Skip to content
2000
Volume 32, Issue 20
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Organoselenium (OSe) agents and Schiff bases have demonstrated immense potential in the pharmaceutical field due to their broad spectrum of medicinal activities.

Methods

We herein report the antitumor activities of bis diselenide-based Schiff bases (-) derived from bis(4-aminophenyl)diselenide and organoselenide-based Schiff bases () derived from -(methylselanyl)phenyl amine (). The antitumor activity was estimated against fifteen cancer cell lines. Also, the growth inhibition percentage (GI%) of the Schiff bases tethered OSe compounds was evaluated against two normal cell lines, namely, human skin fibroblasts (HSF) and olfactory ensheathing cell line (OEC), to estimate the potential safety and selectivity. Furthermore, the cytotoxic inhibitory concentration 50 (IC) was assessed against the cancer cell lines with the most outstanding GI% using the SRB assay.

Results

Compounds , , , and showed the lowest IC values compared to those of doxorubicin (DOX) against HCT, HEPG2, A549, MDA-MB-468, and FaDu cancer cell lines, respectively, especially against the HCT subtype, assuring their potential anticancer activity. On the other side, the apoptotic potentials of the most active compounds (, , , and ) were also evaluated for apoptosis-related genes (P53, BAX, caspases 3, 6, 8, and 9, MMP2, MMP9, and BCL-2). Interestingly, compounds , , , and upregulated P53, BAX, and caspases 3, 6, 8, and 9 by (2.66, 2.26, 2.44, and 2.57)-, (1.62, 1.52, 1.37, and 1.47)-, (1.87, 1.75, 2.02, and 1.75)-, (1.96, 1.74, 2.06, and 2.30)-, (4.25, 3.78, 3.53, and 3.96)-, and (2.04, 1.72, 1.90, and 1.63)-fold change, respectively. Furthermore, MMP2, MMP9, and BCL-2 were downregulated by (0.39, 0.51, 0.33, and 0.28)-, (0.29, 0.32, 0.37, and 0.41)-, and (0.42, 0.35, 0.29, and 0.38)-fold-change, upon treatment with compounds , , , and , respectively, assuring the apoptotic potentials. Finally, molecular docking also greatly recommends the potential activity of the examined candidates (especially and ) against the GSTP1 receptor as a recommended mechanism for their antitumor activity.

Conclusion

Our findings point to significant anticancer activities of Schiff bases tethered OSe agents, suggesting their promising potential for development as effective anticancer drugs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673319340240809104237
2024-08-12
2025-10-23
Loading full text...

Full text loading...

References

  1. ComptonC.C. Colorectal carcinoma: Diagnostic, prognostic, and molecular features.Mod. Pathol.200316437638810.1097/01.MP.0000062859.46942.9312692203
    [Google Scholar]
  2. SiegelR.L. WagleN.S. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2023.CA Cancer J. Clin.202373323325410.3322/caac.2177236856579
    [Google Scholar]
  3. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  4. VarinelliL. BattistessaD. GuaglioM. ZanuttoS. IllescasO. LorencE.J. PisatiF. KusamuraS. CattaneoL. SabellaG. MilioneM. PerbelliniA. NociS. PaolinoC. KuhnE. GalassiM. CavalleriT. DeracoM. GariboldiM. BarattiD. Colorectal carcinoma peritoneal metastases-derived organoids: Results and perspective of a model for tailoring hyperthermic intraperitoneal chemotherapy from bench-to-bedside.J. Exp. Clin. Cancer Res.202443113210.1186/s13046‑024‑03052‑538698446
    [Google Scholar]
  5. XiaC. DongX. LiH. CaoM. SunD. HeS. YangF. YanX. ZhangS. LiN. ChenW. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants.Chin. Med. J.2022135558459010.1097/CM9.000000000000210835143424
    [Google Scholar]
  6. BevinakoppamathS. Saleh AhmedA.M. RamachandraS.C. VishwanathP. PrashantA. Chemopreventive and anticancer property of selenoproteins in obese breast cancer.Front. Pharmacol.20211261817210.3389/fphar.2021.61817233935708
    [Google Scholar]
  7. GackowskiD. BanaszkiewiczZ. RozalskiR. JawienA. OlinskiR. Persistent oxidative stress in colorectal carcinoma patients.Int. J. Cancer2002101439539710.1002/ijc.1061012209966
    [Google Scholar]
  8. Al-KarmalawyA.A. SoltaneR. Abo ElmaatyA. TantawyM.A. AntarS.A. YahyaG. ChroudaA. PashameahR.A. MustafaM. Abu MraheilM. MostafaA. Coronavirus disease (COVID-19) control between drug repurposing and vaccination: A comprehensive overview.Vaccines2021911131710.3390/vaccines911131734835248
    [Google Scholar]
  9. ChangD. WangF. ZhaoY.S. PanH.Z. Evaluation of oxidative stress in colorectal cancer patients.Biomed. Environ. Sci.200821428628910.1016/S0895‑3988(08)60043‑418837290
    [Google Scholar]
  10. CariniF. MazzolaM. RappaF. JurjusA. GeageaA.G. Al KattarS. Bou-AssiT. JurjusR. DamianiP. LeoneA. TomaselloG. Colorectal carcinogenesis: Role of oxidative stress and antioxidants.Anticancer Res.20173794759476628870894
    [Google Scholar]
  11. BehrendL. HendersonG. ZwackaR.M. Reactive oxygen species in oncogenic transformation.Biochem. Soc. Trans.20033161441144410.1042/bst031144114641084
    [Google Scholar]
  12. FruehaufJ.P. MeyskensF.L.Jr. Reactive oxygen species: A breath of life or death?Clin. Cancer Res.200713378979410.1158/1078‑0432.CCR‑06‑208217289868
    [Google Scholar]
  13. GerhauserC. Cancer chemoprevention and nutriepigenetics: State of the art and future challenges.Top. Curr. Chem.20123297313210.1007/128_2012_36022955508
    [Google Scholar]
  14. WangH.C.R. ChoudharyS. Reactive oxygen species-mediated therapeutic control of bladder cancer.Nat. Rev. Urol.201181160861610.1038/nrurol.2011.13521971316
    [Google Scholar]
  15. SakM. Al-FaiyzY. ElsawyH. ShaabanS. Novel organoselenium redox modulators with potential anticancer, antimicrobial, and antioxidant activities.Antioxidants2022117123110.3390/antiox1107123135883724
    [Google Scholar]
  16. ShaabanS. NegmA.; A SobhM.; A WessjohannL. Expeditious entry to functionalized pseudo-peptidic organoselenide redox modulators via sequential Ugi/SN methodology.Anti-Cancer Agents Med. Chem.2016165621632
    [Google Scholar]
  17. ShaabanS. NegmA. SobhM.A. WessjohannL.A. Organoselenocyanates and symmetrical diselenides redox modulators: Design, synthesis and biological evaluation.Eur. J. Med. Chem.20159719020110.1016/j.ejmech.2015.05.00225969171
    [Google Scholar]
  18. Soriano-GarciaM. Organoselenium compounds as potential therapeutic and chemopreventive agents: A review.Curr. Med. Chem.200411121657166910.2174/092986704336505315180570
    [Google Scholar]
  19. El-SendunyF.F. ShabanaS.M. RöselD. BrabekJ. AlthagafiI. AngeloniG. ManolikakesG. ShaabanS. Urea-functionalized organoselenium compounds as promising anti-HepG2 and apoptosis-inducing agents.Future Med. Chem.202113191655167710.4155/fmc‑2021‑011434427101
    [Google Scholar]
  20. ShaabanS. AlthikrallahH.A. NegmA. Abo ElmaatyA. Al-KarmalawyA.A. Repurposed organoselenium tethered amidic acids as apoptosis inducers in melanoma cancer via P53, BAX, caspases-3, 6, 8, 9, BCL-2, MMP2, and MMP9 modulations.RSC Advances20241426185761858710.1039/D4RA02944E38860260
    [Google Scholar]
  21. ShaabanS. Ba-GhazalH. Al-FaiyzY.S. Al-KarmalawyA.A. AmriN. YoussefI. Recent advances in the synthesis of organoselenium heterocycle conjugates.Tetrahedron202415713395710.1016/j.tet.2024.133957
    [Google Scholar]
  22. JainV.K. PriyadarsiniK.I. Selenium: A wonder element in life and for life.Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.20249411010.1007/s40010‑023‑00858‑4
    [Google Scholar]
  23. SobolevO. GutyjB. PetryshakR. PivtorakJ. KovalskyiY. NaumyukA. PetryshakO. SemchukI. MateuszV. ShcherbatyyA. SemenivB. Biological role of selenium in the organism of animals and humans.Ukr. J. Ecol.20188165466510.15421/2018_263
    [Google Scholar]
  24. RuaR.M. NogalesF. CarrerasO. OjedaM.L. Selenium, selenoproteins and cancer of the thyroid.J. Trace Elem. Med. Biol.20237612711510.1016/j.jtemb.2022.12711536481604
    [Google Scholar]
  25. Nguyen-WuE.Q. Novel insights on the role of selenoprotein p in sperm viability.University of Hawaii at Manoa2012
    [Google Scholar]
  26. PeiJ. PanX. WeiG. HuaY. Research progress of glutathione peroxidase family (GPX) in redoxidation.Front. Pharmacol.202314114741410.3389/fphar.2023.114741436937839
    [Google Scholar]
  27. NkengfackG. EnglertH. HaddadiM. Selenium and immunity.Nutrition and Immunity2019159165
    [Google Scholar]
  28. GenchiG. LauriaG. CatalanoA. SinicropiM.S. CarocciA. Biological activity of selenium and its impact on human health.Int. J. Mol. Sci.2023243263310.3390/ijms2403263336768955
    [Google Scholar]
  29. SonegoJ.M. de DiegoS.I. SzajnmanS.H. Gallo-RodriguezC. RodriguezJ.B. Organoselenium compounds: Chemistry and applications in organic synthesis.Chemistry20232952e20230003010.1002/chem.20230003037378970
    [Google Scholar]
  30. ShaabanS. ZarroukA. Vervandier-FasseurD.S. Al- FaiyzY. El-SawyH. AlthagafiI. AndreolettiP. Cherkaoui-MalkiM. Cytoprotective organoselenium compounds for oligodendrocytes.Arab. J. Chem.202114410.1016/j.arabjc.2021.103051
    [Google Scholar]
  31. ShaabanS. Vervandier-FasseurD. AndreolettiP. ZarroukA. RichardP. NegmA. ManolikakesG. JacobC. Cherkaoui-MalkiM. Cytoprotective and antioxidant properties of organic selenides for the myelin-forming cells, oligodendrocytes.Bioorg. Chem.201880435610.1016/j.bioorg.2018.05.01929864687
    [Google Scholar]
  32. MaroneyM.J. HondalR.J. Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids.Free Radic. Biol. Med.201812722823710.1016/j.freeradbiomed.2018.03.03529588180
    [Google Scholar]
  33. Abdel-WahabB. ShaabanS. Thiazolothiadiazoles and thiazolooxadiazoles: Synthesis and biological applications.Synthesis201446131709171610.1055/s‑0033‑1338627
    [Google Scholar]
  34. Abdel-WahabB.F. ShaabanS. El-HitiG.A. Synthesis of sulfur-containing heterocycles via ring enlargement.Mol. Divers.201822251754210.1007/s11030‑017‑9810‑329388031
    [Google Scholar]
  35. NogueiraC.W. BarbosaN.V. RochaJ.B.T. Toxicology and pharmacology of synthetic organoselenium compounds: An update.Arch. Toxicol.20219541179122610.1007/s00204‑021‑03003‑533792762
    [Google Scholar]
  36. RochaJ.B. Organoselenium compounds in biology and medicineRoyal society of chemistryCambridge 2017342376
    [Google Scholar]
  37. ShaabanS. AhmedH.M.A.E.-L. AlshemaryB. Google Patents2024
    [Google Scholar]
  38. NegmA. ShaabanS. Al-FaizY.S. Google Patents2023
    [Google Scholar]
  39. NogueiraC.W. RochaJ.B.T. Toxicology and pharmacology of selenium: Emphasis on synthetic organoselenium compounds.Arch. Toxicol.201185111313135910.1007/s00204‑011‑0720‑321720966
    [Google Scholar]
  40. ShaabanS. ShabanaS.M. Al-FaiyzY.S. ManolikakesG. El-SendunyF.F. Enhancing the chemosensitivity of HepG2 cells towards cisplatin by organoselenium pseudopeptides.Bioorg. Chem.202110910471310.1016/j.bioorg.2021.10471333611136
    [Google Scholar]
  41. WuW. YangZ. XiaoX. AnT. LiB. OuyangJ. LiH. WangC. ZhangY. ZhangH. HeY. ZhangC. A thioredoxin reductase inhibitor ethaselen induces growth inhibition and apoptosis in gastric cancer.J. Cancer202011103013301910.7150/jca.4074432226516
    [Google Scholar]
  42. AmporndanaiK. MengX. ShangW. JinZ. RogersM. ZhaoY. RaoZ. LiuZ.J. YangH. ZhangL. O’NeillP.M. Samar HasnainS. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives.Nat. Commun.2021121306110.1038/s41467‑021‑23313‑734031399
    [Google Scholar]
  43. ShaabanS. ArafatM.A. HamamaW.S. Vistas in the domain of organoselenocyanates.ARKIVOC20142014147050510.3998/ark.5550190.p008.763
    [Google Scholar]
  44. ShaabanS. GafferH.E. AlshahdM. ElmorsyS.S. Cytotoxic symmetrical thiazolediselenides with increased selectivity against MCF-7 breast cancer cells.IJRDPL20154416541668
    [Google Scholar]
  45. da SilvaC.M. da SilvaD.L. ModoloL.V. AlvesR.B. de ResendeM.A. MartinsC.V.B. de FátimaÂ. Schiff bases: A short review of their antimicrobial activities.J. Adv. Res.2011211810.1016/j.jare.2010.05.004
    [Google Scholar]
  46. MatelaG. Schiff bases and complexes: A review on anti- cancer activityAnti-Cancer Agents Med. Chem.2020201619081917
    [Google Scholar]
  47. FabbrizziL. Beauty in chemistry: Making artistic molecules with Schiff bases.J. Org. Chem.20208519122121222610.1021/acs.joc.0c0142032864964
    [Google Scholar]
  48. ShaabanS. AbdouA. AlhamzaniA.G. Abou-KrishaM.M. Al-QudahM.A. AlaasarM. YoussefI. YousefT.A. Synthesis and in silico investigation of organoselenium-clubbed schiff bases as potential Mpro inhibitors for the SARS-CoV-2 replication.Life202313491210.3390/life1304091237109441
    [Google Scholar]
  49. KumarA. SasmalD. BhaskarA. MukhopadhyayK. ThakurA. SharmaN. Deltamethrin-induced oxidative stress and mitochondrial caspase-dependent signaling pathways in murine splenocytes.Environ. Toxicol.201631780881910.1002/tox.2209125534813
    [Google Scholar]
  50. ReidT. GalanisE. AbbruzzeseJ. SzeD. AndrewsJ. RomelL. HatfieldM. RubinJ. KirnD. Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: A phase I trial.Gene Ther.20018211618162610.1038/sj.gt.330151211895000
    [Google Scholar]
  51. FerreiraL.M. CerviV.F. SariM.H.M. BarbieriA.V. RamosA.P. CopettiP.M. de BrumG.F. NascimentoK. NadalJ.M. FaragoP.V. SagrilloM.R. NogueiraC.W. CruzL. Diphenyl diselenide loaded poly(ε-caprolactone) nanocapsules with selective antimelanoma activity: Development and cytotoxic evaluation.Mater. Sci. Eng. C2018911910.1016/j.msec.2018.05.01430033235
    [Google Scholar]
  52. FerreiraL.M. AzambujaJ.H. da SilveiraE.F. Marcondes SariM.H. da Cruz Weber FulcoB. Costa PradoV. GelsleichterN.E. BeckenkampL.R. da Cruz FernandesM. SpanevelloR.M. WinkM.R. de Cassia Sant Anna AlvesR. NogueiraC.W. BraganholE. CruzL. Antitumor action of diphenyl diselenide nanocapsules: In vitro assessments and preclinical evidence in an animal model of glioblastoma multiforme.J. Trace Elem. Med. Biol.20195518018910.1016/j.jtemb.2019.06.01031345356
    [Google Scholar]
  53. NedelF. CamposV.F. AlvesD. McBrideA.J.A. DellagostinO.A. CollaresT. SavegnagoL. SeixasF.K. Substituted diaryl diselenides: Cytotoxic and apoptotic effect in human colon adenocarcinoma cells.Life Sci.2012919-1034535210.1016/j.lfs.2012.07.02322884807
    [Google Scholar]
  54. TawfikH.O. MousaM.H.A. ZakyM.Y. El-DessoukiA.M. SharakyM. AbdullahO. El-HamamsyM.H. Al-KarmalawyA.A. Rationale design of novel substituted 1,3,5-triazine candidates as dual IDH1(R132H)/ IDH2(R140Q) inhibitors with high selectivity against acute myeloid leukemia: In vitro and in vivo preclinical investigations.Bioorg. Chem.202414910748310.1016/j.bioorg.2024.10748338805913
    [Google Scholar]
  55. dos Reis Antunes JuniorO. AntônioE. MainardesR.M. KhalilN.M. Preparation, physicochemical characterization and antioxidant activity of diphenyl diselenide-loaded poly(lactic acid) nanoparticles.J. Trace Elem. Med. Biol.20173917618510.1016/j.jtemb.2016.09.01027908412
    [Google Scholar]
  56. NogueiraC.W. RochaJ.B.T. Diphenyl diselenide a janus-faced molecule.J. Braz. Chem. Soc.201021112055207110.1590/S0103‑50532010001100006
    [Google Scholar]
  57. AbbassE.M. Al-KarmalawyA.A. SharakyM. KhattabM. AlzahraniA.Y.A. HassaballahA.I. Rational design and eco-friendly one-pot multicomponent synthesis of novel ethylidenehydrazineylthiazol-4(5H)-ones as potential apoptotic inducers targeting wild and mutant EGFR-TK in triple negative breast cancer.Bioorg. Chem.202414210693610.1016/j.bioorg.2023.10693637890211
    [Google Scholar]
  58. MouradM.A.E. Abo ElmaatyA. ZakiI. MouradA.A.E. HofniA. KhodirA.E. AboubakrE.M. ElkamhawyA. RohE.J. Al-KarmalawyA.A. Novel topoisomerase II/EGFR dual inhibitors: Design, synthesis and docking studies of naphtho[2′,3′:4,5]thiazolo[3,2- a ]pyrimidine hybrids as potential anticancer agents with apoptosis inducing activity.J. Enzyme Inhib. Med. Chem.2023381220504310.1080/14756366.2023.220504337165800
    [Google Scholar]
  59. Al-KarmalawyA.A. RashedM. SharakyM. AbulkhairH.S. HammoudaM.M. TawfikH.O. ShaldamM.A. Novel fused imidazotriazines acting as promising top. II inhibitors and apoptotic inducers with greater selectivity against head and neck tumors: Design, synthesis, and biological assessments.Eur. J. Med. Chem.202325911566110.1016/j.ejmech.2023.11566137482023
    [Google Scholar]
  60. Al-KarmalawyA.A. MousaM.H.A. SharakyM. MouradM.A.E. El-DessoukiA.M. HamoudaA.O. AlnajjarR. AyedA.A. ShaldamM.A. TawfikH.O. Lead optimization of BIBR1591 to improve its telomerase inhibitory activity: Design and synthesis of novel four chemical series with in silico, in vitro, and in vivo preclinical assessments.J. Med. Chem.202338117230
    [Google Scholar]
  61. HefnyS.M. El-MoselhyT.F. El-DinN. AmmaraA. AngeliA. FerraroniM. El-DessoukiA.M. ShaldamM.A. YahyaG. Al-KarmalawyA.A. SupuranC.T. TawfikH.O. A new framework for novel analogues of pazopanib as potent and selective human carbonic anhydrase inhibitors: Design, repurposing rational, synthesis, crystallographic, in vivo and in vitro biological assessments.Eur. J. Med. Chem.202427411652710.1016/j.ejmech.2024.11652738810335
    [Google Scholar]
  62. GaberA.A. Abo ElmaatyA. SharakyM. MosaA.A. Yahya Abdullah AlzahraniA. ShaabanS. EldehnaW.M. Al-KarmalawyA.A. Multi-target rational design and synthesis of novel diphenyl-tethered pyrazolopyrimidines targeting EGFR and topoisomerase II with potential DNA intercalation and apoptosis induction.Bioorg. Chem.202414510722310.1016/j.bioorg.2024.10722338387399
    [Google Scholar]
  63. NofalH.R. Al-KarmalawyA.A. ElmaatyA.A. IsmailM.F. AliA.K. AbbassE.M. Pharmacophore-based, rationale design, and efficient synthesis of novel tetrahydrobenzo[b]thiophene candidates as potential dual Topo I/II inhibitors and DNA intercalators.Arch. Pharm.2024e2400217
    [Google Scholar]
  64. GaberA.A. El-MorsyA.M. SherbinyF.F. BayoumiA.H. El-GamalK.M. El-AdlK. Al-KarmalawyA.A. Ezz EldinR.R. SalehM.A. AbulkhairH.S. Pharmacophore-linked pyrazolo[3,4-d]pyrimidines as EGFR-TK inhibitors: Synthesis, anticancer evaluation, pharmacokinetics, and in silico mechanistic studies.Arch. Pharm.2021e2100258
    [Google Scholar]
  65. ShaabanS. AdamM.S.S. El-MetwalyN.M. Novel organoselenium-based N-mealanilic acid and its zinc (II) chelate: Catalytic, anticancer, antimicrobial, antioxidant, and computational assessments.J. Mol. Liq.202236311990710.1016/j.molliq.2022.119907
    [Google Scholar]
  66. SkehanP. StorengR. ScudieroD. MonksA. McMahonJ. VisticaD. WarrenJ.T. BokeschH. KenneyS. BoydM.R. New colorimetric cytotoxicity assay for anticancer-drug screening.J. Natl. Cancer Inst.199082131107111210.1093/jnci/82.13.11072359136
    [Google Scholar]
  67. HammoudM.M. KhattabM. Abdel-MotaalM. Van der EyckenJ. AlnajjarR. AbulkhairH.S. Al-KarmalawyA.A. Synthesis, structural characterization, DFT calculations, molecular docking, and molecular dynamics simulations of a novel ferrocene derivative to unravel its potential antitumor activity.J. Biomol. Struct. Dyn.202211810.1080/07391102.2022.208253335674744
    [Google Scholar]
  68. HueyR. MorrisG.M. ForliS. Using autodock 4 and autodock vina with autodocktools: A tutorial.Scripps Res. Inst. Mol. Graphics Lab.201210550920371000
    [Google Scholar]
  69. YuanS. ChanH.C.S. HuZ. Using PyMOL as a platform for computational drug design.Wiley Interdiscip. Rev. Comput. Mol. Sci.201772e129810.1002/wcms.1298
    [Google Scholar]
  70. FaroukF. IbrahimI.M. SherifS. AbdelhamedH.G. SharakyM. Al-KarmalawyA.A. Investigating the effect of polymerase inhibitors on cellular proliferation: Computational studies, cytotoxicity, CDK1 inhibitory potential, and LC-MS / MS cancer cell entrapment assays.Chem. Biol. Drug Des.20241033e1450010.1111/cbdd.1450038467555
    [Google Scholar]
  71. Abdel-MotaalM. AldakhiliD.A. Abo ElmaatyA. SharakyM. MouradM.A.E. AlzahraniA.Y.A. MohamedN.A. Al-KarmalawyA.A. Design and synthesis of novel tetrabromophthalimide derivatives as potential tubulin inhibitors endowed with apoptotic induction for cancer treatment.Drug Dev. Res.2024854e2219710.1002/ddr.2219738751223
    [Google Scholar]
  72. ElmaatyA.A. DarwishK.M. ChroudaA. BoseilaA.A. TantawyM.A. ElhadyS.S. ShaikA.B. MustafaM. Al-karmalawyA.A. In silico and in vitro studies for benzimidazole anthelmintics repurposing as VEGFR-2 antagonists: Novel mebendazole-loaded mixed micelles with enhanced dissolution and anticancer activity.ACS Omega20227187589910.1021/acsomega.1c0551935036753
    [Google Scholar]
  73. Ezz EldinR.R. SalehM.A. AlotaibiM.H. AlsuairR.K. AlzahraniY.A. AlshehriF.A. MohamedA.F. HafezS.M. AlthoqapyA.A. KhiralaS.K. AminM.M. A FY. AbdElwahabA.H. AlesawyM.S. ElmaatyA.A. Al-KarmalawyA.A. Ligand-based design and synthesis of N′-Benzylidene-3,4-dimethoxybenzohydrazide derivatives as potential antimicrobial agents; Evaluation by in vitro, in vivo, and in silico approaches with SAR studies.J. Enzyme Inhib. Med. Chem.20223711098111910.1080/14756366.2022.206328235430934
    [Google Scholar]
  74. El-NaggarA.M. HassanA.M.A. ElkaeedE.B. AlesawyM.S. Al-KarmalawyA.A. Design, synthesis, and SAR studies of novel 4-methoxyphenyl pyrazole and pyrimidine derivatives as potential dual tyrosine kinase inhibitors targeting both EGFR and VEGFR-2.Bioorg. Chem.202212310577010.1016/j.bioorg.2022.10577035395446
    [Google Scholar]
  75. ZakariaM.Y. SharakyM. NoreddinA.M. AlnajjarR. EL-SheshenyR. KutkatO. El-BeehM.E. AbourehabM.A.S. Al-KarmalawyA.A. Investigating the superiority of chitosan/D-alpha-tocopheryl polyethylene glycol succinate binary coated bilosomes in promoting the cellular uptake and anti-SARS-CoV-2 activity of polyphenolic herbal drug candidate.Int. J. Pharm.202364612338510.1016/j.ijpharm.2023.12338537678473
    [Google Scholar]
  76. LeiK. GuX. AlvaradoA.G. DuY. LuoS. AhnE.H. KangS.S. JiB. LiuX. MaoH. FuH. KornblumH.I. JinL. LiH. YeK. Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma.J. Hematol. Oncol.202013114110.1186/s13045‑020‑00979‑y33087132
    [Google Scholar]
  77. AshourN.A. Abo ElmaatyA. SarhanA.A. ElkaeedE.B. MoussaA.M. ErfanI.A. Al-KarmalawyA.A. A systematic review of the global intervention for SARs-CoV-2 combating: From drugs repurposing to molnupiravir approval.Drug Des. Devel. Ther.20221668571510.2147/DDDT.S35484135321497
    [Google Scholar]
  78. BartoliniD. SancinetoL. Fabro de BemA. TewK.D. SantiC. RadiR. ToquatoP. GalliF. Selenocompounds in cancer therapy: An overview.Adv. Cancer Res.201713625930210.1016/bs.acr.2017.07.00729054421
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673319340240809104237
Loading
/content/journals/cmc/10.2174/0109298673319340240809104237
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anticancer; apoptosis; colorectal carcinoma; cytotoxicity; Organoselenium; schiff bases
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test