Skip to content
2000
Volume 32, Issue 20
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aim

This study was designed to develop a ferroptosis-related gene signature for guiding the prognostic prediction in colorectal cancer (CRC) and to explore the potential in the molecular functions of the gene signature.

Background

Ferroptosis is mainly characterized by lipid peroxide accumulation on the cell membranes in an iron-dependent manner, resulting in cellular oxidative stress, metabolic disorders, and, ultimately, cell death. This study aimed to develop a prognostic ferroptosis signature in CRC and explore its potential molecular function.

Objective

The present work was designed to devise a ferroptosis signature for CRC prognosis and explore its potential molecular function.

Methods

Single-cell RNA sequencing data GSE161277 and transcriptome sequencing data GSE17537 and TCGA-CRC from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases were downloaded, respectively. Quality control, dimension reduction, clustering, and clustering of single-cell RNA sequencing (scRNA-seq) data were performed using the Seurat package. A total of 259 ferroptosis-correlated genes from the FerrDb database were acquired. The single sample gene set enrichment analysis (ssGSEA) was performed to calculate the scores of genes related to ferroptosis. ESTIMATE was used to calculate immune infiltration. Independent prognostic factors were determined by performing Weighted Gene Co-Expression Network Analysis (WGCNA), univariate and Cox analyses, and Lasso analyses were used to search for independent prognostic factors.

Results

From the scRNA-seq (GSE161277) dataset, 22 cell clusters were initially identified, and according to immune cell markers, only 8 types of cells (Follicular B, central memory T cell, Epithelial, Natural killer T cell, Plasma B, M1 macrophage, Fibroblasts, and Mast cell) were finally determined to be related to CRC prognosis. The results of the scRNA-seq analysis showed that the score of ferroptosis-related genes was higher in tumour tissues and in 8 types of cells in tumour samples. In the TCGA dataset, CRC samples were divided into ferroptosis-related high scores, ferroptosis-related median scores, and ferroptosis-related low scores. Immune cell analysis revealed that ferroptosis-related high scores had the highest abundance of immune cells. An 11-gene signature was developed by WGCNA, univariate Cox, and Lasso Cox regression. The prediction ability of the signature was successfully validated in the GSE17537 dataset. A comprehensive nomogram combining the 11 signature genes and clinical parameters could effectively predict the overall survival of CRC patients.

Conclusions

The present molecular signature established based on the 11 ferroptosis-related genes performed well in assessing CRC prognosis. The present discoveries could inspire further research on ferroptosis, providing a new direction for CRC management.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673296767240116215814
2024-02-14
2025-10-23
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. MaS. ZhuX. XinC. CaoF. XuM. HanX. SuiJ. ChangW. ZhangW. RCN3 expression indicates prognosis in colorectal cancers.Oncologie202224482383310.32604/oncologie.2022.025411
    [Google Scholar]
  3. LabiancaR. BerettaG.D. KildaniB. MilesiL. MerlinF. MosconiS. PessiM.A. ProchiloT. QuadriA. GattaG. de BraudF. WilsJ. Colon cancer.Crit. Rev. Oncol. Hematol.201074210613310.1016/j.critrevonc.2010.01.01020138539
    [Google Scholar]
  4. BensonA.B.III VenookA.P. Al-HawaryM.M. CederquistL. ChenY.J. CiomborK.K. CohenS. CooperH.S. DemingD. EngstromP.F. Garrido-LagunaI. GremJ.L. GrotheyA. HochsterH.S. HoffeS. HuntS. KamelA. KirilcukN. KrishnamurthiS. MessersmithW.A. MeyerhardtJ. MillerE.D. MulcahyM.F. MurphyJ.D. NurkinS. SaltzL. SharmaS. ShibataD. SkibberJ.M. SofocleousC.T. StoffelE.M. Stotsky-HimelfarbE. WillettC.G. WuthrickE. GregoryK.M. Freedman-CassD.A. NCCN guidelines insights: Colon cancer, version 2.2018.J. Natl. Compr. Canc. Netw.201816435936910.6004/jnccn.2018.002129632055
    [Google Scholar]
  5. StockwellB.R. Friedmann AngeliJ.P. BayirH. BushA.I. ConradM. DixonS.J. FuldaS. GascónS. HatziosS.K. KaganV.E. NoelK. JiangX. LinkermannA. MurphyM.E. OverholtzerM. OyagiA. PagnussatG.C. ParkJ. RanQ. RosenfeldC.S. SalnikowK. TangD. TortiF.M. TortiS.V. ToyokuniS. WoerpelK.A. ZhangD.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017171227328510.1016/j.cell.2017.09.02128985560
    [Google Scholar]
  6. DongY. XuC. GuoJ. LiuY. Advances in ferroptosis of cancer therapy.Oncologie20242611810.1515/oncologie‑2023‑0513
    [Google Scholar]
  7. StockwellB.R. JiangX. GuW. Emerging mechanisms and disease relevance of ferroptosis.Trends Cell Biol.202030647849010.1016/j.tcb.2020.02.00932413317
    [Google Scholar]
  8. LiuC. YangX. WangY. WuK. LiS. WangG. LiY. LiC. WangM. LiE. Ferroptosis’s role in genitourinary system cancer.Oncologie202224467969110.32604/oncologie.2022.025705
    [Google Scholar]
  9. ZhangL. LiuW. LiuF. WangQ. SongM. YuQ. TangK. TengT. WuD. WangX. HanW. LiY. Corrigendum to “IMCA Induces Ferroptosis Mediated by SLC7A11 through the AMPK/mTOR Pathway in Colorectal Cancer”.Oxid. Med. Cell. Longev.202020201210.1155/2020/690147232322334
    [Google Scholar]
  10. MalfaG.A. TomaselloB. AcquavivaR. GenoveseC. La MantiaA. CammarataF.P. RagusaM. RenisM. Di GiacomoC. Betula etnensis Raf. (Betulaceae) extract induced HO-1 expression and ferroptosis cell death in human colon cancer cells.Int. J. Mol. Sci.20192011272310.3390/ijms2011272331163602
    [Google Scholar]
  11. XianZ.Y. HuB. WangT. CaiJ.L. ZengJ.Y. ZouQ. ZhuP.X. CircABCB10 silencing inhibits the cell ferroptosis and apoptosis by regulating the miR-326/CCL5 axis in rectal cancer.Neoplasma20206751063107310.4149/neo_2020_191024N108432567935
    [Google Scholar]
  12. GaoM. ZhongA. PatelN. AlurC. VyasD. High throughput RNA sequencing utility for diagnosis and prognosis in colon diseases.World J. Gastroenterol.201723162819282510.3748/wjg.v23.i16.281928522900
    [Google Scholar]
  13. HanY. GaoS. MueggeK. ZhangW. ZhouB. Advanced applications of RNA sequencing and challenges.Bioinform. Biol. Insights20159s1Suppl. 1BBI.S2899110.4137/BBI.S2899126609224
    [Google Scholar]
  14. XieT. WangY. DengN. HuangG. TaghavifarF. GengY. LiuN. KulurV. YaoC. ChenP. LiuZ. StrippB. TangJ. LiangJ. NobleP.W. JiangD. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis.Cell Rep.201822133625364010.1016/j.celrep.2018.03.01029590628
    [Google Scholar]
  15. OlsenT.K. BaryawnoN. Introduction to single-cell RNA sequencing.Curr. Protoc. Mol. Biol.20181221e5710.1002/cpmb.5729851283
    [Google Scholar]
  16. PengJ. SunB.F. ChenC.Y. ZhouJ.Y. ChenY.S. ChenH. LiuL. HuangD. JiangJ. CuiG.S. YangY. WangW. GuoD. DaiM. GuoJ. ZhangT. LiaoQ. LiuY. ZhaoY.L. HanD.L. ZhaoY. YangY.G. WuW. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma.Cell Res.201929972573810.1038/s41422‑019‑0195‑y31273297
    [Google Scholar]
  17. ChungW. EumH.H. LeeH.O. LeeK.M. LeeH.B. KimK.T. RyuH.S. KimS. LeeJ.E. ParkY.H. KanZ. HanW. ParkW.Y. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer.Nat. Commun.2017811508110.1038/ncomms1508128474673
    [Google Scholar]
  18. NavinN.E. The first five years of single-cell cancer genomics and beyond.Genome Res.201525101499150710.1101/gr.191098.11526430160
    [Google Scholar]
  19. ZhangY. SongJ. ZhaoZ. YangM. ChenM. LiuC. JiJ. ZhuD. Single-cell transcriptome analysis reveals tumor immune microenvironment heterogenicity and granulocytes enrichment in colorectal cancer liver metastases.Cancer Lett.2020470849410.1016/j.canlet.2019.10.01631610266
    [Google Scholar]
  20. ZhaiY. LiG. LiR. ChangY. FengY. WangD. WuF. ZhangW. Single-cell RNA-sequencing shift in the interaction pattern between glioma stem cells and immune cells during tumorigenesis.Front. Immunol.20201158120910.3389/fimmu.2020.58120933133100
    [Google Scholar]
  21. XiaoB. LiuL. LiA. XiangC. WangP. LiH. XiaoT. Identification and verification of immune-related gene prognostic signature based on ssGSEA for osteosarcoma.Front. Oncol.20201060762210.3389/fonc.2020.60762233384961
    [Google Scholar]
  22. SafonovA. JiangT. BianchiniG. GyőrffyB. KarnT. HatzisC. PusztaiL. Immune gene expression is associated with genomic aberrations in breast cancer.Cancer Res.201777123317332410.1158/0008‑5472.CAN‑16‑347828428277
    [Google Scholar]
  23. YangP. ChenW. XuH. YangJ. JiangJ. JiangY. XuG. Correlation of CCL8 expression with immune cell infiltration of skin cutaneous melanoma: Potential as a prognostic indicator and therapeutic pathway.Cancer Cell Int.202121163510.1186/s12935‑021‑02350‑834844613
    [Google Scholar]
  24. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  25. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  26. RamsayI.S. MaS. FisherM. LoewyR.L. RaglandJ.D. NiendamT. CarterC.S. VinogradovS. Model selection and prediction of outcomes in recent onset schizophrenia patients who undergo cognitive training.Schizophr. Res. Cogn.2018111510.1016/j.scog.2017.10.00129159134
    [Google Scholar]
  27. ShenW. SongZ. ZhongX. HuangM. ShenD. GaoP. QianX. WangM. HeX. WangT. LiS. SongX. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform.iMeta202213e3610.1002/imt2.36
    [Google Scholar]
  28. BrookesM.J. HughesS. TurnerF.E. ReynoldsG. SharmaN. IsmailT. BerxG. McKieA.T. HotchinN. AndersonG.J. IqbalT. TselepisC. Modulation of iron transport proteins in human colorectal carcinogenesis.Gut200655101449146010.1136/gut.2006.09406016641131
    [Google Scholar]
  29. NelsonR.L. Iron and colorectal cancer risk: Human studies.Nutr. Rev.200159514014810.1111/j.1753‑4887.2001.tb07002.x11396694
    [Google Scholar]
  30. RadulescuS. BrookesM.J. SalgueiroP. RidgwayR.A. McGheeE. AndersonK. FordS.J. StonesD.H. IqbalT.H. TselepisC. SansomO.J. Luminal iron levels govern intestinal tumorigenesis after Apc loss in vivo.Cell Rep.20122227028210.1016/j.celrep.2012.07.00322884366
    [Google Scholar]
  31. YeF. ChaiW. XieM. YangM. YuY. CaoL. YangL. HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRASQ61L cells.Am. J. Cancer Res.20199473073931105999
    [Google Scholar]
  32. WangW. GreenM. ChoiJ.E. GijónM. KennedyP.D. JohnsonJ.K. LiaoP. LangX. KryczekI. SellA. XiaH. ZhouJ. LiG. LiJ. LiW. WeiS. VatanL. ZhangH. SzeligaW. GuW. LiuR. LawrenceT.S. LambC. TannoY. CieslikM. StoneE. GeorgiouG. ChanT.A. ChinnaiyanA. ZouW. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy.Nature2019569775527027410.1038/s41586‑019‑1170‑y31043744
    [Google Scholar]
  33. LeeC.H. ChenL.C. YuC.C. LinW.H. LinV.C. HuangC.Y. LuT.L. HuangS.P. BaoB.Y. Prognostic value of CD1B in localised prostate cancer.Int. J. Environ. Res. Public Health20191623472310.3390/ijerph1623472331783478
    [Google Scholar]
  34. LiZ. FengY. LiP. WangS. LiuX. XiaS. CD1B is a potential prognostic biomarker associated with tumor mutation burden and promotes antitumor immunity in lung adenocarcinoma.Int. J. Gen. Med.2022153809382610.2147/IJGM.S35285135418778
    [Google Scholar]
  35. GaoH. LiangJ. DuanJ. ChenL. LiH. ZhenT. ZhangF. DongY. ShiH. HanA. A prognosis marker SLC2A3 correlates with emt and immune signature in colorectal cancer.Front. Oncol.20211163809910.3389/fonc.2021.63809934211835
    [Google Scholar]
  36. FlavahanW.A. WuQ. HitomiM. RahimN. KimY. SloanA.E. WeilR.J. NakanoI. SarkariaJ.N. StringerB.W. DayB.W. LiM. LathiaJ.D. RichJ.N. HjelmelandA.B. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake.Nat. Neurosci.201316101373138210.1038/nn.351023995067
    [Google Scholar]
  37. LinB. WangS. YaoY. ShenY. YangH. Comprehensive co-expression analysis reveals TMC8 as a prognostic immune-associated gene in head and neck squamous cancer.Oncol. Lett.202122149810.3892/ol.2021.1275933981360
    [Google Scholar]
  38. FangY. ShenZ.Y. ZhanY.Z. FengX.C. ChenK.L. LiY.S. DengH.J. PanS.M. WuD.H. DingY. CD36 inhibits β-catenin/c-myc-mediated glycolysis through ubiquitination of GPC4 to repress colorectal tumorigenesis.Nat. Commun.2019101398110.1038/s41467‑019‑11662‑331484922
    [Google Scholar]
  39. YuanW. JiJ. ShuY. ChenJ. LiuS. WuL. ZhouZ. LiuZ. TangQ. ZhangX. ShuX. Downregulation of DAPK1 promotes the stemness of cancer stem cells and EMT process by activating ZEB1 in colorectal cancer.J. Mol. Med.20199718910210.1007/s00109‑018‑1716‑830460377
    [Google Scholar]
  40. WeiC. YangC. WangS. ShiD. ZhangC. LinX. XiongB. M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling.OncoTargets Ther.2019123051306310.2147/OTT.S19812631114248
    [Google Scholar]
  41. WerenR.D.A. LigtenbergM.J.L. KetsC.M. de VoerR.M. VerwielE.T.P. SpruijtL. van Zelst-StamsW.A.G. JongmansM.C. GilissenC. Hehir-KwaJ.Y. HoischenA. ShendureJ. BoyleE.A. KampingE.J. NagtegaalI.D. TopsB.B.J. NagengastF.M. Geurts van KesselA. van KriekenJ.H.J.M. KuiperR.P. HoogerbruggeN. A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer.Nat. Genet.201547666867110.1038/ng.328725938944
    [Google Scholar]
  42. LinS.H. RajuG.S. HuffC. YeY. GuJ. ChenJ.S. HildebrandtM.A.T. LiangH. MenterD.G. MorrisJ. HawkE. StroehleinJ.R. FutrealA. KopetzS. MishraL. WuX. The somatic mutation landscape of premalignant colorectal adenoma.Gut20186771299130510.1136/gutjnl‑2016‑31357328607096
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673296767240116215814
Loading
/content/journals/cmc/10.2174/0109298673296767240116215814
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): CRC; Ferroptosis; gene signature; immune; prognosis; scRNA-seq
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test