Skip to content
2000
Volume 32, Issue 12
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Given the threat of ever-growing cancer morbidity, it is a cutting-edge frontier for multiple disciplines to apply nanotechnology in cancer therapy. Nanomedicine is now perpetually influencing the diagnosis and treatment of cancer. Meanwhile, tumorigenesis and cancer progression are intimately associated with inflammation. Inflammation can implicate in various tumor progression the same or different pathways. Therefore, current nanomedicines exhibit tumor-suppressing function through inflammatory pathways. At present, the comprehensive understanding and research on the mechanism of various nanoparticles in cancer treatment are still in progress. In this review, we summarized the applications of nanomedicine in tumor-targeting inflammatory pathways, suggesting that nanoparticles could be a budding star for cancer therapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673277325231229093344
2024-02-07
2025-10-21
Loading full text...

Full text loading...

References

  1. KimB.Y.S. RutkaJ.T. ChanW.C.W. Nanomedicine.N. Engl. J. Med.2010363252434244310.1056/NEJMra091227321158659
    [Google Scholar]
  2. LiuT. ShiC. DuanL. ZhangZ. LuoL. GoelS. CaiW. ChenT. A highly hemocompatible erythrocyte membrane-coated ultrasmall selenium nanosystem for simultaneous cancer radiosensitization and precise antiangiogenesis.J. Mater. Chem. B Mater. Biol. Med.20186294756476410.1039/C8TB01398E30450208
    [Google Scholar]
  3. ElinavE. NowarskiR. ThaissC.A. HuB. JinC. FlavellR.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms.Nat. Rev. Cancer2013131175977110.1038/nrc361124154716
    [Google Scholar]
  4. AggarwalB.B. VijayalekshmiR.V. SungB. Targeting inflammatory pathways for prevention and therapy of cancer: Short-term friend, long-term foe.Clin. Cancer Res.200915242543010.1158/1078‑0432.CCR‑08‑014919147746
    [Google Scholar]
  5. MolinaroR. CorboC. LivingstonM. EvangelopoulosM. ParodiA. BoadaC. AgostiniM. TasciottiE. Inflammation and cancer: In medio stat nano.Curr. Med. Chem.201825344208422310.2174/092986732466617092016003028933296
    [Google Scholar]
  6. ReuterS. GuptaS.C. ChaturvediM.M. AggarwalB.B. Oxidative stress, inflammation, and cancer: How are they linked?Free Radic. Biol. Med.201049111603161610.1016/j.freeradbiomed.2010.09.00620840865
    [Google Scholar]
  7. QuailD.F. JoyceJ.A. Microenvironmental regulation of tumor progression and metastasis.Nat. Med.201319111423143710.1038/nm.339424202395
    [Google Scholar]
  8. CoussensL.M. WerbZ. Inflammation and cancer.Nature2002420691786086710.1038/nature0132212490959
    [Google Scholar]
  9. ZhangZ. YinJ. LuC. WeiY. ZengA. YouY. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma.J. Exp. Clin. Cancer Res.201938116610.1186/s13046‑019‑1139‑630992025
    [Google Scholar]
  10. BetleyJ.N. CaoZ.F.H. RitolaK.D. SternsonS.M. Parallel, redundant circuit organization for homeostatic control of feeding behavior.Cell201315561337135010.1016/j.cell.2013.11.00224315102
    [Google Scholar]
  11. KhandiaR. MunjalA. Interplay between inflammation and cancer.Adv. Protein Chem. Struct. Biol.202011919924510.1016/bs.apcsb.2019.09.00431997769
    [Google Scholar]
  12. CandidoJ. HagemannT. Cancer-related inflammation.J. Clin. Immunol.201333S1Suppl. 1798410.1007/s10875‑012‑9847‑023225204
    [Google Scholar]
  13. MantovaniA. AllavenaP. SicaA. BalkwillF. Cancer-related inflammation.Nature2008454720343644410.1038/nature0720518650914
    [Google Scholar]
  14. MantovaniA. MarchesiF. MalesciA. LaghiL. AllavenaP. Tumour-associated macrophages as treatment targets in oncology.Nat. Rev. Clin. Oncol.201714739941610.1038/nrclinonc.2016.21728117416
    [Google Scholar]
  15. BiswasS.K. MantovaniA. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm.Nat. Immunol.2010111088989610.1038/ni.193720856220
    [Google Scholar]
  16. GambardellaV. CastilloJ. TarazonaN. Gimeno-ValienteF. Martínez-CiarpagliniC. Cabeza-SeguraM. RosellóS. RodaD. HuertaM. CervantesA. FleitasT. The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target.Cancer Treat. Rev.20208610201510.1016/j.ctrv.2020.10201532248000
    [Google Scholar]
  17. ShenZ. KauttuT. SeppänenH. VainionpääS. YeY. WangS. MustonenH. PuolakkainenP. Both macrophages and hypoxia play critical role in regulating invasion of gastric cancer in vitro.Acta Oncol.201352485286010.3109/0284186X.2012.71844423193956
    [Google Scholar]
  18. YinS. HuangJ. LiZ. ZhangJ. LuoJ. LuC. XuH. XuH. The prognostic and clinicopathological significance of tumor-associated macrophages in patients with gastric cancer: A meta-analysis.PLoS One2017121e017004210.1371/journal.pone.017004228081243
    [Google Scholar]
  19. WynnT.A. ChawlaA. PollardJ.W. Macrophage biology in development, homeostasis and disease.Nature2013496744644545510.1038/nature1203423619691
    [Google Scholar]
  20. Shapouri-MoghaddamA. MohammadianS. VaziniH. TaghadosiM. EsmaeiliS.A. MardaniF. SeifiB. MohammadiA. AfshariJ.T. SahebkarA. Macrophage plasticity, polarization, and function in health and disease.J. Cell. Physiol.201823396425644010.1002/jcp.2642929319160
    [Google Scholar]
  21. HorwoodN.J. Macrophage polarization and bone formation: A review.Clin. Rev. Allergy Immunol.2016511798610.1007/s12016‑015‑8519‑226498771
    [Google Scholar]
  22. RaniA. DasguptaP. MurphyJ.J. Prostate cancer.Am. J. Pathol.2019189112119213710.1016/j.ajpath.2019.07.00731421072
    [Google Scholar]
  23. GieryngA. PszczolkowskaD. WalentynowiczK.A. RajanW.D. KaminskaB. Immune microenvironment of gliomas.Lab. Invest.201797549851810.1038/labinvest.2017.1928287634
    [Google Scholar]
  24. FarhoodB. NajafiM. MortezaeeK. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review.J. Cell. Physiol.201923468509852110.1002/jcp.2778230520029
    [Google Scholar]
  25. BorstJ. AhrendsT. BąbałaN. MeliefC.J.M. KastenmüllerW. CD4+ T cell help in cancer immunology and immunotherapy.Nat. Rev. Immunol.2018181063564710.1038/s41577‑018‑0044‑030057419
    [Google Scholar]
  26. PangY. FuY. LiC. WuZ. CaoW. HuX. SunX. HeW. CaoX. LingD. LiQ. FanC. YangC. KongX. QinA. Metal-organic framework nanoparticles for ameliorating breast cancer-associated osteolysis.Nano Lett.202020282984010.1021/acs.nanolett.9b0291631916446
    [Google Scholar]
  27. TaniguchiK. KarinM. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer.Semin. Immunol.2014261547410.1016/j.smim.2014.01.00124552665
    [Google Scholar]
  28. OuyangW. O’GarraA. IL-10 family cytokines IL-10 and IL-22: From basic science to clinical translation.Immunity201950487189110.1016/j.immuni.2019.03.02030995504
    [Google Scholar]
  29. BishayeeA. The role of inflammation and liver cancer.Adv. Exp. Med. Biol.201481640143510.1007/978‑3‑0348‑0837‑8_1624818732
    [Google Scholar]
  30. OpalS.M. DePaloV.A. Anti-inflammatory cytokines.Chest200011741162117210.1378/chest.117.4.116210767254
    [Google Scholar]
  31. BaggioliniM. Clark-LewisI. Interleukin-8, a chemotactic and inflammatory cytokine.FEBS Lett.199230719710110.1016/0014‑5793(92)80909‑Z1639201
    [Google Scholar]
  32. BorishL.C. SteinkeJ.W. 2. Cytokines and chemokines.J. Allergy Clin. Immunol.20031112Suppl.S460S47510.1067/mai.2003.10812592293
    [Google Scholar]
  33. GrivennikovS.I. KarinM. Inflammatory cytokines in cancer: Tumour necrosis factor and interleukin 6 take the stage.Ann. Rheum. Dis.201170Suppl. 1i104i10810.1136/ard.2010.14014521339211
    [Google Scholar]
  34. BalkwillF. Tumour necrosis factor and cancer.Nat. Rev. Cancer20099536137110.1038/nrc262819343034
    [Google Scholar]
  35. AlspachE. LussierD.M. SchreiberR.D. Interferon γ and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity.Cold Spring Harb. Perspect. Biol.2019113a02848010.1101/cshperspect.a02848029661791
    [Google Scholar]
  36. LiuW. ZhangG.Q. ZhuD.Y. WangL.J. LiG.T. XuJ.G. JinX.L. ZhuY.M. YangX.Y. Long noncoding RNA ZFPM2-AS1 regulates ITGB1 by miR-1226-3p to promote cell proliferation and invasion in hepatocellular carcinoma.Eur. Rev. Med. Pharmacol. Sci.202024147612762032744687
    [Google Scholar]
  37. NagarshethN. WichaM.S. ZouW. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy.Nat. Rev. Immunol.201717955957210.1038/nri.2017.4928555670
    [Google Scholar]
  38. ChengY. MaX. WeiY. WeiX.W. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases.Biochim. Biophys. Acta Rev. Cancer20191871228931210.1016/j.bbcan.2019.01.00530703432
    [Google Scholar]
  39. HaH. DebnathB. NeamatiN. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases.Theranostics2017761543158810.7150/thno.1562528529637
    [Google Scholar]
  40. HughesC.E. NibbsR.J.B. A guide to chemokines and their receptors.FEBS J.2018285162944297110.1111/febs.1446629637711
    [Google Scholar]
  41. RohY.S. SekiE. Chemokines and chemokine receptors in the development of NAFLD.Adv. Exp. Med. Biol.20181061455310.1007/978‑981‑10‑8684‑7_429956205
    [Google Scholar]
  42. ShenS. ZhangY. ChenK.G. LuoY.L. WangJ. Cationic polymeric nanoparticle delivering ccr2 sirna to inflammatory monocytes for tumor microenvironment modification and cancer therapy.Mol. Pharm.20181593642365310.1021/acs.molpharmaceut.7b0099729337566
    [Google Scholar]
  43. WuY. AntonyS. MeitzlerJ.L. DoroshowJ.H. Molecular mechanisms underlying chronic inflammation-associated cancers.Cancer Lett.2014345216417310.1016/j.canlet.2013.08.01423988267
    [Google Scholar]
  44. GieseM.A. HindL.E. HuttenlocherA. Neutrophil plasticity in the tumor microenvironment.Blood2019133202159216710.1182/blood‑2018‑11‑84454830898857
    [Google Scholar]
  45. SrinivasU.S. TanB.W.Q. VellayappanB.A. JeyasekharanA.D. ROS and the DNA damage response in cancer.Redox Biol.20192510108410.1016/j.redox.2018.10108430612957
    [Google Scholar]
  46. BlaserH. DostertC. MakT.W. BrennerD. TNF and ROS crosstalk in inflammation.Trends Cell Biol.201626424926110.1016/j.tcb.2015.12.00226791157
    [Google Scholar]
  47. SosaV. MolinéT. SomozaR. PaciucciR. KondohH. LLeonartM.E. Oxidative stress and cancer: An overview.Ageing Res. Rev.201312137639010.1016/j.arr.2012.10.00423123177
    [Google Scholar]
  48. CheungE.C. VousdenK.H. The role of ROS in tumour development and progression.Nat. Rev. Cancer202222528029710.1038/s41568‑021‑00435‑035102280
    [Google Scholar]
  49. El-KenawiA. RuffellB. Inflammation, ROS, and mutagenesis.Cancer Cell201732672772910.1016/j.ccell.2017.11.01529232551
    [Google Scholar]
  50. Ramos-TovarE. MurielP. Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver.Antioxidants2020912127910.3390/antiox912127933333846
    [Google Scholar]
  51. ZhaoM. WangY. LiL. LiuS. WangC. YuanY. YangG. ChenY. ChengJ. LuY. LiuJ. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance.Theranostics20211141845186310.7150/thno.5090533408785
    [Google Scholar]
  52. PrasadS. GuptaS.C. TyagiA.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals.Cancer Lett.20173879510510.1016/j.canlet.2016.03.04227037062
    [Google Scholar]
  53. BlockK. GorinY. Aiding and abetting roles of NOX oxidases in cellular transformation.Nat. Rev. Cancer201212962763710.1038/nrc333922918415
    [Google Scholar]
  54. KrukJ. Aboul-EneinH.Y. Reactive oxygen and nitrogen species in carcinogenesis: implications of oxidative stress on the progression and development of several cancer types.Mini Rev. Med. Chem.2017171190491928245782
    [Google Scholar]
  55. De SanctisF. SandriS. FerrariniG. PagliarelloI. SartorisS. UgelS. MarigoI. MolonB. BronteV. The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment.Front. Immunol.201456910.3389/fimmu.2014.0006924605112
    [Google Scholar]
  56. KawanishiS. OhnishiS. MaN. HirakuY. MurataM. Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis.Int. J. Mol. Sci.2017188180810.3390/ijms1808180828825631
    [Google Scholar]
  57. MartínezM.C. AndriantsitohainaR. Reactive nitrogen species: Molecular mechanisms and potential significance in health and disease.Antioxid. Redox Signal.200911366970210.1089/ars.2007.199319014277
    [Google Scholar]
  58. MiaoZ. JiangS. DingM. SunS. MaY. YounisM.R. HeG. WangJ. LinJ. CaoZ. HuangP. ZhaZ. Ultrasmall rhodium nanozyme with RONS scavenging and photothermal activities for anti-inflammation and antitumor theranostics of colon diseases.Nano Lett.20202053079308910.1021/acs.nanolett.9b0503532348149
    [Google Scholar]
  59. HeG. KarinM. NF-κB and STAT3 - key players in liver inflammation and cancer.Cell Res.201121115916810.1038/cr.2010.18321187858
    [Google Scholar]
  60. SokolovaO. NaumannM. NF-κB signaling in gastric cancer.Toxins20179411910.3390/toxins904011928350359
    [Google Scholar]
  61. KarinM. Nuclear factor-κB in cancer development and progression.Nature2006441709243143610.1038/nature0487016724054
    [Google Scholar]
  62. HiranoT. HirayamaD. WagatsumaK. YamakawaT. YokoyamaY. NakaseH. Immunological mechanisms in inflammation-associated colon carcinogenesis.Int. J. Mol. Sci.2020219306210.3390/ijms2109306232357539
    [Google Scholar]
  63. PerkinsN.D. The diverse and complex roles of NF-κB subunits in cancer.Nat. Rev. Cancer201212212113210.1038/nrc320422257950
    [Google Scholar]
  64. DiDonatoJ.A. MercurioF. KarinM. NF-κB and the link between inflammation and cancer.Immunol. Rev.2012246137940010.1111/j.1600‑065X.2012.01099.x22435567
    [Google Scholar]
  65. TangB. TangF. WangZ. QiG. LiangX. LiB. YuanS. LiuJ. YuS. HeS. Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: Suppression by carnosic acid nanoparticle.Int. J. Nanomedicine2016116401642010.2147/IJN.S10128527942213
    [Google Scholar]
  66. BajorowiczB. KobylańskiM.P. GołąbiewskaA. NadolnaJ. Zaleska-MedynskaA. MalankowskaA. Quantum dot-decorated semiconductor micro- and nanoparticles: A review of their synthesis, characterization and application in photocatalysis.Adv. Colloid Interface Sci.201825635237210.1016/j.cis.2018.02.00329544654
    [Google Scholar]
  67. HuZ. SongB. XuL. ZhongY. PengF. JiX. ZhuF. YangC. ZhouJ. SuY. ChenS. HeY. HeS. Aqueous synthesized quantum dots interfere with the NF-κB pathway and confer anti-tumor, anti-viral and anti-inflammatory effects.Biomaterials201610818719610.1016/j.biomaterials.2016.08.04727639114
    [Google Scholar]
  68. HaydenM.S. GhoshS. Shared principles in NF-kappaB signaling.Cell2008132334436210.1016/j.cell.2008.01.02018267068
    [Google Scholar]
  69. AlaviM. HamidiM. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles.Drug Metab. Pers. Ther.20193412018003210.1515/dmpt‑2018‑003230707682
    [Google Scholar]
  70. FanJ.X. DengR.H. WangH. LiuX.H. WangX.N. QinR. JinX. LeiT.R. ZhengD. ZhouP.H. SunY. ZhangX.Z. Epigenetics-based tumor cells pyroptosis for enhancing the immunological effect of chemotherapeutic nanocarriers.Nano Lett.201919118049805810.1021/acs.nanolett.9b0324531558023
    [Google Scholar]
  71. Van der JeughtK. De KokerS. BialkowskiL. HeirmanC. Tjok JoeP. PercheF. MaenhoutS. BeversS. BroosK. DeswarteK. MalardV. HammadH. BarilP. BenvegnuT. JaffrèsP.A. KooijmansS.A.A. SchiffelersR. LienenklausS. MidouxP. PichonC. BreckpotK. ThielemansK. Dendritic cell targeting mRNA lipopolyplexes combine strong antitumor T-cell immunity with improved inflammatory safety.ACS Nano201812109815982910.1021/acsnano.8b0096630256609
    [Google Scholar]
  72. SahinU. KarikóK. TüreciÖ. mRNA-based therapeutics - developing a new class of drugs.Nat. Rev. Drug Discov.2014131075978010.1038/nrd427825233993
    [Google Scholar]
  73. LiL. KimS. HerndonJ.M. GoedegebuureP. BeltB.A. SatpathyA.T. FlemingT.P. HansenT.H. MurphyK.M. GillandersW.E. Cross-dressed CD8α+ /CD103+ dendritic cells prime CD8+ T cells following vaccination.Proc. Natl. Acad. Sci. USA201210931127161272110.1073/pnas.120346810922802630
    [Google Scholar]
  74. KormannM.S.D. HasenpuschG. AnejaM.K. NicaG. FlemmerA.W. Herber-JonatS. HuppmannM. MaysL.E. IllenyiM. SchamsA. GrieseM. BittmannI. HandgretingerR. HartlD. RoseneckerJ. RudolphC. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice.Nat. Biotechnol.201129215415710.1038/nbt.173321217696
    [Google Scholar]
  75. KarikóK. MuramatsuH. WelshF.A. LudwigJ. KatoH. AkiraS. WeissmanD. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability.Mol. Ther.200816111833184010.1038/mt.2008.20018797453
    [Google Scholar]
  76. AndriesO. Mc CaffertyS. De SmedtS.C. WeissR. SandersN.N. KitadaT. N1-methylpseudouridine-incorporated mRNA out performs pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice.J. Control. Release201521733734410.1016/j.jconrel.2015.08.05126342664
    [Google Scholar]
  77. KovacsS.B. MiaoE.A. Gasdermins: Effectors of pyroptosis.Trends Cell Biol.201727967368410.1016/j.tcb.2017.05.00528619472
    [Google Scholar]
  78. OrningP. WengD. StarheimK. RatnerD. BestZ. LeeB. BrooksA. XiaS. WuH. KelliherM.A. BergerS.B. GoughP.J. BertinJ. ProulxM.M. GoguenJ.D. KayagakiN. FitzgeraldK.A. LienE. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death.Science201836264181064106910.1126/science.aau281830361383
    [Google Scholar]
  79. JayaramanP. Sada-OvalleI. NishimuraT. AndersonA.C. KuchrooV.K. RemoldH.G. BeharS.M. IL-1β promotes antimicrobial immunity in macrophages by regulating TNFR signaling and caspase-3 activation.J. Immunol.201319084196420410.4049/jimmunol.120268823487424
    [Google Scholar]
  80. RodellC.B. ArlauckasS.P. CuccareseM.F. GarrisC.S. LiR. AhmedM.S. KohlerR.H. PittetM.J. WeisslederR. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy.Nat. Biomed. Eng.20182857858810.1038/s41551‑018‑0236‑831015631
    [Google Scholar]
  81. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  82. YangM. ZhangF. YangC. WangL. SungJ. GargP. ZhangM. MerlinD. Oral targeted delivery by nanoparticles enhances efficacy of an Hsp90 inhibitor by reducing systemic exposure in murine models of colitis and colitis-associated cancer.J. Crohn’s Colitis202014113014110.1093/ecco‑jcc/jjz11331168612
    [Google Scholar]
  83. KhandiaR. MunjalA.K. IqbalH.M.N. DhamaK. Heat shock proteins: Therapeutic perspectives in inflammatory disorders.Recent Pat. Inflamm. Allergy Drug Discov.20171029410410.2174/1872213X1066616121316330127978789
    [Google Scholar]
  84. Al-kaabiM.M. BakirW.A. GaidanH.A. Immunohistochemical expression of interlukin10 (IL10) and heat shock protein-90 (HSP-90) in prostatic carcinoma.Indian J. Pathol. Microbiol.202063223023410.4103/IJPM.IJPM_460_1932317521
    [Google Scholar]
  85. MoschenA.R. AdolphT.E. GernerR.R. WieserV. TilgH. Lipocalin-2: A master mediator of intestinal and metabolic inflammation.Trends Endocrinol. Metab.201728538839710.1016/j.tem.2017.01.00328214071
    [Google Scholar]
  86. LasryA. ZingerA. Ben-NeriahY. Inflammatory networks underlying colorectal cancer.Nat. Immunol.201617323024010.1038/ni.338426882261
    [Google Scholar]
  87. LinehanM.M. DickeyT.H. MolinariE.S. FitzgeraldM.E. PotapovaO. IwasakiA. PyleA.M. A minimal RNA ligand for potent RIG-I activation in living mice.Sci. Adv.201842e170185410.1126/sciadv.170185429492454
    [Google Scholar]
  88. JacobsonM.E. Wang-BishopL. BeckerK.W. WilsonJ.T. Delivery of 5′-triphosphate RNA with endosomolytic nanoparticles potently activates RIG-I to improve cancer immunotherapy.Biomater. Sci.20197254755910.1039/C8BM01064A30379158
    [Google Scholar]
  89. PuaV.S.C. HuilgolS. HillD. Evaluation of the treatment of non-melanoma skin cancers by surgical excision.Australas. J. Dermatol.200950317117510.1111/j.1440‑0960.2009.00531.x19659977
    [Google Scholar]
  90. XiY. GeJ. WangM. ChenM. NiuW. ChengW. XueY. LinC. LeiB. Bioactive anti-inflammatory, antibacterial, antioxidative silicon-based nanofibrous dressing enables cutaneous tumor photothermo-chemo therapy and infection-induced wound healing.ACS Nano20201432904291610.1021/acsnano.9b0717332031782
    [Google Scholar]
  91. ChenF. ZhuangX. LinL. YuP. WangY. ShiY. HuG. SunY. New horizons in tumor microenvironment biology: challenges and opportunities.BMC Med.20151314510.1186/s12916‑015‑0278‑725857315
    [Google Scholar]
  92. WolfM.J. HoosA. BauerJ. BoettcherS. KnustM. WeberA. SimonaviciusN. SchneiderC. LangM. StürzlM. CronerR.S. KonradA. ManzM.G. MochH. AguzziA. van LooG. PasparakisM. PrinzM. BorsigL. HeikenwalderM. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway.Cancer Cell20122219110510.1016/j.ccr.2012.05.02322789541
    [Google Scholar]
  93. XiaY. RaoL. YaoH. WangZ. NingP. ChenX. Engineering macrophages for cancer immunotherapy and drug delivery.Adv. Mater.20203240200205410.1002/adma.20200205432856350
    [Google Scholar]
  94. LiX.L. ZhouJ. ChenZ.R. ChngW.J. p53 mutations in colorectal cancer- molecular pathogenesis and pharmacological reactivation.World J. Gastroenterol.2015211849310.3748/wjg.v21.i1.8425574081
    [Google Scholar]
  95. SecchieroP. BoscoR. CeleghiniC. ZauliG. Recent advances in the therapeutic perspectives of Nutlin-3.Curr. Pharm. Des.201117656957710.2174/13816121179522258621391907
    [Google Scholar]
  96. LevineA.J. OrenM. The first 30 years of p53: Growing ever more complex.Nat. Rev. Cancer200991074975810.1038/nrc272319776744
    [Google Scholar]
  97. WangQ. ZhuangX. MuJ. DengZ.B. JiangH. ZhangL. XiangX. WangB. YanJ. MillerD. ZhangH.G. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids.Nat. Commun.201341186710.1038/ncomms288623695661
    [Google Scholar]
  98. KrausgruberT. BlazekK. SmallieT. AlzabinS. LockstoneH. SahgalN. HussellT. FeldmannM. UdalovaI.A. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses.Nat. Immunol.201112323123810.1038/ni.199021240265
    [Google Scholar]
  99. LawrenceT. NatoliG. Transcriptional regulation of macrophage polarization: Enabling diversity with identity.Nat. Rev. Immunol.2011111175076110.1038/nri308822025054
    [Google Scholar]
  100. Bauleth-RamosT. FeijãoT. GonçalvesA. ShahbaziM.A. LiuZ. BarriasC. OliveiraM.J. GranjaP. SantosH.A. SarmentoB. Colorectal cancer triple co-culture spheroid model to assess the biocompatibility and anticancer properties of polymeric nanoparticles.J. Control. Release202032339841110.1016/j.jconrel.2020.04.02532320816
    [Google Scholar]
  101. PetrosR.A. DeSimoneJ.M. Strategies in the design of nanoparticles for therapeutic applications.Nat. Rev. Drug Discov.20109861562710.1038/nrd259120616808
    [Google Scholar]
  102. BogdanC. Nitric oxide synthase in innate and adaptive immunity: An update.Trends Immunol.201536316117810.1016/j.it.2015.01.00325687683
    [Google Scholar]
  103. WaldnerM.J. NeurathM.F. Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development.Semin. Immunol.2014261757910.1016/j.smim.2013.12.00324447345
    [Google Scholar]
  104. LocksleyR.M. KilleenN. LenardoM.J. The TNF and TNF receptor superfamilies: Integrating mammalian biology.Cell2001104448750110.1016/S0092‑8674(01)00237‑911239407
    [Google Scholar]
  105. WangQ.S. GaoL.N. ZhuX.N. ZhangY. ZhangC.N. XuD. CuiY.L. Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma.Theranostics20199216239625510.7150/thno.3597231534548
    [Google Scholar]
  106. MartinS.J. Cell biology. Opening the cellular poison cabinet.Science201033060091330133110.1126/science.119946121127237
    [Google Scholar]
  107. HengartnerM.O. The biochemistry of apoptosis.Nature2000407680577077610.1038/3503771011048727
    [Google Scholar]
  108. RevathideviS. MunirajanA.K. Akt in cancer: Mediator and more.Semin. Cancer Biol.201959809110.1016/j.semcancer.2019.06.00231173856
    [Google Scholar]
  109. ChagparR.B. LinksP.H. PastorM.C. FurberL.A. HawryshA.D. ChamberlainM.D. AndersonD.H. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase.Proc. Natl. Acad. Sci. USA2010107125471547610.1073/pnas.090889910720212113
    [Google Scholar]
  110. AliR. DashevskyA. BodmeierR. Poly vinyl acetate and ammonio methacrylate copolymer as unconventional polymer blends increase the mechanical robustness of HPMC matrix tablets.Int. J. Pharm.20175161-23810.1016/j.ijpharm.2016.10.06927818241
    [Google Scholar]
  111. Shetab BoushehriM.A. SteinV. LamprechtA. Cargo-free particles of ammonio methacrylate copolymers: From pharmaceutical inactive ingredients to effective anticancer immunotherapeutics.Biomaterials201816611210.1016/j.biomaterials.2018.02.05329525567
    [Google Scholar]
  112. LeoneR.D. EmensL.A. Targeting adenosine for cancer immunotherapy.J. Immunother. Cancer2018615710.1186/s40425‑018‑0360‑829914571
    [Google Scholar]
  113. AntonioliL. PacherP. ViziE.S. HaskóG. CD39 and CD73 in immunity and inflammation.Trends Mol. Med.201319635536710.1016/j.molmed.2013.03.00523601906
    [Google Scholar]
  114. Jadidi-NiaraghF. AtyabiF. RastegariA. KheshtchinN. ArabS. HassanniaH. AjamiM. MirsaneiZ. HabibiS. MasoumiF. NoorbakhshF. ShokriF. HadjatiJ. CD73 specific siRNA loaded chitosan lactate nanoparticles potentiate the antitumor effect of a dendritic cell vaccine in 4T1 breast cancer bearing mice.J. Control. Release2017246465910.1016/j.jconrel.2016.12.01227993599
    [Google Scholar]
  115. NahidM.A. BensoL.M. ShinJ.D. MehmetH. HicksA. RamadasR.A. TLR4, TLR7/8 agonist-induced miR-146a promotes macrophage tolerance to MyD88-dependent TLR agonists.J. Leukoc. Biol.2016100233934910.1189/jlb.2A0515‑197R26908827
    [Google Scholar]
  116. MichaelisK.A. NorgardM.A. ZhuX. LevasseurP.R. SivagnanamS. LiudahlS.M. BurfeindK.G. OlsonB. PelzK.R. Angeles RamosD.M. MaurerH.C. OliveK.P. CoussensL.M. MorganT.K. MarksD.L. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer.Nat. Commun.2019101468210.1038/s41467‑019‑12657‑w31615993
    [Google Scholar]
  117. KimH. SehgalD. KucabaT.A. FergusonD.M. GriffithT.S. PanyamJ. Acidic pH-responsive polymer nanoparticles as a TLR7/8 agonist delivery platform for cancer immunotherapy.Nanoscale20181044208512086210.1039/C8NR07201A30403212
    [Google Scholar]
  118. TuckerG.C. Integrins: Molecular targets in cancer therapy.Curr. Oncol. Rep.2006829610310.1007/s11912‑006‑0043‑316507218
    [Google Scholar]
  119. GrafN. BielenbergD.R. KolishettiN. MuusC. BanyardJ. FarokhzadO.C. LippardS.J. α(V)β(3) integrin- targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug.ACS Nano2012654530453910.1021/nn301148e22584163
    [Google Scholar]
  120. KomoharaY. FujiwaraY. OhnishiK. TakeyaM. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv. Drug Deliv. Rev.201699Pt B180185
    [Google Scholar]
  121. GraffJ.W. DicksonA.M. ClayG. McCaffreyA.P. WilsonM.E. Identifying functional microRNAs in macrophages with polarized phenotypes.J. Biol. Chem.201228726218162182510.1074/jbc.M111.32703122549785
    [Google Scholar]
  122. TranT.H. RastogiR. ShelkeJ. AmijiM.M. Modulation of macrophage functional polarity towards anti-inflammatory phenotype with plasmid dna delivery in CD44 targeting hyaluronic acid nanoparticles.Sci. Rep.2015511663210.1038/srep1663226577684
    [Google Scholar]
  123. ParayathN.N. ParikhA. AmijiM.M. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating microRNA-125b.Nano Lett.20181863571357910.1021/acs.nanolett.8b0068929722542
    [Google Scholar]
  124. MaoJ. LiY. WuT. YuanC. ZengB. XuY. DaiL. A simple dual-pH responsive prodrug-based polymeric micelles for drug delivery.ACS Appl. Mater. Interfaces2016827171091711710.1021/acsami.6b0424727280955
    [Google Scholar]
  125. IliopoulosD. HirschH.A. StruhlK. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types.Cancer Res.20117193196320110.1158/0008‑5472.CAN‑10‑347121415163
    [Google Scholar]
  126. LuZ. LongY. CunX. WangX. LiJ. MeiL. YangY. LiM. ZhangZ. HeQ. A size-shrinkable nanoparticle-based combined anti-tumor and anti-inflammatory strategy for enhanced cancer therapy.Nanoscale201810219957997010.1039/C8NR01184B29770821
    [Google Scholar]
  127. LiJ. MooneyD.J. Designing hydrogels for controlled drug delivery.Nat. Rev. Mater.20161121607110.1038/natrevmats.2016.7129657852
    [Google Scholar]
  128. ChenM. TanY. DongZ. LuJ. HanX. JinQ. ZhuW. ShenJ. ChengL. LiuZ. ChenQ. Injectable anti-inflammatory nanofiber hydrogel to achieve systemic immunotherapy post local administration.Nano Lett.20202096763677310.1021/acs.nanolett.0c0268432787149
    [Google Scholar]
  129. GhajarC.M. Metastasis prevention by targeting the dormant niche.Nat. Rev. Cancer201515423824710.1038/nrc391025801619
    [Google Scholar]
  130. ChenQ. ZhangX.H.F. MassaguéJ. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs.Cancer Cell201120453854910.1016/j.ccr.2011.08.02522014578
    [Google Scholar]
  131. HeX. CaoH. WangH. TanT. YuH. ZhangP. YinQ. ZhangZ. LiY. Inflammatory monocytes loading protease-sensitive nanoparticles enable lung metastasis targeting and intelligent drug release for anti-metastasis therapy.Nano Lett.20171795546555410.1021/acs.nanolett.7b0233028758755
    [Google Scholar]
  132. ZhangS. LangerR. TraversoG. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease.Nano Today201716829610.1016/j.nantod.2017.08.00631186671
    [Google Scholar]
  133. LiW. LiY. LiuZ. KerdsakundeeN. ZhangM. ZhangF. LiuX. Bauleth-RamosT. LianW. MäkiläE. KemellM. DingY. SarmentoB. WiwattanapatapeeR. SalonenJ. ZhangH. HirvonenJ.T. LiuD. DengX. SantosH.A. Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine.Biomaterials201818532233210.1016/j.biomaterials.2018.09.02430267958
    [Google Scholar]
  134. JamesJ.P. RiisL.B. MalhamM. HøgdallE. LangholzE. NielsenB.S. MicroRNA biomarkers in IBD-differential diagnosis and prediction of colitis-associated cancer.Int. J. Mol. Sci.20202121789310.3390/ijms2121789333114313
    [Google Scholar]
  135. PitrodaS.P. ZhouT. RandyF SweisR.F. FilippoM. LabayE. BeckettM.A. MauceriH.J. Tumor endothelial inflammation predicts clinical outcome in diverse human cancers.PLoS One2012710e46104
    [Google Scholar]
  136. RiehlA. NémethJ. AngelP. HessJ. The receptor RAGE: Bridging inflammation and cancer.Cell Commun. Signal.2009711210.1186/1478‑811X‑7‑1219426472
    [Google Scholar]
  137. WeisS.M. ChereshD.A. Tumor angiogenesis: Molecular pathways and therapeutic targets.Nat. Med.201117111359137010.1038/nm.253722064426
    [Google Scholar]
  138. Morral-RuízG. Melgar-LesmesP. SolansC. García-CelmaM.J. Multifunctional polyurethane- urea nanoparticles to target and arrest inflamed vascular environment: A potential tool for cancer therapy and diagnosis.J. Control. Release2013171216317110.1016/j.jconrel.2013.06.02723831054
    [Google Scholar]
  139. CostaD.F. TorchilinV.P. Micelle-like nanoparticles as siRNA and miRNA carriers for cancer therapy.Biomed. Microdevices20182035910.1007/s10544‑018‑0298‑029998417
    [Google Scholar]
  140. PoonC. ChowdhuriS. KuoC.H. FangY. AlenghatF.J. HyattD. KaniK. GrossM.E. ChungE.J. Protein mimetic and anticancer properties of monocyte-targeting peptide amphiphile micelles.ACS Biomater. Sci. Eng.20173123273328210.1021/acsbiomaterials.7b0060029302619
    [Google Scholar]
  141. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.02720797419
    [Google Scholar]
  142. ParkJ.Y. PillingerM.H. AbramsonS.B. Prostaglandin E2 synthesis and secretion: The role of PGE2 synthases.Clin. Immunol.2006119322924010.1016/j.clim.2006.01.01616540375
    [Google Scholar]
  143. DuJ.Z. DuX.J. MaoC.Q. WangJ. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery.J. Am. Chem. Soc.201113344175601756310.1021/ja207150n21985458
    [Google Scholar]
  144. TsengS.J. LiaoZ.X. KaoS.H. ZengY.F. HuangK.Y. LiH.J. YangC.L. DengY.F. HuangC.F. YangS.C. YangP.C. KempsonI.M. Highly specific in vivo gene delivery for p53-mediated apoptosis and genetic photodynamic therapies of tumour.Nat. Commun.201561645610.1038/ncomms745625739372
    [Google Scholar]
  145. KalgutkarA. ZhaoZ. Discovery and design of selective cyclooxygenase-2 inhibitors as non-ulcerogenic, anti-inflammatory drugs with potential utility as anti-cancer agents.Curr. Drug Targets2001217910610.2174/138945001334883011465540
    [Google Scholar]
  146. ShengH. ShaoJ. MorrowJ.D. BeauchampR.D. DuBoisR.N. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells.Cancer Res.19985823623669443418
    [Google Scholar]
  147. HuangJ. XuY. XiaoH. XiaoZ. GuoY. ChengD. ShuaiX. Core-shell distinct nanodrug showing on-demand sequential drug release to act on multiple cell types for synergistic anticancer therapy.ACS Nano20191367036704910.1021/acsnano.9b0214931141661
    [Google Scholar]
  148. DeshmaneS.L. KremlevS. AminiS. SawayaB.E. Monocyte chemoattractant protein-1 (MCP-1): An overview.J. Interferon Cytokine Res.200929631332610.1089/jir.2008.002719441883
    [Google Scholar]
  149. TanX. HuL. ShuZ. ChenL. LiX. DuM. SunD. MaoX. DengS. HuangK. ZhangF. Role of CCR2 in the development of streptozotocin-treated diabetic cardiomyopathy.Diabetes201968112063207310.2337/db18‑123131439648
    [Google Scholar]
  150. HeC. ZhengS. LuoY. WangB. Exosome theranostics: Biology and translational medicine.Theranostics20188123725510.7150/thno.2194529290805
    [Google Scholar]
  151. Reales-CalderónJ.A. VazC. MonteolivaL. MoleroG. GilC. Candida albicans modifies the protein composition and size distribution of THP-1 macrophage-derived extracellular vesicles.J. Proteome Res.20171618710510.1021/acs.jproteome.6b0060527740763
    [Google Scholar]
  152. KausarH. JeyabalanJ. AqilF. ChabbaD. SidanaJ. SinghI.P. GuptaR.C. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells.Cancer Lett.20123251546210.1016/j.canlet.2012.05.02922659736
    [Google Scholar]
  153. KourembanasS. Exosomes: Vehicles of intercellular signaling, biomarkers, and vectors of cell therapy.Annu. Rev. Physiol.2015771132710.1146/annurev‑physiol‑021014‑07164125293529
    [Google Scholar]
  154. McDonaldM.K. TianY. QureshiR.A. GormleyM. ErtelA. GaoR. Aradillas LopezE. AlexanderG.M. SacanA. FortinaP. AjitS.K. Functional significance of macrophage-derived exosomes in inflammation and pain.Pain201415581527153910.1016/j.pain.2014.04.02924792623
    [Google Scholar]
  155. IsmailN. WangY. DakhlallahD. MoldovanL. AgarwalK. BatteK. ShahP. WislerJ. EubankT.D. TridandapaniS. PaulaitisM.E. PiperM.G. MarshC.B. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer.Blood2013121698499510.1182/blood‑2011‑08‑37479323144169
    [Google Scholar]
  156. MorishitaM. TakahashiY. MatsumotoA. NishikawaM. TakakuraY. Exosome-based tumor antigens–adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA.Biomaterials2016111556510.1016/j.biomaterials.2016.09.03127723556
    [Google Scholar]
  157. WangP. WangH. HuangQ. PengC. YaoL. ChenH. QiuZ. WuY. WangL. ChenW. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation.Theranostics2019961714172710.7150/thno.3071631037133
    [Google Scholar]
  158. ChengL. WangY. HuangL. Exosomes from M1-polarized macrophages potentiate the cancer vaccine by creating a pro-inflammatory microenvironment in the lymph node.Mol. Ther.20172571665167510.1016/j.ymthe.2017.02.00728284981
    [Google Scholar]
  159. McGhieT.K. WaltonM.C. The bioavailability and absorption of anthocyanins: Towards a better understanding.Mol. Nutr. Food Res.200751670271310.1002/mnfr.20070009217533653
    [Google Scholar]
  160. FangJ. Bioavailability of anthocyanins.Drug Metab. Rev.201446450852010.3109/03602532.2014.97808025347327
    [Google Scholar]
  161. KayC.D. Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans.Nutr. Res. Rev.200619113714610.1079/NRR200511619079881
    [Google Scholar]
  162. MunagalaR. AqilF. JeyabalanJ. AgrawalA.K. MuddA.M. KyakulagaA.H. SinghI.P. VadhanamM.V. GuptaR.C. Exosomal formulation of anthocyanidins against multiple cancer types.Cancer Lett.20173939410210.1016/j.canlet.2017.02.00428202351
    [Google Scholar]
  163. GustafsonH.H. Holt-CasperD. GraingerD.W. GhandehariH. Nanoparticle uptake: The phagocyte problem.Nano Today201510448751010.1016/j.nantod.2015.06.00626640510
    [Google Scholar]
  164. Nicolás-ÁvilaJ.Á. AdroverJ.M. HidalgoA. Neutrophils in homeostasis, immunity, and cancer.Immunity2017461152810.1016/j.immuni.2016.12.01228099862
    [Google Scholar]
  165. De FilippoK. DudeckA. HasenbergM. NyeE. van RooijenN. HartmannK. GunzerM. RoersA. HoggN. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation.Blood2013121244930493710.1182/blood‑2013‑02‑48621723645836
    [Google Scholar]
  166. XiaW. LiuY. ChengT. XuT. DongM. HuX. Correction to: Down-regulated lncRNA SBF2-AS1 inhibits tumorigenesis and progression of breast cancer by sponging microRNA-143 and repressing RRS1.J. Exp. Clin. Cancer Res.20203916010.1186/s13046‑020‑01563‑532264934
    [Google Scholar]
  167. LukB.T. ZhangL. Cell membrane-camouflaged nanoparticles for drug delivery.J Control Release2015220Pt B60060710.1016/j.jconrel.2015.07.019
    [Google Scholar]
  168. KangT. ZhuQ. WeiD. FengJ. YaoJ. JiangT. SongQ. WeiX. ChenH. GaoX. ChenJ. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis.ACS Nano20171121397141110.1021/acsnano.6b0647728075552
    [Google Scholar]
  169. LiR. HeY. ZhangS. QinJ. WangJ. Cell membrane-based nanoparticles: A new biomimetic platform for tumor diagnosis and treatment.Acta Pharm. Sin. B201881142210.1016/j.apsb.2017.11.00929872619
    [Google Scholar]
  170. DengG. SunZ. LiS. PengX. LiW. ZhouL. MaY. GongP. CaiL. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth.ACS Nano20181212120961210810.1021/acsnano.8b0529230444351
    [Google Scholar]
  171. WangQ. RenY. MuJ. EgilmezN.K. ZhuangX. DengZ. ZhangL. YanJ. MillerD. ZhangH.G. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites.Cancer Res.201575122520252910.1158/0008‑5472.CAN‑14‑309525883092
    [Google Scholar]
  172. MitchellM.J. WayneE. RanaK. SchafferC.B. KingM.R. TRAIL-coated leukocytes that kill cancer cells in the circulation.Proc. Natl. Acad. Sci. USA2014111393093510.1073/pnas.131631211124395803
    [Google Scholar]
  173. MassaguéJ. ObenaufA.C. Metastatic colonization by circulating tumour cells.Nature2016529758629830610.1038/nature1703826791720
    [Google Scholar]
  174. NguyenD.X. BosP.D. MassaguéJ. Metastasis: From dissemination to organ-specific colonization.Nat. Rev. Cancer20099427428410.1038/nrc262219308067
    [Google Scholar]
  175. MolinaroR. MartinezJ.O. ZingerA. De VitaA. StorciG. ArrighettiN. De RosaE. HartmanK.A. BasuN. TaghipourN. CorboC. TasciottiE. Leukocyte-mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma.Biomater. Sci.20208133334110.1039/C9BM01766F31714542
    [Google Scholar]
  176. TerrénI. OrrantiaA. VitalléJ. ZenarruzabeitiaO. BorregoF. NK cell metabolism and tumor microenvironment.Front. Immunol.201910227810.3389/fimmu.2019.0227831616440
    [Google Scholar]
  177. HuntingtonN.D. CursonsJ. RautelaJ. The cancer–natural killer cell immunity cycle.Nat. Rev. Cancer202020843745410.1038/s41568‑020‑0272‑z32581320
    [Google Scholar]
  178. ZanganehS. HutterG. SpitlerR. LenkovO. MahmoudiM. ShawA. PajarinenJ.S. NejadnikH. GoodmanS. MoseleyM. CoussensL.M. Daldrup-LinkH.E. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues.Nat. Nanotechnol.2016111198699410.1038/nnano.2016.16827668795
    [Google Scholar]
  179. ChooY.W. KangM. KimH.Y. HanJ. KangS. LeeJ.R. JeongG.J. KwonS.P. SongS.Y. GoS. JungM. HongJ. KimB.S. M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors.ACS Nano20181298977899310.1021/acsnano.8b0244630133260
    [Google Scholar]
  180. PastushenkoI. BlanpainC. EMT transition states during tumor progression and metastasis.Trends Cell Biol.201929321222610.1016/j.tcb.2018.12.00130594349
    [Google Scholar]
  181. PanW. ZhangX. GaoP. LiN. TangB. An anti-inflammatory nanoagent for tumor-targeted photothermal therapy.Chem. Commun.201955659645964810.1039/C9CC04486H31339129
    [Google Scholar]
  182. LiuY. BhattaraiP. DaiZ. ChenX. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer.Chem. Soc. Rev.20194872053210810.1039/C8CS00618K30259015
    [Google Scholar]
  183. XuQ. WanJ. BieN. SongX. YangX. YongT. ZhaoY. YangX. GanL. A biomimetic gold nanocages-based nanoplatform for efficient tumor ablation and reduced inflammation.Theranostics20188195362537810.7150/thno.2763130555552
    [Google Scholar]
  184. Martínez-LópezA.L. PanguaC. ReboredoC. CampiónR. Morales-GraciaJ. IracheJ.M. Protein-based nanoparticles for drug delivery purposes.Int. J. Pharm.202058111928910.1016/j.ijpharm.2020.11928932243968
    [Google Scholar]
  185. GuW. ZhangT. GaoJ. WangY. LiD. ZhaoZ. JiangB. DongZ. LiuH. Albumin-bioinspired iridium oxide nanoplatform with high photothermal conversion efficiency for synergistic chemo-photothermal of osteosarcoma.Drug Deliv.201926191892710.1080/10717544.2019.166251331526064
    [Google Scholar]
  186. PutnamC.D. ArvaiA.S. BourneY. TainerJ.A. Active and inhibited human catalase structures: Ligand and NADPH binding and catalytic mechanism.J. Mol. Biol.2000296129530910.1006/jmbi.1999.345810656833
    [Google Scholar]
  187. GalassoM. GambinoS. RomanelliM.G. DonadelliM. ScupoliM.T. Browsing the oldest antioxidant enzyme: Catalase and its multiple regulation in cancer.Free Radic. Biol. Med.202117226427210.1016/j.freeradbiomed.2021.06.01034129927
    [Google Scholar]
  188. GlorieuxC. CalderonP.B. Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach.Biol. Chem.2017398101095110810.1515/hsz‑2017‑013128384098
    [Google Scholar]
  189. ZhenW. LiuY. LinL. BaiJ. JiaX. TianH. JiangX. BSA-IrO2: Catalase-like nanoparticles with high photothermal conversion efficiency and a high x-ray absorption coefficient for anti-inflammation and antitumor theranostics.Angew. Chem. Int. Ed.20185732103091031310.1002/anie.20180446629888846
    [Google Scholar]
  190. ZhangH. GaoX.D. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides.Mater. Sci. Eng. C201770Pt 293594610.1016/j.msec.2016.03.04527772724
    [Google Scholar]
  191. WangC. SunW. WrightG. WangA.Z. GuZ. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody.Adv. Mater.201628408912892010.1002/adma.20150631227558441
    [Google Scholar]
  192. HaddenJ.W. Immunostimulants.Immunol. Today199314627528010.1016/0167‑5699(93)90045‑M8397769
    [Google Scholar]
  193. HuangZ. ZhangZ. JiangY. ZhangD. ChenJ. DongL. ZhangJ. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy.J. Control. Release2012158228629210.1016/j.jconrel.2011.11.01322119956
    [Google Scholar]
  194. AdamusT. KortylewskiM. The revival of CpG oligonucleotide-based cancer immunotherapies.Contemp. Oncol.201820181566010.5114/wo.2018.7388729628795
    [Google Scholar]
  195. PerryJ.L. TianS. SengottuvelN. HarrisonE.B. GorentlaB.K. KapadiaC.H. ChengN. LuftJ.C. TingJ.P.Y. DeSimoneJ.M. PecotC.V. Pulmonary delivery of nanoparticle-bound toll-like receptor 9 agonist for the treatment of metastatic lung cancer.ACS Nano20201467200721510.1021/acsnano.0c0220732463690
    [Google Scholar]
  196. GubinM.M. ZhangX. SchusterH. CaronE. WardJ.P. NoguchiT. IvanovaY. HundalJ. ArthurC.D. KrebberW.J. MulderG.E. ToebesM. VeselyM.D. LamS.S.K. KormanA.J. AllisonJ.P. FreemanG.J. SharpeA.H. PearceE.L. SchumacherT.N. AebersoldR. RammenseeH.G. MeliefC.J.M. MardisE.R. GillandersW.E. ArtyomovM.N. SchreiberR.D. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens.Nature2014515752857758110.1038/nature1398825428507
    [Google Scholar]
  197. BuchbinderE.I. HodiF.S. Immune-checkpoint blockade - durable cancer control.Nat. Rev. Clin. Oncol.2016132777810.1038/nrclinonc.2015.23726787285
    [Google Scholar]
  198. JeevanandamJ. PalK. DanquahM.K. Virus-like nanoparticles as a novel delivery tool in gene therapy.Biochimie2019157384710.1016/j.biochi.2018.11.00130408502
    [Google Scholar]
  199. HanafiL.A. BolducM. GagnéM.È.L. DufourF. LangelierY. BoulasselM.R. RoutyJ.P. LeclercD. LapointeR. Two distinct chimeric potexviruses share antigenic cross-presentation properties of MHC class I epitopes.Vaccine201028345617562610.1016/j.vaccine.2010.06.02420600515
    [Google Scholar]
  200. ZoglmeierC. BauerH. NörenbergD. WedekindG. BittnerP. SandholzerN. RappM. AnzD. EndresS. BourquinC. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice.Clin. Cancer Res.20111771765177510.1158/1078‑0432.CCR‑10‑267221233400
    [Google Scholar]
  201. LebelM. DaudelinJ.F. ChartrandK. TarrabE. KalinkeU. SavardP. LabrecqueN. LeclercD. LamarreA. Nanoparticle adjuvant sensing by TLR7 enhances CD8+ T cell-mediated protection from Listeria monocytogenes infection.J. Immunol.2014192310711078
    [Google Scholar]
  202. TalmadgeJ.E. Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy.Clin. Cancer Res.200713185243524810.1158/1078‑0432.CCR‑07‑018217875751
    [Google Scholar]
  203. GiraldoN.A. BechtE. RemarkR. DamotteD. Sautès-FridmanC. FridmanW.H. The immune contexture of primary and metastatic human tumours.Curr. Opin. Immunol.20142781510.1016/j.coi.2014.01.00124487185
    [Google Scholar]
  204. LebelM.È. ChartrandK. TarrabE. SavardP. LeclercD. LamarreA. Potentiating cancer immunotherapy using papaya mosaic virus-derived nanoparticles.Nano Lett.20161631826183210.1021/acs.nanolett.5b0487726891174
    [Google Scholar]
  205. ZhangQ. ZhangF. LiS. LiuR. JinT. DouY. ZhouZ. ZhangJ. A multifunctional nanotherapy for targeted treatment of colon cancer by simultaneously regulating tumor microenvironment.Theranostics20199133732375310.7150/thno.3437731281510
    [Google Scholar]
  206. VasanN. BaselgaJ. HymanD.M. A view on drug resistance in cancer.Nature2019575778229930910.1038/s41586‑019‑1730‑131723286
    [Google Scholar]
  207. JiS. YangX. ChenX. LiA. YanD. XuH. FeiH. Structure-tuned membrane active Ir-complexed oligoarginine overcomes cancer cell drug resistance and triggers immune responses in mice.Chem. Sci.202011349126913310.1039/D0SC03975F34094193
    [Google Scholar]
  208. KlębowskiB. DepciuchJ. Parlińska-WojtanM. BaranJ. Applications of noble metal-based nanoparticles in medicine.Int. J. Mol. Sci.20181912403110.3390/ijms1912403130551592
    [Google Scholar]
  209. GrizziF. FranceschiniB. Chiriva-InternatiM. LiuY. HermonatP.L. DioguardiN. Mast cells and human hepatocellular carcinoma.World J. Gastroenterol.2003971469147310.3748/wjg.v9.i7.146912854143
    [Google Scholar]
  210. PalR. ChakrabortyB. NathA. SinghL.M. AliM. RahmanD.S. GhoshS.K. BasuA. BhattacharyaS. BaralR. SenguptaM. Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: An in vitro approach.Int. Immunopharmacol.20163833234110.1016/j.intimp.2016.06.00627344639
    [Google Scholar]
  211. ChakrabortyB. PalR. AliM. SinghL.M. Shahidur RahmanD. Kumar GhoshS. SenguptaM. Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma.Cell. Mol. Immunol.201613219120510.1038/cmi.2015.0525938978
    [Google Scholar]
  212. SenguptaM. PalR. NathA. ChakrabortyB. SinghL.M. DasB. GhoshS.K. Anticancer efficacy of noble metal nanoparticles relies on reprogramming tumor-associated macrophages through redox pathways and pro-inflammatory cytokine cascades.Cell. Mol. Immunol.201815121088109010.1038/s41423‑018‑0046‑729799021
    [Google Scholar]
  213. WangS. ChenY. WangS. LiP. MirkinC.A. FarhaO.K. DNA-functionalized metal-organic framework nanoparticles for intracellular delivery of proteins.J. Am. Chem. Soc.201914162215221910.1021/jacs.8b1270530669839
    [Google Scholar]
  214. ChenT.T. YiJ.T. ZhaoY.Y. ChuX. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins.J. Am. Chem. Soc.2018140319912992010.1021/jacs.8b0445730008215
    [Google Scholar]
  215. WuM.X. YangY.W. Metal-Organic Framework (MOF)-based drug/cargo delivery and cancer therapy.Adv. Mater.20172923160613410.1002/adma.20160613428370555
    [Google Scholar]
  216. JiZ. ZhangH. LiuH. YaghiO.M. YangP. Cytoprotective metal-organic frameworks for anaerobic bacteria.Proc. Natl. Acad. Sci. USA201811542105821058710.1073/pnas.180882911530275326
    [Google Scholar]
  217. ChenW. WuC. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine.Dalton Trans.20184772114213310.1039/c7dt04116k29369314
    [Google Scholar]
  218. Gil-IzquierdoA. GilM.I. FerreresF. Tomás-BarberánF.A. In vitro availability of flavonoids and other phenolics in orange juice.J. Agric. Food Chem.20014921035104110.1021/jf000052811262068
    [Google Scholar]
  219. SullivanB.P. MeyerT.J. StershicM.T. KeeferL.K. Acceleration of N-nitrosation reactions by electrophiles.IARC Sci. Publ.19911053703741855883
    [Google Scholar]
  220. KrishnanG. SubramaniyanJ. Chengalvarayan SubramaniP. MuralidharanB. ThiruvengadamD. Hesperetin conjugated PEGylated gold nanoparticles exploring the potential role in anti-inflammation and anti-proliferation during diethylnitrosamine-induced hepatocarcinogenesis in rats.Asian J. Pharm. Sci.201712544245510.1016/j.ajps.2017.04.00132104357
    [Google Scholar]
  221. ZaltsA. El HasiC. RubioD. UreñaA. D’OnofrioA. Pattern formation driven by an acid-base neutralization reaction in aqueous media in a gravitational field.Phys. Rev. E Stat. Nonlin. Soft Matter Phys.200877101530410.1103/PhysRevE.77.01530418351907
    [Google Scholar]
  222. ZhuX. HanW. LiuY. WangH. LinD. FuZ. HeY. YinX. LuC. YangH. Rational design of a prodrug to inhibit self-inflammation for cancer treatment.Nanoscale202113115817582510.1039/D1NR00132A33710220
    [Google Scholar]
  223. DuránN. SeabraA.B. Metallic oxide nanoparticles: State of the art in biogenic syntheses and their mechanisms.Appl. Microbiol. Biotechnol.201295227528810.1007/s00253‑012‑4118‑922639143
    [Google Scholar]
  224. zhaoJ. ZhangZ. XueY. WangG. ChengY. PanY. ZhaoS. HouY. Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with the TLR3 agonist poly (I:C) promote melanoma regression.Theranostics20188226307632110.7150/thno.2974630613299
    [Google Scholar]
  225. ColeA.J. YangV.C. DavidA.E. Cancer theranostics: The rise of targeted magnetic nanoparticles.Trends Biotechnol.201129732333210.1016/j.tibtech.2011.03.00121489647
    [Google Scholar]
  226. YangY. TianQ. WuS. LiY. YangK. YanY. ShangL. LiA. ZhangL. Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy.Biomaterials202127112073910.1016/j.biomaterials.2021.12073933690102
    [Google Scholar]
  227. ManS. LiM. ZhouJ. WangH. ZhangJ. MaL. Polyethyleneimine coated Fe3O4 magnetic nanoparticles induce autophagy, NF-κB and TGF-β signaling pathway activation in HeLa cervical carcinoma cells via reactive oxygen species generation.Biomater. Sci.20208120121110.1039/C9BM01563A31664285
    [Google Scholar]
  228. IllésE. PatraS.G. MarksV. MizrahiA. MeyersteinD. The FeII(citrate) Fenton reaction under physiological conditions.J. Inorg. Biochem.202020611101810.1016/j.jinorgbio.2020.11101832050088
    [Google Scholar]
  229. SindrilaruA. PetersT. WieschalkaS. BaicanC. BaicanA. PeterH. HainzlA. SchatzS. QiY. SchlechtA. WeissJ.M. WlaschekM. SunderkötterC. Scharffetter-KochanekK. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice.J. Clin. Invest.2011121398599710.1172/JCI4449021317534
    [Google Scholar]
  230. LiuX. YanB. LiY. MaX. JiaoW. ShiK. ZhangT. ChenS. HeY. LiangX.J. FanH. Graphene oxide- grafted magnetic nanorings mediated magnetothermodynamic therapy favoring reactive oxygen species-related immune response for enhanced antitumor efficacy.ACS Nano20201421936195010.1021/acsnano.9b0832031961656
    [Google Scholar]
  231. SolinasG. GermanoG. MantovaniA. AllavenaP. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation.J. Leukoc. Biol.20098651065107310.1189/jlb.060938519741157
    [Google Scholar]
  232. MartinezF.O. SicaA. MantovaniA. LocatiM. Macrophage activation and polarization.Front. Biosci.2008131345346110.2741/269217981560
    [Google Scholar]
  233. VigerM.L. SankaranarayananJ. de Gracia LuxC. ChanM. AlmutairiA. Collective activation of MRI agents via encapsulation and disease-triggered release.J. Am. Chem. Soc.2013135217847785010.1021/ja403167p23672342
    [Google Scholar]
  234. SongM. LiuT. ShiC. ZhangX. ChenX. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia.ACS Nano201610163364710.1021/acsnano.5b0677926650065
    [Google Scholar]
  235. ChenY.C. HuangX.C. LuoY.L. ChangY.C. HsiehY.Z. HsuH.Y. Non-metallic nanomaterials in cancer theranostics: A review of silica- and carbon-based drug delivery systems.Sci. Technol. Adv. Mater.201314404440710.1088/1468‑6996/14/4/04440727877592
    [Google Scholar]
  236. ZhouJ. LiM. LimW.Q. LuoZ. PhuaS.Z.F. HuoR. LiL. LiK. DaiL. LiuJ. CaiK. ZhaoY. A transferrin-conjugated hollow nanoplatform for redox-controlled and targeted chemotherapy of tumor with reduced inflammatory reactions.Theranostics20188251853210.7150/thno.2119429290824
    [Google Scholar]
  237. SuraiP. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives.Antioxidants20154120424710.3390/antiox401020426785346
    [Google Scholar]
  238. GommeP.T. McCannK.B. BertoliniJ. Transferrin: Structure, function and potential therapeutic actions.Drug Discov. Today200510426727310.1016/S1359‑6446(04)03333‑115708745
    [Google Scholar]
  239. FadeelB. Garcia-BennettA.E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications.Adv. Drug Deliv. Rev.201062336237410.1016/j.addr.2009.11.00819900497
    [Google Scholar]
  240. BabbsC.F. Oxygen radicals in ulcerative colitis.Free Radic. Biol. Med.199213216918110.1016/0891‑5849(92)90079‑V1355459
    [Google Scholar]
  241. SimmondsN.J. RamptonD.S. Inflammatory bowel disease-a radical view.Gut199334786586810.1136/gut.34.7.8658344570
    [Google Scholar]
  242. NguyenT.T. TrinhN.T. TranH.N. TranH.T. LeP.Q. NgoD.N. Tran-VanH. Van VoT. VongL.B. NagasakiY. Improving silymarin oral bioavailability using silica-installed redox nanoparticle to suppress inflammatory bowel disease.J. Control Release2021331515524
    [Google Scholar]
  243. LaoC.D. RuffinM.T.IV NormolleD. HeathD.D. MurrayS.I. BaileyJ.M. BoggsM.E. CrowellJ. RockC.L. BrennerD.E. Dose escalation of a curcuminoid formulation.BMC Complement. Altern. Med.2006611010.1186/1472‑6882‑6‑1016545122
    [Google Scholar]
  244. ShuklaS. ZaherH. HartzA. BauerB. WareJ.A. AmbudkarS.V. Curcumin inhibits the activity of ABCG2/BCRP1, a multidrug resistance-linked ABC drug transporter in mice.Pharm. Res.200926248048710.1007/s11095‑008‑9735‑818841445
    [Google Scholar]
  245. SenS. SharmaH. SinghN. Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway.Biochem. Biophys. Res. Commun.200533141245125210.1016/j.bbrc.2005.04.04415883009
    [Google Scholar]
  246. MaZ. WangN. HeH. TangX. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application.J. Control Release2019316359380
    [Google Scholar]
  247. ZhiD. YangT. O'HaganJ. ZhangS. DonnellyR.F. Photothermal therapy. J. Control Release2020325527110.1016/j.jconrel.2020.09.02132619742
    [Google Scholar]
  248. MelamedJ.R. EdelsteinR.S. DayE.S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy.ACS Nano20159161110.1021/acsnano.5b0002125590560
    [Google Scholar]
  249. WangH. ChangJ. PanW. LiN. TangB. A self- assembly of an active tumor-targeted photothermal agent for enhanced anti-inflammatory cancer therapy.Nanoscale20191139180211802510.1039/C9NR06489C31560009
    [Google Scholar]
  250. GrivennikovS.I. GretenF.R. KarinM. Immunity, inflammation, and cancer.Cell2010140688389910.1016/j.cell.2010.01.02520303878
    [Google Scholar]
  251. DongQ. WangX. HuX. XiaoL. ZhangL. SongL. XuM. ZouY. ChenL. ChenZ. TanW. Simultaneous application of photothermal therapy and an anti-inflammatory prodrug using pyrene-aspirin-loaded gold nanorod graphitic nanocapsules.Angew. Chem. Int. Ed.201857117718110.1002/anie.20170964829125675
    [Google Scholar]
  252. BeaugerieL. ItzkowitzS.H. Cancers complicating inflammatory bowel disease.N. Engl. J. Med.2015372151441145210.1056/NEJMra140371825853748
    [Google Scholar]
  253. VongL.B. YoshitomiT. MatsuiH. NagasakiY. Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer.Biomaterials201555546310.1016/j.biomaterials.2015.03.03725934452
    [Google Scholar]
  254. WegielB. GalloD. CsizmadiaE. HarrisC. BelcherJ. VercellottiG.M. PenachoN. SethP. SukhatmeV. AhmedA. PandolfiP.P. HelczynskiL. BjartellA. PerssonJ.L. OtterbeinL.E. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth.Cancer Res.201373237009702110.1158/0008‑5472.CAN‑13‑107524121491
    [Google Scholar]
  255. OtterbeinL.E. BachF.H. AlamJ. SoaresM. Tao LuH. WyskM. DavisR.J. FlavellR.A. ChoiA.M.K. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway.Nat. Med.20006442242810.1038/7468010742149
    [Google Scholar]
  256. WangS.B. ZhangC. ChenZ.X. YeJ.J. PengS.Y. RongL. LiuC.J. ZhangX.Z. A versatile carbon monoxide nanogenerator for enhanced tumor therapy and anti-inflammation.ACS Nano20191355523553210.1021/acsnano.9b0034531046229
    [Google Scholar]
  257. KwiatkowskiS. KnapB. PrzystupskiD. SaczkoJ. KędzierskaE. Knap-CzopK. KotlińskaJ. MichelO. KotowskiK. KulbackaJ. Photodynamic therapy – mechanisms, photosensitizers and combinations.Biomed. Pharmacother.20181061098110710.1016/j.biopha.2018.07.04930119176
    [Google Scholar]
  258. BarthB.M. SharmaR. AltınoǧluE.İ. MorganT.T. ShanmugavelandyS.S. KaiserJ.M. McGovernC. MattersG.L. SmithJ.P. KesterM. AdairJ.H. Bioconjugation of calcium phosphosilicate composite nanoparticles for selective targeting of human breast and pancreatic cancers in vivo.ACS Nano2010431279128710.1021/nn901297q20180585
    [Google Scholar]
  259. MaceykaM. MilstienS. SpiegelS. Sphingosine-1-phosphate: The swiss army knife of sphingolipid signaling. J. Lipids Res200950 SupplS272S27610.1194/jlr.R800065‑JLR200
    [Google Scholar]
  260. HaitN.C. AllegoodJ. MaceykaM. StrubG.M. HarikumarK.B. SinghS.K. LuoC. MarmorsteinR. KordulaT. MilstienS. SpiegelS. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate.Science200932559451254125710.1126/science.117670919729656
    [Google Scholar]
  261. BarthB.M. ShanmugavelandyS.S. KaiserJ.M. McGovernC. AltınoğluE.İ. HaakensonJ.K. HengstJ.A. GiliusE.L. KnuppS.A. FoxT.E. SmithJ.P. RittyT.M. AdairJ.H. KesterM. Photoimmunonanotherapy reveals an anticancer role for sphingosine kinase 2 and dihydrosphingosine-1-phosphate.ACS Nano2013732132214410.1021/nn304862b23373542
    [Google Scholar]
  262. LiuB. LiC. ChengZ. HouZ. HuangS. LinJ. Functional nanomaterials for near-infrared-triggered cancer therapy.Biomater. Sci.20164689090910.1039/C6BM00076B26971704
    [Google Scholar]
  263. ZouL. WangH. HeB. ZengL. TanT. CaoH. HeX. ZhangZ. GuoS. LiY. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics.Theranostics20166676277210.7150/thno.1498827162548
    [Google Scholar]
  264. LiB. HaoG. SunB. GuZ. XuZ.P. Engineering a therapy-induced “immunogenic cancer cell death” amplifier to boost systemic tumor elimination.Adv. Funct. Mater.20203022190974510.1002/adfm.201909745
    [Google Scholar]
  265. ChenQ. ChenM. LiuZ. Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses.Chem. Soc. Rev.201948225506552610.1039/C9CS00271E31589233
    [Google Scholar]
  266. DuanX. ChanC. LinW. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy.Angew. Chem. Int. Ed.201958367068010.1002/anie.20180488230016571
    [Google Scholar]
  267. ZhouJ. WangG. ChenY. WangH. HuaY. CaiZ. Immunogenic cell death in cancer therapy: Present and emerging inducers.J. Cell. Mol. Med.20192384854486510.1111/jcmm.1435631210425
    [Google Scholar]
  268. JiaoX. SunL. ZhangW. RenJ. ZhangL. CaoY. XuZ. KangY. XueP. Engineering oxygen-deficient ZrO2-x nanoplatform as therapy-activated “immunogenic cell death (ICD)” inducer to synergize photothermal-augmented sonodynamic tumor elimination in NIR-II biological window.Biomaterials202127212078710.1016/j.biomaterials.2021.12078733819815
    [Google Scholar]
  269. AgrawalS. BelghitiJ. Oncologic resection for malignant tumors of the liver.Ann. Surg.2011253465666510.1097/SLA.0b013e3181fc08ca21475004
    [Google Scholar]
  270. WuJ. WaxmanD.J. Immunogenic chemotherapy: Dose and schedule dependence and combination with immunotherapy.Cancer Lett.201841921022110.1016/j.canlet.2018.01.05029414305
    [Google Scholar]
  271. ShahV. KocharP. Brain cancer: Implication to disease, therapeutic strategies and tumor targeted drug delivery approaches.Recent Pat. Anticancer Drug Discov.2018131708529189177
    [Google Scholar]
  272. LiuQ. LiaoQ. ZhaoY. Chemotherapy and tumor microenvironment of pancreatic cancer.Cancer Cell Int.20171716810.1186/s12935‑017‑0437‑328694739
    [Google Scholar]
  273. LiaoZ. LinS.H. CoxJ.D. Status of particle therapy for lung cancer.Acta Oncol.201150674575610.3109/0284186X.2011.59014821767170
    [Google Scholar]
  274. ChenX. SongJ. ChenX. YangH. X-ray-activated nanosystems for theranostic applications.Chem. Soc. Rev.201948113073310110.1039/C8CS00921J31106315
    [Google Scholar]
  275. Romero ArenasM.A. SuiD. GrubbsE.G. LeeJ.E. PerrierN.D. Adrenal metastectomy is safe in selected patients.World J. Surg.20143861336134210.1007/s00268‑014‑2454‑x24452292
    [Google Scholar]
  276. EsnaolaN.F. MeyerJ.E. KarachristosA. MarankiJ.L. CampE.R. DenlingerC.S. Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma.Cancer201612291349136910.1002/cncr.2969226799932
    [Google Scholar]
  277. CunkelmanB. ChenE. PetrykA. TateJ. ThappaS. CollierR. HoopesP. Development of a biodegradable iron oxide nanoparticle gel for tumor bed therapy.In: Energy-based Treatment of Tissue and Assessment VII.2013858485841110.1117/12.2007310
    [Google Scholar]
  278. AttaluriA. KandalaS.K. ZhouH. WablerM. DeWeeseT.L. IvkovR. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.Int. J. Hyperthermia202037310811910.1080/02656736.2020.1798514
    [Google Scholar]
  279. LordickF. GockelI. Chances, risks and limitations of neoadjuvant therapy in surgical oncology.Innov. Surg. Sci.20161131110.1515/iss‑2016‑000431579713
    [Google Scholar]
  280. YuW. SunJ. LiuF. YuS. HuJ. ZhaoY. WangX. LiuX. Treating immunologically cold tumors by precise cancer photoimmunotherapy with an extendable nanoplatform.ACS Appl. Mater. Interfaces20201236400024001210.1021/acsami.0c0946932805869
    [Google Scholar]
  281. HuangL. LiY. DuY. ZhangY. WangX. DingY. YangX. MengF. TuJ. LuoL. SunC. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy.Nat. Commun.2019101487110.1038/s41467‑019‑12771‑931653838
    [Google Scholar]
  282. HarrisE.E.R. SmallW.Jr. Intraoperative radiotherapy for breast cancer.Front. Oncol.2017731710.3389/fonc.2017.0031729312887
    [Google Scholar]
  283. SunJ. LiY. TengY. WangS. GuoJ. WangC. NIR-controlled HSP90 inhibitor release from hollow mesoporous nanocarbon for synergistic tumor photothermal therapy guided by photoacoustic imaging.Nanoscale20201227147751478710.1039/D0NR02896G32627780
    [Google Scholar]
  284. WangS.B. ZhangC. YeJ.J. ZouM.Z. LiuC.J. ZhangX.Z. Near-infrared light responsive nanoreactor for simultaneous tumor photothermal therapy and carbon monoxide-mediated anti-inflammation.ACS Cent. Sci.20206455556510.1021/acscentsci.9b0134232342005
    [Google Scholar]
  285. SunL. WangP. ZhangJ. SunY. SunS. XuM. ZhangL. WangS. LiangX. CuiL. Design and application of inorganic nanoparticles for sonodynamic cancer therapy.Biomater. Sci.2021961945196010.1039/D0BM01875A33522523
    [Google Scholar]
  286. JabeenF. Najam-ul-HaqM. JaveedR. HuckC. BonnG. Au-nanomaterials as a superior choice for near-infrared photothermal therapy.Molecules20141912205802059310.3390/molecules19122058025501919
    [Google Scholar]
  287. AlaargA. Pérez-MedinaC. MetselaarJ.M. NahrendorfM. FayadZ.A. StormG. MulderW.J.M. Applying nanomedicine in maladaptive inflammation and angiogenesis.Adv. Drug Deliv. Rev.201711914315810.1016/j.addr.2017.05.00928506745
    [Google Scholar]
  288. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.10827834398
    [Google Scholar]
  289. PhillipsM.C. MousaS.A. Clinical application of nano- targeting for enhancing chemotherapeutic efficacy and safety in cancer management.Nanomedicine202217640542110.2217/nnm‑2021‑036135118878
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673277325231229093344
Loading
/content/journals/cmc/10.2174/0109298673277325231229093344
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; chronic infection; inflammation; M1/M2 macrophage; mechanism; Nanomedicine; therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test