JoS. JangI. KimT.D. The role of IL-7 and IL-7R in cancer pathophysiology and immunotherapy.Int. J. Mol. Sci.202223181041210.3390/ijms23181041236142322
    [Google Scholar]
  35. LumJ.J. SchneppleD.J. NieZ. Sanchez-DardonJ. MbisaG.L. MihowichJ. HawleyN. NarayanS. KimJ.E. LynchD.H. BadleyA.D. Differential effects of interleukin-7 and interleukin-15 on NK cell anti-human immunodeficiency virus activity.J. Virol.200478116033604210.1128/JVI.78.11.6033‑6042.200415141001
    [Google Scholar]
  36. KimuraM.Y. PobezinskyL.A. GuinterT.I. ThomasJ. AdamsA. ParkJ.H. TaiX. SingerA. IL-7 signaling must be intermittent, not continuous, during CD8+ T cell homeostasis to promote cell survival instead of cell death.Nat. Immunol.201314214315110.1038/ni.249423242416
    [Google Scholar]
  37. MazzucchelliR. DurumS.K. Interleukin-7 receptor expression: Intelligent design.Nat. Rev. Immunol.20077214415410.1038/nri202317259970
    [Google Scholar]
  38. WangX. ChangS. WangT. WuR. HuangZ. SunJ. LiuJ. YuY. MaoY. IL7R Is correlated with immune cell infiltration in the tumor microenvironment of lung adenocarcinoma.Front. Pharmacol.20221385728910.3389/fphar.2022.85728935264973
    [Google Scholar]
  39. EllsworthS. BalmanoukianA. KosF. NirschlC.J. NirschlT.R. GrossmanS.A. LuznikL. DrakeC.G. Sustained CD4 + T cell-driven lymphopenia without a compensatory IL-7/IL-15 response among high-grade glioma patients treated with radiation and temozolomide.OncoImmunology201431e2735710.4161/onci.2735724790790
    [Google Scholar]
  40. FritzellS. EberstålS. SandénE. VisseE. DarabiA. SiesjöP. IFNγ in combination with IL-7 enhances immunotherapy in two rat glioma models.J. Neuroimmunol.20132581-2919510.1016/j.jneuroim.2013.02.01723528658
    [Google Scholar]
  41. FrohmanE.M. van den NoortS. GuptaS. Astrocytes and intracerebral immune responses.J. Clin. Immunol.1989911910.1007/BF009171212649507
    [Google Scholar]
  42. ScholzD. DevauxB. HircheA. PötzschB. KroppB. SchaperW. SchaperJ. Expression of adhesion molecules is specific and time-dependent in cytokine-stimulated endothelial cells in culture.Cell Tissue Res.1996284341542310.1007/s0044100506028646761
    [Google Scholar]
  43. KesanakurtiD. ChettyC. Rajasekhar MaddirelaD. GujratiM. RaoJ.S. Essential role of cooperative NF-κB and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma.Oncogene201332435144515510.1038/onc.2012.54623178493
    [Google Scholar]
  44. LinJ.C. TsaiJ.T. ChaoT.Y. MaH.I. LiuW.H. Musashi-1 enhances glioblastoma migration by promoting ICAM1 translation.Neoplasia201921545946810.1016/j.neo.2019.02.00630959276
    [Google Scholar]
  45. RamosT.N. BullardD.C. BarnumS.R. ICAM-1: Isoforms and phenotypes.J. Immunol.2014192104469447410.4049/jimmunol.140013524795464
    [Google Scholar]
  46. MaedaK. KangS.M. SawadaT. NishiguchiY. YashiroM. OgawaY. OhiraM. IshikawaT. Hirakawa-YS ChungK. Expression of intercellular adhesion molecule-1 and prognosis in colorectal cancer.Oncol. Rep.20029351151410.3892/or.9.3.51111956618
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673280120240108045926
Loading
/content/journals/cmc/10.2174/0109298673280120240108045926
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test