Skip to content
2000
Volume 32, Issue 12
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The High Mobility Group Nucleosomal Binding Domain 1 Gene (HMGN1) is crucial for epigenetic regulation. However, the specific function of HMGN1 in cancer development is unclear.

Methods

Raw data on HMGN1 expression were procured from Genotype-Tissue Expression (GTEx), the University of Alabama- Birmingham CANcer data analysis Portal (UALCAN), and The Cancer Genome Atlas (TCGA). Thereafter, the pan-cancer analysis was implemented to understand the HMGN1 expression patterns, prognostic value, and immunological features. Furthermore, the Gene Set Enrichment Analysis (GSEA) was executed R language. In addition, the relationship between HMGN1 and the sensitivity of antitumor drugs was also determined. Finally, real-time PCR (RT-PCR) experiments were carried out.

Results

Pan-cancer analysis revealed that HMGN1 was upregulated in several solid tumors and was associated with pathological staging and poor prognosis. In addition, HMGN1 was found to be involved in regulating the tumor microenvironment. The GSEA enrichment analysis indicated that HMGN1 assisted in the regulation of oncogenic processes, especially metabolic and immune pathways. Furthermore, HMGN1 expression was linked to microsatellite instability (MSI) and tumor mutational burden (TMB) across diverse tumor types. RT-PCR assays indicated that HMGN1 was overexpressed in the gastric and breast cancer cell lines and tissues.

Conclusion

This study highlighted the potential of HMGN1 as a biomarker for pan-cancer analysis.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673268718231122103638
2024-01-08
2025-10-18
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/12/CMC-32-12-10.html?itemId=/content/journals/cmc/10.2174/0109298673268718231122103638&mimeType=html&fmt=ahah

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.2165433433946
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. BrayF. LaversanneM. WeiderpassE. SoerjomataramI. The ever-increasing importance of cancer as a leading cause of premature death worldwide.Cancer2021127163029303010.1002/cncr.3358734086348
    [Google Scholar]
  4. HanlyP. PearceA. SharpL. The cost of premature cancer-related mortality: A review and assessment of the evidence.Expert Rev. Pharmacoecon. Outcomes Res.201414335537710.1586/14737167.2014.90928724746223
    [Google Scholar]
  5. BlumA. WangP. ZenklusenJ.C. SnapShot: TCGA-analyzed tumors.Cell2018173253010.1016/j.cell.2018.03.05929625059
    [Google Scholar]
  6. MaX. LiuY. LiuY. AlexandrovL.B. EdmonsonM.N. GawadC. ZhouX. LiY. RuschM.C. EastonJ. HuetherR. Gonzalez-PenaV. WilkinsonM.R. HermidaL.C. DavisS. SiosonE. PoundsS. CaoX. RiesR.E. WangZ. ChenX. DongL. DiskinS.J. SmithM.A. Guidry AuvilJ.M. MeltzerP.S. LauC.C. PerlmanE.J. MarisJ.M. MeshinchiS. HungerS.P. GerhardD.S. ZhangJ. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours.Nature2018555769637137610.1038/nature2579529489755
    [Google Scholar]
  7. HockR. FurusawaT. UedaT. BustinM. HMG chromosomal proteins in development and disease.Trends Cell Biol.2007172727910.1016/j.tcb.2006.12.00117169561
    [Google Scholar]
  8. NanduriR. FurusawaT. BustinM. Biological functions of HMGN chromosomal proteins.Int. J. Mol. Sci.202021244910.3390/ijms2102044931936777
    [Google Scholar]
  9. HeB. DengT. ZhuI. FurusawaT. ZhangS. TangW. PostnikovY. AmbsS. LiC.C. LivakF. LandsmanD. BustinM. Binding of HMGN proteins to cell specific enhancers stabilizes cell identity.Nat. Commun.201891524010.1038/s41467‑018‑07687‑930532006
    [Google Scholar]
  10. CatezF. LimJ.H. HockR. PostnikovY.V. BustinM. HMGN dynamics and chromatin function.Biochem. Cell Biol.200381311312210.1139/o03‑04012897844
    [Google Scholar]
  11. HeB. ZhuI. PostnikovY. FurusawaT. JenkinsL. NanduriR. BustinM. LandsmanD. Multiple epigenetic factors co-localize with HMGN proteins in A-compartment chromatin.Epigenetics Chromatin20221512310.1186/s13072‑022‑00457‑435761366
    [Google Scholar]
  12. FarleyS.J. GrishokA. ZeldichE. Shaking up the silence: Consequences of HMGN1 antagonizing PRC2 in the Down syndrome brain.Epigenetics Chromatin20221513910.1186/s13072‑022‑00471‑636463299
    [Google Scholar]
  13. MardianJ.K.W. PatonA.E. BunickG.J. OlinsD.E. Nucleosome cores have two specific binding sites for nonhistone chromosomal proteins HMG 14 and HMG 17.Science198020944641534153610.1126/science.74339747433974
    [Google Scholar]
  14. BirgerY. CatezF. FurusawaT. LimJ.H. Prymakowska-BosakM. WestK.L. PostnikovY.V. HainesD.C. BustinM. Increased tumorigenicity and sensitivity to ionizing radiation upon loss of chromosomal protein HMGN1.Cancer Res.200565156711671810.1158/0008‑5472.CAN‑05‑031016061652
    [Google Scholar]
  15. BirgerY. WestK.L. PostnikovY.V. LimJ.H. FurusawaT. WagnerJ.P. LauferC.S. KraemerK.H. BustinM. Chromosomal protein HMGN1 enhances the rate of DNA repair in chromatin.EMBO J.20032271665167510.1093/emboj/cdg14212660172
    [Google Scholar]
  16. WestK.L. HMGN proteins play roles in DNA repair and gene expression in mammalian cells.Biochem. Soc. Trans.200432691891910.1042/BST032091815506924
    [Google Scholar]
  17. ReevesR. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells.DNA Repair20153612213610.1016/j.dnarep.2015.09.01526411874
    [Google Scholar]
  18. PageE.C. HeatleyS.L. EadieL.N. McClureB.J. de BockC.E. OmariS. YeungD.T. HughesT.P. ThomasP.Q. WhiteD.L. HMGN1 plays a significant role in CRLF2 driven down syndrome leukemia and provides a potential therapeutic target in this high-risk cohort.Oncogene202241679780810.1038/s41388‑021‑02126‑434857887
    [Google Scholar]
  19. WuZ. HuangY. YuanW. WuX. ShiH. LuM. XuA. Expression, tumor immune infiltration, and prognostic impact of HMGs in gastric cancer.Front. Oncol.202212105691710.3389/fonc.2022.105691736568211
    [Google Scholar]
  20. PageE.C. HeatleyS.L. RehnJ. ThomasP.Q. YeungD.T. WhiteD.L. Gain of chromosome 21 increases the propensity for P2RY8:CRLF2 acute lymphoblastic leukemia via increased HMGN1 expression.Front. Oncol.202313117787110.3389/fonc.2023.117787137483494
    [Google Scholar]
  21. ChenC.Y. UehaS. IshiwataY. ShichinoS. YokochiS. YangD. OppenheimJ.J. OgiwaraH. DeshimaruS. KannoY. AokiH. OgawaT. ShibayamaS. MatsushimaK. Combining an alarmin HMGN1 peptide with PD-L1 blockade results in robust antitumor effects with a concomitant increase of stem-like/progenitor exhausted CD8+ T Cells.Cancer Immunol. Res.20219101214122810.1158/2326‑6066.CIR‑21‑026534344641
    [Google Scholar]
  22. ChoucairK. MorandS. StanberyL. EdelmanG. DworkinL. NemunaitisJ. TMB: A promising immune-response biomarker, and potential spearhead in advancing targeted therapy trials.Cancer Gene Ther.2020271284185310.1038/s41417‑020‑0174‑y32341410
    [Google Scholar]
  23. van VelzenM.J.M. DerksS. van GriekenN.C.T. Haj MohammadN. van LaarhovenH.W.M. MSI as a predictive factor for treatment outcome of gastroesophageal adenocarcinoma.Cancer Treat. Rev.20208610202410.1016/j.ctrv.2020.10202432388292
    [Google Scholar]
  24. MariathasanS. TurleyS.J. NicklesD. CastiglioniA. YuenK. WangY. KadelE.E.III KoeppenH. AstaritaJ.L. CubasR. JhunjhunwalaS. BanchereauR. YangY. GuanY. ChalouniC. ZiaiJ. ŞenbabaoğluY. SantoroS. SheinsonD. HungJ. GiltnaneJ.M. PierceA.A. MeshK. LianoglouS. RieglerJ. CaranoR.A.D. ErikssonP. HöglundM. SomarribaL. HalliganD.L. van der HeijdenM.S. LoriotY. RosenbergJ.E. FongL. MellmanI. ChenD.S. GreenM. DerlethC. FineG.D. HegdeP.S. BourgonR. PowlesT. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells.Nature2018554769354454810.1038/nature2550129443960
    [Google Scholar]
  25. YangD. BustinM. OppenheimJ.J. Harnessing the alarmin HMGN1 for anticancer therapy.Immunotherapy20157111129113110.2217/imt.15.7626567750
    [Google Scholar]
  26. AmenM. EspinozaH.M. CoxC. LiangX. WangJ. LinkT.M.E. BrennanR.G. MartinJ.F. AmendtB.A. Chromatin-associated HMG-17 is a major regulator of homeodomain transcription factor activity modulated by Wnt/ -catenin signaling.Nucleic Acids Res.200736246247610.1093/nar/gkm104718045789
    [Google Scholar]
  27. ZhuN. HansenU. HMGN1 modulates estrogen-mediated transcriptional activation through interactions with specific DNA-binding transcription factors.Mol. Cell. Biol.200727248859887310.1128/MCB.01724‑0717938209
    [Google Scholar]
  28. BelovaG.I. PostnikovY.V. FurusawaT. BirgerY. BustinM. Chromosomal protein HMGN1 enhances the heat shock-induced remodeling of Hsp70 chromatin.J. Biol. Chem.2008283138080808810.1074/jbc.M70978220018218636
    [Google Scholar]
  29. JainL. VickersM.H. JacobB. MiddleditchM.J. ChudakovaD.A. GanleyA.R.D. O’SullivanJ.M. PerryJ.K. The growth hormone receptor interacts with transcriptional regulator HMGN1 upon GH-induced nuclear translocation.J. Cell Commun. Signal.202317392593710.1007/s12079‑023‑00741‑237043098
    [Google Scholar]
  30. LandsmanD. BustinM. Assessment of the transcriptional activation potential of the HMG chromosomal proteins.Mol. Cell. Biol.19911194483448910.1128/mcb.11.9.4483‑4489.19911908554
    [Google Scholar]
  31. LimJ.H. CatezF. BirgerY. WestK.L. Prymakowska-BosakM. PostnikovY.V. BustinM. Chromosomal protein HMGN1 modulates histone H3 phosphorylation.Mol. Cell200415457358410.1016/j.molcel.2004.08.00615327773
    [Google Scholar]
  32. WeiF. YangF. JiangX. YuW. RenX. High-mobility group nucleosome-binding protein 1 is a novel clinical biomarker in non-small cell lung cancer.Tumour Biol.201536129405941010.1007/s13277‑015‑3693‑726113410
    [Google Scholar]
  33. Cabal-HierroL. van GalenP. PradoM.A. HigbyK.J. TogamiK. MoweryC.T. PauloJ.A. XieY. CejasP. FurusawaT. BustinM. LongH.W. SykesD.B. GygiS.P. FinleyD. BernsteinB.E. LaneA.A. Chromatin accessibility promotes hematopoietic and leukemia stem cell activity.Nat. Commun.2020111140610.1038/s41467‑020‑15221‑z32179749
    [Google Scholar]
  34. HinshawD.C. ShevdeL.A. The tumor microenvironment innately modulates cancer progression.Cancer Res.201979184557456610.1158/0008‑5472.CAN‑18‑396231350295
    [Google Scholar]
  35. OliverA.J. LauP.K.H. UnsworthA.S. LoiS. DarcyP.K. KershawM.H. SlaneyC.Y. Tissue-dependent tumor microenvironments and their impact on immunotherapy responses.Front. Immunol.201897010.3389/fimmu.2018.0007029445373
    [Google Scholar]
  36. WuT. DaiY. Tumor microenvironment and therapeutic response.Cancer Lett.2017387616810.1016/j.canlet.2016.01.04326845449
    [Google Scholar]
  37. ZhangA. MiaoK. SunH. DengC.X. Tumor heterogeneity reshapes the tumor microenvironment to influence drug resistance.Int. J. Biol. Sci.20221873019303310.7150/ijbs.7253435541919
    [Google Scholar]
  38. StevenA. SeligerB. The role of immune escape and immune cell infiltration in breast cancer.Breast Care2018131162110.1159/00048658529950962
    [Google Scholar]
  39. TaltyR. OlinoK. Metabolism of innate immune cells in cancer.Cancers202113490410.3390/cancers1304090433670082
    [Google Scholar]
  40. YangD. HanZ. AlamM.M. OppenheimJ.J. High-mobility group nucleosome binding domain 1 (HMGN1) functions as a Th1-polarizing alarmin.Semin. Immunol.201838495310.1016/j.smim.2018.02.01229503123
    [Google Scholar]
  41. FumetJ.D. TruntzerC. YarchoanM. GhiringhelliF. Tumour mutational burden as a biomarker for immunotherapy: Current data and emerging concepts.Eur. J. Cancer2020131405010.1016/j.ejca.2020.02.03832278982
    [Google Scholar]
  42. LeeD.W. HanS.W. BaeJ.M. JangH. HanH. KimH. BangD. JeongS.Y. ParkK.J. KangG.H. KimT.Y. Tumor mutation burden and prognosis in patients with colorectal cancer treated with adjuvant fluoropyrimidine and oxaliplatin.Clin. Cancer Res.201925206141614710.1158/1078‑0432.CCR‑19‑110531285374
    [Google Scholar]
  43. SamsteinR.M. LeeC.H. ShoushtariA.N. HellmannM.D. ShenR. JanjigianY.Y. BarronD.A. ZehirA. JordanE.J. OmuroA. KaleyT.J. KendallS.M. MotzerR.J. HakimiA.A. VossM.H. RussoP. RosenbergJ. IyerG. BochnerB.H. BajorinD.F. Al-AhmadieH.A. ChaftJ.E. RudinC.M. RielyG.J. BaxiS. HoA.L. WongR.J. PfisterD.G. WolchokJ.D. BarkerC.A. GutinP.H. BrennanC.W. TabarV. MellinghoffI.K. DeAngelisL.M. AriyanC.E. LeeN. TapW.D. GounderM.M. D’AngeloS.P. SaltzL. StadlerZ.K. ScherH.I. BaselgaJ. RazaviP. KlebanoffC.A. YaegerR. SegalN.H. KuG.Y. DeMatteoR.P. LadanyiM. RizviN.A. BergerM.F. RiazN. SolitD.B. ChanT.A. MorrisL.G.T. Tumor mutational load predicts survival after immunotherapy across multiple cancer types.Nat. Genet.201951220220610.1038/s41588‑018‑0312‑830643254
    [Google Scholar]
  44. SteuerC.E. RamalingamS.S. Tumor mutation burden: Leading immunotherapy to the era of precision medicine?J. Clin. Oncol.201836763163210.1200/JCO.2017.76.877029337637
    [Google Scholar]
  45. AlamM.M. YangD. TrivettA. MeyerT.J. OppenheimJ.J. HMGN1 and R848 synergistically activate dendritic cells using multiple signaling pathways.Front. Immunol.20189298210.3389/fimmu.2018.0298230619338
    [Google Scholar]
  46. ChenC.Y. UehaS. IshiwataY. YokochiS. YangD. OppenheimJ.J. OgiwaraH. ShichinoS. DeshimaruS. ShandF.H.W. ShibayamaS. MatsushimaK. Combined treatment with HMGN1 and anti-CD4 depleting antibody reverses T cell exhaustion and exerts robust anti-tumor effects in mice.J. Immunother. Cancer2019712110.1186/s40425‑019‑0503‑630696484
    [Google Scholar]
  47. WeiF. YangD. TewaryP. LiY. LiS. ChenX. HowardO.M.Z. BustinM. OppenheimJ.J. The Alarmin HMGN1 contributes to antitumor immunity and is a potent immunoadjuvant.Cancer Res.201474215989599810.1158/0008‑5472.CAN‑13‑204225205103
    [Google Scholar]
  48. MehnertM. LiW. WuC. SalovskaB. LiuY. Combining rapid data independent acquisition and CRISPR gene deletion for studying potential protein functions: A case of HMGN1.Proteomics20191913180043810.1002/pmic.20180043830901150
    [Google Scholar]
  49. AdamG. RampášekL. SafikhaniZ. SmirnovP. Haibe-KainsB. GoldenbergA. Machine learning approaches to drug response prediction: Challenges and recent progress.NPJ Precis. Oncol.2020411910.1038/s41698‑020‑0122‑132566759
    [Google Scholar]
  50. RydzewskiN.R. PetersonE. LangJ.M. YuM. Laura ChangS. SjöströmM. BakhtiarH. SongG. HelzerK.T. BootsmaM.L. ChenW.S. ShresthaR.M. ZhangM. QuigleyD.A. AggarwalR. SmallE.J. WahlD.R. FengF.Y. ZhaoS.G. Predicting cancer drug TARGETS - Treatment response generalized elastic-net signatures.NPJ Genom. Med.2021617610.1038/s41525‑021‑00239‑z34548481
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673268718231122103638
Loading
/content/journals/cmc/10.2174/0109298673268718231122103638
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): HMGN1; immune infiltration; multi-omics; pan-cancer; prognosis; tumor microenvironment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test