Skip to content
2000
Volume 32, Issue 20
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Objective

Aptamers are increasingly applied in cancer research. Here, we have performed the first bibliometric analysis to demonstrate the evolution of aptamers in cancer research over the past decade and to reveal future trends.

Methods

Original articles and reviews on aptamers in cancer research published from 2013 to 2022 were retrieved from the Web of Science Core Collection database. VOSviewer, CiteSpace, and R software were used for bibliometric analysis of the literature and visualization of the results.

Results

A total of 1627 eligible publications were analyzed. Annual and cumulative publications have been found to be steadily increased. China was the most productive country (884 publications) and Hunan University was the most productive institution (97 publications). The United States had the highest level of international collaboration (betweenness centrality = 0.55). Wei-Hong Tan was the most productive author (68 publications) and Craig Tuerk was the most cited author (387 citations). Analytical Chemistry and Biosensors and Bioelectronics were the most influential journals in this field. Three major themes were identified: aptamer selection techniques, aptamer-targeted drug delivery, and aptasensors for cancer detection. The research hotspots have shifted from aptamer selection, targeted drug delivery, molecular imaging, and biomarker detection to electrochemical aptasensors and therapeutic applications. The future may focus on high specificity and affinity in aptamer selection, aptasensor fabrication, aptamer-targeted drug delivery, and therapeutic aptamer development.

Conclusion

The field of aptamers in cancer research has been steadily developing over the past decade, and future research may focus on aptamer application in cancer detection and therapy and the improvement of aptamer selection.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673280993240125091756
2024-02-14
2025-10-23
Loading full text...

Full text loading...

References

  1. RosatiD. GiordanoA. Single-cell RNA sequencing and bioinformatics as tools to decipher cancer heterogenicity and mechanisms of drug resistance.Biochem. Pharmacol.202219511481110.1016/j.bcp.2021.11481134673017
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. de VisserK.E. JoyceJ.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.Cancer Cell202341337440310.1016/j.ccell.2023.02.01636917948
    [Google Scholar]
  4. TsimberidouA.M. FountzilasE. NikanjamM. KurzrockR. Review of precision cancer medicine: Evolution of the treatment paradigm.Cancer Treat. Rev.20208610201910.1016/j.ctrv.2020.10201932251926
    [Google Scholar]
  5. LiT. HeY. ZhongQ. YuJ. ChenX. Advances in treatment models of advanced gastric cancer.Technol. Cancer Res. Treat.2022211533033822109035310.1177/1533033822109035336780331
    [Google Scholar]
  6. ShahS.N.A. ParveenR. An extensive review on lung cancer diagnosis using machine learning techniques on radiological data: State-of-the-art and perspectives.Arch. Comput. Methods Eng.20233084917493010.1007/s11831‑023‑09964‑3
    [Google Scholar]
  7. AhmadS. RazaK. Identification of 5-nitroindazole as a multitargeted inhibitor for CDK and transferase kinase in lung cancer: A multisampling algorithm-based structural study.Mol. Divers.202310.1007/s11030‑023‑10648‑037058176
    [Google Scholar]
  8. AhmadS. SinghV. GautamH.K. RazaK. Multisampling-based docking reveals Imidazolidinyl urea as a multitargeted inhibitor for lung cancer: An optimisation followed multi-simulation and in vitro study.J. Biomol. Struct. Dyn.202311810.1080/07391102.2023.220967337154501
    [Google Scholar]
  9. LiH. ZhangH. ZhangH. WangY. WangX. HouH. Survival of gastric cancer in China from 2000 to 2022: A nationwide systematic review of hospital-based studies.J. Glob. Health2022121101410.7189/jogh.12.1101436527356
    [Google Scholar]
  10. Rao BommiJ. KummariS. LakavathK. SukumaranR.A. PanickerL.R. MartyJ.L. Yugender GoudK. Recent trends in biosensing and diagnostic methods for novel cancer biomarkers.Biosensors202313339810.3390/bios1303039836979610
    [Google Scholar]
  11. EllingtonA.D. SzostakJ.W. In vitro selection of RNA molecules that bind specific ligands.Nature1990346628781882210.1038/346818a01697402
    [Google Scholar]
  12. TuerkC. GoldL. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase.Science1990249496850551010.1126/science.22001212200121
    [Google Scholar]
  13. NiS. ZhuoZ. PanY. YuY. LiF. LiuJ. WangL. WuX. LiD. WanY. ZhangL. YangZ. ZhangB.T. LuA. ZhangG. Recent progress in aptamer discoveries and modifications for therapeutic applications.ACS Appl. Mater. Interfaces20211389500951910.1021/acsami.0c0575032603135
    [Google Scholar]
  14. Arshavsky-GrahamS. HeuerC. JiangX. SegalE. Aptasensors versus immunosensors-Which will prevail?Eng. Life Sci.2022223-431933310.1002/elsc.20210014835382545
    [Google Scholar]
  15. ZhangB. WangC. DuY. PaxtonR. HeX. A ‘smart’ aptamer-functionalized continuous label-free cell catch-transport-release system.J. Mater. Chem. B Mater. Biol. Med.20219357196720410.1039/D1TB00739D34291267
    [Google Scholar]
  16. ZhouQ. XuZ. LiuZ. Molecularly imprinting-aptamer techniques and their applications in molecular recognition.Biosensors202212857610.3390/bios1208057636004972
    [Google Scholar]
  17. ZhangH. WangZ. XieL. ZhangY. DengT. LiJ. LiuJ. XiongW. ZhangL. ZhangL. PengB. HeL. YeM. HuX. TanW. Molecular recognition and in-vitro-targeted inhibition of renal cell carcinoma using a DNA Aptamer.Mol. Ther. Nucleic Acids20181275876810.1016/j.omtn.2018.07.01530141409
    [Google Scholar]
  18. LiJ. DongC. GanH. GuX. ZhangJ. ZhuY. XiongJ. SongC. WangL. Nondestructive separation/enrichment and rolling circle amplification-powered sensitive SERS enumeration of circulating tumor cells via aptamer recognition.Biosens. Bioelectron.202323111527310.1016/j.bios.2023.11527337054599
    [Google Scholar]
  19. WangL. LiangH. SunJ. LiuY. LiJ. LiJ. LiJ. YangH. Bispecific aptamer induced artificial protein-pairing: A strategy for selective inhibition of receptor function.J. Am. Chem. Soc.201914132126731268110.1021/jacs.9b0512331381313
    [Google Scholar]
  20. ChenS. XuZ. YangW. LinX. LiJ. LiJ. YangH. Logic-gate-actuated DNA-controlled receptor assembly for the programmable modulation of cellular signal transduction.Angew. Chem. Int. Ed.20195850181861819010.1002/anie.20190897131595614
    [Google Scholar]
  21. HamamotoJ. YasudaH. NonakaY. FujiwaraM. NakamuraY. SoejimaK. BetsuyakuT. The FGF2 aptamer inhibits the growth of FGF2-FGFR pathway driven lung cancer cells.Biochem. Biophys. Res. Commun.201850331330133410.1016/j.bbrc.2018.07.04430005872
    [Google Scholar]
  22. Klett-MingoJ.I. Pinto-DíezC. Cambronero-PlazaJ. Carrión-MarchanteR. Barragán-UseroM. Pérez-MorgadoM.I. Rodríguez-MartínE. Toledo-LoboM.V. GonzálezV.M. MartínM.E. Potential therapeutic use of aptamers against HAT1 in lung cancer.Cancers202215122710.3390/cancers1501022736612223
    [Google Scholar]
  23. ChenY. LinJ.S. The application of aptamer in apoptosis.Biochimie20171321810.1016/j.biochi.2016.10.00827750037
    [Google Scholar]
  24. GiudiceV. MensitieriF. IzzoV. FilippelliA. SelleriC. Aptamers and antisense oligonucleotides for diagnosis and treatment of hematological diseases.Int. J. Mol. Sci.2020219325210.3390/ijms2109325232375354
    [Google Scholar]
  25. HuangZ. NiuL. Developing RNA aptamers for potential treatment of neurological diseases.Future Med. Chem.201911655156510.4155/fmc‑2018‑036430912676
    [Google Scholar]
  26. MoT. LiuX. LuoY. ZhongL. ZhangZ. LiT. GanL. LiuX. LiL. WangH. SunX. FanD. QianZ. WuP. ChenX. Aptamer-based biosensors and application in tumor theranostics.Cancer Sci.2022113171610.1111/cas.1519434747552
    [Google Scholar]
  27. HianikT. Advances in electrochemical and acoustic aptamer-based biosensors and immunosensors in diagnostics of Leukemia.Biosensors202111617710.3390/bios1106017734073054
    [Google Scholar]
  28. GaoF. YinJ. ChenY. GuoC. HuH. SuJ. Recent advances in aptamer-based targeted drug delivery systems for cancer therapy.Front. Bioeng. Biotechnol.20221097293310.3389/fbioe.2022.97293336051580
    [Google Scholar]
  29. HeF. WenN. XiaoD. YanJ. XiongH. CaiS. LiuZ. LiuY. Aptamer-based targeted drug delivery systems: Current potential and challenges.Curr. Med. Chem.202027132189221910.2174/092986732566618100814283130295183
    [Google Scholar]
  30. HeS. DuY. TaoH. DuanH. Advances in aptamer-mediated targeted delivery system for cancer treatment.Int. J. Biol. Macromol.202323812417310.1016/j.ijbiomac.2023.12417336965552
    [Google Scholar]
  31. ZhaoX. DaiX. ZhaoS. CuiX. GongT. SongZ. MengH. ZhangX. YuB. Aptamer-based fluorescent sensors for the detection of cancer biomarkers.Spectrochim. Acta A Mol. Biomol. Spectrosc.202124711903810.1016/j.saa.2020.11903833120124
    [Google Scholar]
  32. WuL. WangY. XuX. LiuY. LinB. ZhangM. ZhangJ. WanS. YangC. TanW. Aptamer-based detection of circulating targets for precision medicine.Chem. Rev.202112119120351210510.1021/acs.chemrev.0c0114033667075
    [Google Scholar]
  33. AlnaimiA. Al-HamryA. MakablehY. AdirajuA. KanounO. Gold nanoparticles-MWCNT based aptasensor for early diagnosis of prostate cancer.Biosensors20221212113010.3390/bios1212113036551097
    [Google Scholar]
  34. ShigdarS. SchrandB. GiangrandeP.H. de FranciscisV. Aptamers: Cutting edge of cancer therapies.Mol. Ther.20212982396241110.1016/j.ymthe.2021.06.01034146729
    [Google Scholar]
  35. LiZ. FuX. HuangJ. ZengP. HuangY. ChenX. LiangC. Advances in screening and development of therapeutic aptamers against cancer cells.Front. Cell Dev. Biol.2021966279110.3389/fcell.2021.66279134095130
    [Google Scholar]
  36. AbrahamT. McGovernC.O. LintonS.S. WilczynskiZ. AdairJ.H. MattersG.L. Aptamer-targeted calcium phosphosilicate nanoparticles for effective imaging of pancreatic and prostate cancer.Int. J. Nanomedicine2021162297230910.2147/IJN.S29574033776434
    [Google Scholar]
  37. KimD.H. SeoJ.M. ShinK.J. YangS.G. Design and clinical developments of aptamer-drug conjugates for targeted cancer therapy.Biomater. Res.20212514210.1186/s40824‑021‑00244‑434823601
    [Google Scholar]
  38. Pinto-DíezC. Ferreras-MartínR. Carrión-MarchanteR. Klett-MingoJ.I. García-HernándezM. Pérez-MorgadoM.I. SacristánS. BarragánM. Seijo-VilaM. TundidorI. Blasco-BenitoS. Pérez-GómezE. Gómez-PintoI. SánchezC. GonzálezC. GonzálezV.M. MartínM.E. An optimized MNK1b aptamer, apMNKQ2, and its potential use as a therapeutic agent in breast cancer.Mol. Ther. Nucleic Acids20223055356810.1016/j.omtn.2022.11.00936457699
    [Google Scholar]
  39. LiL. WanJ. WenX. GuoQ. JiangH. WangJ. RenY. WangK. Identification of a new DNA aptamer by tissue-SELEX for cancer recognition and imaging.Anal. Chem.202193197369737710.1021/acs.analchem.1c0144533960774
    [Google Scholar]
  40. AnimeshS. SinghY.D. A comprehensive study on aptasensors for cancer diagnosis.Curr. Pharm. Biotechnol.20212281069108410.2174/138920102199920091815272132957883
    [Google Scholar]
  41. PritchardA. Statistical bibliography or bibliometrics?J. Doc.196925348349
    [Google Scholar]
  42. DonthuN. KumarS. MukherjeeD. PandeyN. LimW.M. How to conduct a bibliometric analysis: An overview and guidelines.J. Bus. Res.202113328529610.1016/j.jbusres.2021.04.070
    [Google Scholar]
  43. ArrudaH. SilvaE.R. LessaM. ProençaD.Jr BartholoR. VOSviewer and bibliometrix.J. Med. Libr. Assoc.2022110339239510.5195/jmla.2022.143436589296
    [Google Scholar]
  44. ChenC. LeydesdorffL. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis.J. Assoc. Inf. Sci. Technol.201465233435110.1002/asi.22968
    [Google Scholar]
  45. ZhouJ. RossiJ. Aptamers as targeted therapeutics: Current potential and challenges.Nat. Rev. Drug Discov.201716318120210.1038/nrd.2016.19927807347
    [Google Scholar]
  46. SongY. ZhuZ. AnY. ZhangW. ZhangH. LiuD. YuC. DuanW. YangC.J. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture.Anal. Chem.20138584141414910.1021/ac400366b23480100
    [Google Scholar]
  47. SefahK. ShangguanD. XiongX. O’DonoghueM.B. TanW. Development of DNA aptamers using Cell-SELEX.Nat. Protoc.2010561169118510.1038/nprot.2010.6620539292
    [Google Scholar]
  48. SunY. GengX. MaY. QinY. HuS. XieY. WangR. Artificial base-directed in vivo formulation of aptamer-drug conjugates with albumin for long circulation and targeted delivery.Pharmaceutics20221412278110.3390/pharmaceutics1412278136559275
    [Google Scholar]
  49. WuX. TaiZ. ZhuQ. FanW. DingB. ZhangW. ZhangL. YaoC. WangX. DingX. LiQ. LiX. LiuG. LiuJ. GaoS. Study on the prostate cancer-targeting mechanism of aptamer-modified nanoparticles and their potential anticancer effect in vivo.Int. J. Nanomedicine201495431544025473281
    [Google Scholar]
  50. YanR. LuN. HanS. LuZ. XiaoY. ZhaoZ. ZhangM. Simultaneous detection of dual biomarkers using hierarchical MoS2 nanostructuring and nano-signal amplification-based electrochemical aptasensor toward accurate diagnosis of prostate cancer.Biosens. Bioelectron.202219711379710.1016/j.bios.2021.11379734818600
    [Google Scholar]
  51. CamoraniS. PassarielloM. AgnelloL. EspositoS. CollinaF. CantileM. Di BonitoM. UlasovI.V. FedeleM. ZannettiA. De LorenzoC. CerchiaL. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer.J. Exp. Clin. Cancer Res.202039118010.1186/s13046‑020‑01694‑932892748
    [Google Scholar]
  52. BatesP.J. LaberD.A. MillerD.M. ThomasS.D. TrentJ.O. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer.Exp. Mol. Pathol.200986315116410.1016/j.yexmp.2009.01.00419454272
    [Google Scholar]
  53. DassieJ.P. LiuX. ThomasG.S. WhitakerR.M. ThielK.W. StockdaleK.R. MeyerholzD.K. McCaffreyA.P. McNamaraJ.O.II GiangrandeP.H. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors.Nat. Biotechnol.200927983984610.1038/nbt.156019701187
    [Google Scholar]
  54. TangL. HuangM. ZhangM. PeiY. LiuY. WeiY. YangC. XieT. ZhangD. ZhouR. SongY. SongJ. De novo evolution of an antibody-mimicking multivalent aptamer via a DNA framework.Small Methods202376230032710.1002/smtd.20230032737086150
    [Google Scholar]
  55. ShangguanD. LiY. TangZ. CaoZ.C. ChenH.W. MallikaratchyP. SefahK. YangC.J. TanW. Aptamers evolved from live cells as effective molecular probes for cancer study.Proc. Natl. Acad. Sci.200610332118381184310.1073/pnas.060261510316873550
    [Google Scholar]
  56. RosenbergJ.E. BamburyR.M. Van AllenE.M. DrabkinH.A. LaraP.N.Jr HarzstarkA.L. WagleN. FiglinR.A. SmithG.W. GarrawayL.A. ChoueiriT. ErlandssonF. LaberD.A. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma.Invest. New Drugs201432117818710.1007/s10637‑013‑0045‑624242861
    [Google Scholar]
  57. PariharA. SinghalA. KumarN. KhanR. KhanM.A. SrivastavaA.K. Next-generation intelligent mxene-based electrochemical aptasensors for point-of-care cancer diagnostics.Nano-Micro Lett.202214110010.1007/s40820‑022‑00845‑135403935
    [Google Scholar]
  58. SchutterM.S. HicksC.C. Speaking across boundaries to explore the potential for interdisciplinarity in ecosystem services knowledge production.Conserv. Biol.20213541198120910.1111/cobi.1365933084137
    [Google Scholar]
  59. LiY. LiT. ChenH. WangL. XiaY. ZhangL. XieY. LiJ. LuoC. XuY. LiuY. TanW. Engineering AND-gate aptamer-signal base conjugates for targeted magnetic resonance molecular imaging of metastatic cancer.ACS Appl. Mater. Interfaces20221415170321704110.1021/acsami.1c2404835410471
    [Google Scholar]
  60. ChangY.M. DonovanM.J. TanW. Using aptamers for cancer biomarker discovery.J. Nucleic Acids201320131710.1155/2013/81735023401749
    [Google Scholar]
  61. KinghornA. FraserL. LiangS. ShiuS. TannerJ. Aptamer bioinformatics.Int. J. Mol. Sci.20171812251610.3390/ijms1812251629186809
    [Google Scholar]
  62. YanJ. XiongH. CaiS. WenN. HeQ. LiuY. PengD. LiuZ. Advances in aptamer screening technologies.Talanta201920012414410.1016/j.talanta.2019.03.01531036165
    [Google Scholar]
  63. ZhuoZ. YuY. WangM. LiJ. ZhangZ. LiuJ. WuX. LuA. ZhangG. ZhangB. Recent advances in SELEX technology and aptamer applications in biomedicine.Int. J. Mol. Sci.20171810214210.3390/ijms1810214229036890
    [Google Scholar]
  64. MendonsaS.D. BowserM.T. In vitro evolution of functional DNA using capillary electrophoresis.J. Am. Chem. Soc.20041261202110.1021/ja037832s14709039
    [Google Scholar]
  65. EatonR.M. ShallcrossJ.A. MaelL.E. MearsK.S. MinkoffL. ScovilleD.J. WhelanR.J. Selection of DNA aptamers for ovarian cancer biomarker HE4 using CE-SELEX and high-throughput sequencing.Anal. Bioanal. Chem.2015407236965697310.1007/s00216‑015‑8665‑725863801
    [Google Scholar]
  66. YaoJ. FengJ. GaoX. WeiD. KangT. ZhuQ. JiangT. WeiX. ChenJ. Neovasculature and circulating tumor cells dual-targeting nanoparticles for the treatment of the highly-invasive breast cancer.Biomaterials201711311710.1016/j.biomaterials.2016.10.03327794222
    [Google Scholar]
  67. ZhangY. XieX. YeganehP.N. LeeD.J. Valle-GarciaD. Meza-SosaK.F. JunqueiraC. SuJ. LuoH.R. HideW. LiebermanJ. Immunotherapy for breast cancer using EpCAM aptamer tumor-targeted gene knockdown.Proc. Natl. Acad. Sci.20211189e202283011810.1073/pnas.202283011833627408
    [Google Scholar]
  68. MohanB. DhimanD. Virender Mehak Priyanka SunQ. JanM. SinghG. RaghavN. Metal-organic frameworks (MOFs) structural properties and electrochemical detection capability for cancer biomarkers.Microchem. J.202319310895610.1016/j.microc.2023.108956
    [Google Scholar]
  69. MohanB. KumarS. KumarV. JiaoT. SharmaH.K. ChenQ. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers.Trends Analyt. Chem.202215711673510.1016/j.trac.2022.116735
    [Google Scholar]
  70. MohanB. KumarS. XiH. MaS. TaoZ. XingT. YouH. ZhangY. RenP. Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection.Biosens. Bioelectron.202219711373810.1016/j.bios.2021.11373834740120
    [Google Scholar]
  71. MohanB. KumarS. KumarS. ModiK. TyagiD. PapukashviliD. RcheulishviliN. PombeiroA.J.L. Nanomaterials for miRNA detection: The hybridization chain reaction strategy.Sensor. Diagnost.202321788910.1039/D2SD00209D
    [Google Scholar]
  72. CrosbyD. BhatiaS. BrindleK.M. CoussensL.M. DiveC. EmbertonM. EsenerS. FitzgeraldR.C. GambhirS.S. KuhnP. RebbeckT.R. BalasubramanianS. Early detection of cancer.Science20223756586eaay904010.1126/science.aay904035298272
    [Google Scholar]
  73. OmageJ.I. EasterdayE. RumphJ.T. BrulaI. HillB. KristensenJ. HaD.T. GalindoC.L. DanquahM.K. SimsN. NguyenV.T. Cancer diagnostics and early detection using electrochemical aptasensors.Micromachines202213452210.3390/mi1304052235457828
    [Google Scholar]
  74. MehdipourG. Shabani ShayehJ. OmidiM. Pour MadadiM. YazdianF. TayebiL. An electrochemical aptasensor for detection of prostate-specific antigen using reduced graphene gold nanocomposite and Cu/carbon quantum dots.Biotechnol. Appl. Biochem.20226952102211110.1002/bab.227134632622
    [Google Scholar]
  75. ZahraQ. KhanQ.A. LuoZ. Advances in optical aptasensors for early detection and diagnosis of various cancer types.Front. Oncol.20211163216510.3389/fonc.2021.63216533718215
    [Google Scholar]
  76. NakhjavaniM. A flow cytometry-based cell surface protein binding assay for assessing selectivity and specificity of an anticancer aptamer.J. Vis. Exp.2022187e64304
    [Google Scholar]
  77. LiuW.T. LeeW.B. TsaiY.C. ChuangY.J. HsuK.F. LeeG.B. An automated microfluidic system for selection of aptamer probes against ovarian cancer tissues.Biomicrofluidics201913101411410.1063/1.508513330867884
    [Google Scholar]
  78. JiaL. Bioinspired nano-plate-coral platform enabled efficient detection of circulating tumor cells via the synergistic capture of multivalent aptamer and tumor cell membrane.J. Colloid. Interface Sci.2023631Pt B556510.1016/j.jcis.2022.11.019
    [Google Scholar]
  79. MoutsiopoulouA. BroylesD. DikiciE. DaunertS. DeoS.K. Molecular aptamer beacons and their applications in sensing, imaging, and diagnostics.Small20191535190224810.1002/smll.20190224831313884
    [Google Scholar]
  80. HanifS. LiuH.L. AhmedS.A. YangJ.M. ZhouY. PangJ. JiL.N. XiaX.H. WangK. Nanopipette-based sers aptasensor for subcellular localization of cancer biomarker in single cells.Anal. Chem.201789189911991710.1021/acs.analchem.7b0214728825473
    [Google Scholar]
  81. LiuY.C. KumarK. WuC.H. ChangK.C. ChiangC.K. HoY.P. Selective capture and identification of methicillin-resistant staphylococcus aureus by combining aptamer-modified magnetic nanoparticles and mass spectrometry.Int. J. Mol. Sci.20212212657110.3390/ijms2212657134207373
    [Google Scholar]
  82. FuZ. XiangJ. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy.Int. J. Mol. Sci.20202123912310.3390/ijms2123912333266216
    [Google Scholar]
  83. AnastasiadouE. JacobL.S. SlackF.J. Non-coding RNA networks in cancer.Nat. Rev. Cancer201818151810.1038/nrc.2017.9929170536
    [Google Scholar]
  84. TaiZ. MaJ. DingJ. PanH. ChaiR. ZhuC. CuiZ. ChenZ. ZhuQ. Aptamer-functionalized dendrimer delivery of plasmid-encoding lncRNA MEG3 enhances gene therapy in castration-resistant prostate cancer.Int. J. Nanomedicine202015103051032010.2147/IJN.S28210733376323
    [Google Scholar]
  85. WangH. ZengJ. HuangJ. ChengH. ChenB. HuX. HeX. ZhouY. WangK. A self-serviced-track 3D DNA walker for ultrasensitive detection of tumor exosomes by glycoprotein profiling.Angew. Chem. Int. Ed.20226119e20211693210.1002/anie.20211693235199894
    [Google Scholar]
  86. HaßelS.K. MayerG. Aptamers as therapeutic agents: Has the initial euphoria subsided?Mol. Diagn. Ther.201923330130910.1007/s40291‑019‑00400‑631037641
    [Google Scholar]
  87. Kumar KulabhusanP. HussainB. YüceM. Current perspectives on aptamers as diagnostic tools and therapeutic agents.Pharmaceutics202012764610.3390/pharmaceutics1207064632659966
    [Google Scholar]
  88. RöthlisbergerP. HollensteinM. Aptamer chemistry.Adv. Drug Deliv. Rev.201813432110.1016/j.addr.2018.04.00729626546
    [Google Scholar]
  89. BertocchiG. GambardellaA. JappelliT. NappiC.A. PeracchiF. Bibliometric evaluation vs. informed peer review: Evidence from Italy.Res. Policy201544245146610.1016/j.respol.2014.08.004
    [Google Scholar]
  90. ChenC. System and method for automatically generating systematic reviews of a scientific field.U.S. Patent 8566360B22013
  91. van EckN.J. WaltmanL. Software survey: VOSviewer, a computer program for bibliometric mapping.Scientometrics201084252353810.1007/s11192‑009‑0146‑320585380
    [Google Scholar]
  92. TeamS. Science of Science (Sci2) Tool.2009Available from:https://sci2.cns.iu.edu
  93. GarfieldE. PudovkinA.I. The HistCite System for Mapping and Bibliometric Analysis of the Output of Searches Using the ISI Web of Knowledge.School Age Review2012
    [Google Scholar]
  94. ThorA. MarxW. LeydesdorffL. BornmannL. Introducing citedreferencesexplorer (CRExplorer): A program for reference publication year spectroscopy with cited references standardization.J. Informetrics201610250351510.1016/j.joi.2016.02.005
    [Google Scholar]
  95. RohilaN. SinghB. Manual on bibexcel: A tool for bibliometrics analysis.2022Available from:https://www.researchgate.net/publication/360809327_MANUAL_ON_BIBEXCEL_A_TOOL_FOR_BIBLIOMETRICS_ANALYSIS
  96. van EckN.J. WaltmanL. CitNetExplorer: A new software tool for analyzing and visualizing citation networks.J. Informetrics20148480282310.1016/j.joi.2014.07.006
    [Google Scholar]
  97. MrvarA. BatageljV. Analysis and visualization of large networks with program package Pajek.Comp. Adapt. Syst. Model.201641610.1186/s40294‑016‑0017‑8
    [Google Scholar]
  98. BastianM. HeymannS. JacomyM. Gephi: An open source software for exploring and manipulating networks.Proc. Int. AAAI Conf. Web Social Media.20093136136210.1609/icwsm.v3i1.13937
    [Google Scholar]
  99. AriaM. CuccurulloC. Bibliometrix: An R-tool for comprehensive science mapping analysis.J. Informetrics201711495997510.1016/j.joi.2017.08.007
    [Google Scholar]
  100. McLeveyJ. McIlroy-YoungR. Introducing metaknowledge : Software for computational research in information science, network analysis, and science of science.J. Informetrics201711117619710.1016/j.joi.2016.12.005
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673280993240125091756
Loading
/content/journals/cmc/10.2174/0109298673280993240125091756
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test