Skip to content
2000
Volume 32, Issue 12
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The COVID-19 pandemic significantly impacted the global populace, resulting in a staggering number of deaths across the globe. New approaches and biomarkers to evaluate disease progression are crucial for improving disease management. In this context, serum proteomics has emerged as a promising tool for identifying molecular alterations related to COVID-19. This work carried out a bibliometric evaluation of the current status and trends of studies applying serum proteomics to COVID-19 subjects. The search was performed using Web of Science and Scopus databases, and the results were analyzed in VOSviewer software. The investigation was limited to articles published between January 2020 and February 2023. The analysis found 48 articles, primarily experimental studies. China is the most influential country in this field, followed by the USA. The co-occurrence analysis performed by VOSviewer showed 170 keywords, of which 9 reached the occurrence threshold and were divided into two groups. The most cited words were related to biomarker identification and the use of proteomics for diagnosing and treating COVID-19. The most cited proteins include those classically associated with the immune system (IgG, IgM, interleukins, CXCL, CCL, MCP, CRP) and SAA1, SAA1, ApoA-1, TTR (prealbumin), SerpinA and ITIH4. Other studies have validated the predictive value of these serum markers and have the potential to improve the management of COVID-19 patients. The findings highlighted in this bibliometric study can help the researchers design new projects to enhance our understanding of the complex interplay between SARS-CoV-2 and host immunity.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673286915240329063441
2024-04-05
2025-09-03
Loading full text...

Full text loading...

References

  1. YesudhasD. SrivastavaA. GromihaM.M. COVID-19 outbreak: History, mechanism, transmission, structural studies and therapeutics.Infection202149219921310.1007/s15010‑020‑01516‑232886331
    [Google Scholar]
  2. UmakanthanS. SahuP. RanadeA.V. BukeloM.M. RaoJ.S. Abrahao-MachadoL.F. DahalS. KumarH. KvD. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19).Postgrad. Med. J.202096114275375832563999
    [Google Scholar]
  3. OchaniR. AsadA. YasminF. ShaikhS. KhalidH. BatraS. SohailM.R. MahmoodS.F. OchaniR. Hussham ArshadM. KumarA. SuraniS. COVID-19 pandemic: From origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management.Infez. Med.2021291203633664170
    [Google Scholar]
  4. SreepadmanabhM. SahuA.K. ChandeA. COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine development.J. Biosci.202045114810.1007/s12038‑020‑00114‑633410425
    [Google Scholar]
  5. HosteL. Van PaemelR. HaerynckF. Multisystem inflammatory syndrome in children related to COVID-19: A systematic review.Eur. J. Pediatr.202118072019203410.1007/s00431‑021‑03993‑533599835
    [Google Scholar]
  6. van KlaverenD. ZanosT.P. NelsonJ. LevyT.J. ParkJ.G. Retel HelmrichI.R.A. RietjensJ.A.C. BasileM.J. HajizadehN. LingsmaH.F. KentD.M. Prognostic models for COVID-19 needed updating to warrant transportability over time and space.BMC Med.202220145610.1186/s12916‑022‑02651‑336424619
    [Google Scholar]
  7. LiuE. SmythR.L. LiQ. QaseemA. FlorezI.D. MathewJ.L. AmerY.S. EstillJ. LuQ. FuZ. LuX. ChanE.S.Y. SchwarzeJ. WongG.W.K. FukuokaT. AhnH.S. LeeM.S. NurdiatiD. CaoB. TuW. QianY. ZhaoS. DongX. LuoX. ChenZ. LiG. ZhangX. ZhaoX. XuH. XuF. ShiY. ZhaoR. ZhaoY. LeiJ. ZhengX. WangM. YangS. FengX. WuL. HeZ. LiuS. WangQ. SongY. LuoZ. ZhouQ. GuyattG. ChenY. LiQ. Guidelines for the prevention and management of children and adolescents with COVID-19.Eur. J. Pediatr.2022181124019403710.1007/s00431‑022‑04615‑436109390
    [Google Scholar]
  8. MurthyS. GomersallC.D. FowlerR.A. Care for critically ill patients with COVID-19.JAMA2020323151499150010.1001/jama.2020.363332159735
    [Google Scholar]
  9. Gallo MarinB. AghagoliG. LavineK. YangL. SiffE.J. ChiangS.S. Salazar-MatherT.P. DumencoL. SavariaM.C. AungS.N. FlaniganT. MichelowI.C. Predictors of COVID -19 severity: A literature review.Rev. Med. Virol.202131111010.1002/rmv.214632845042
    [Google Scholar]
  10. LongB. CariusB.M. ChavezS. LiangS.Y. BradyW.J. KoyfmanA. GottliebM. Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation.Am. J. Emerg. Med.202254465710.1016/j.ajem.2022.01.02835121478
    [Google Scholar]
  11. Mendonça FilhoV.C.M. de OliveiraA.G. MaiaI.F.V.C. de FalconeA.C.M. BetiniB.G. RezendeL.B. Magri AlvesF.H. COVID-19 in the nervous system: Physiopathology and neurological manifestations.Arq. Neuropsiquiatr.202381875676310.1055/s‑0043‑176912337402400
    [Google Scholar]
  12. XieZ. HuiH. ZhaoZ. YuW. WuR. ZhuY. SongY. CaoB. ShiW. ZhaoD. ZhaoY. LvJ. YaoQ. DuanY. LiJ. ZhangH. ZhouL. WangX. TianY. ZhaoG. Nervous system manifestations related to COVID-19 and their possible mechanisms.Brain Res. Bull.2022187637410.1016/j.brainresbull.2022.06.01435772604
    [Google Scholar]
  13. SteinS.R. RamelliS.C. GrazioliA. ChungJ.Y. SinghM. YindaC.K. WinklerC.W. SunJ. DickeyJ.M. YlayaK. KoS.H. PlattA.P. BurbeloP.D. QuezadoM. PittalugaS. PurcellM. MunsterV.J. BelinkyF. Ramos-BenitezM.J. BoritzE.A. LachI.A. HerrD.L. RabinJ. SahariaK.K. MadathilR.J. TabatabaiA. SoherwardiS. McCurdyM.T. BabyakA.L. Perez ValenciaL.J. CurranS.J. RichertM.E. YoungW.J. YoungS.P. GasmiB. Sampaio De MeloM. DesarS. TadrosS. NasirN. JinX. RajanS. DikogluE. OzkayaN. SmithG. EmanuelE.R. KelsallB.L. OliveraJ.A. BlawasM. StarR.A. HaysN. SingireddyS. WuJ. RajaK. CurtoR. ChungJ.E. BorthA.J. BowersK.A. WeicholdA.M. MinorP.A. MoshrefM.A.N. KellyE.E. SajadiM.M. ScaleaT.M. TranD. DahiS. DeatrickK.B. KrauseE.M. HerroldJ.A. HochbergE.S. CornachioneC.R. LevineA.R. RichardsJ.E. ElderJ. BurkeA.P. MazzeffiM.A. ChristensonR.H. ChancerZ.A. AbdulmahdiM. SophaS. GoldbergT. SangwanY. SudanoK. BlumeD. RadinB. ArnoukM. EaganJ.W.Jr PalermoR. HarrisA.D. PohidaT. Garmendia-CedillosM. DoldG. SaglioE. PhamP. PetersonK.E. CohenJ.I. de WitE. VannellaK.M. HewittS.M. KleinerD.E. ChertowD.S. NIH COVID-19 Autopsy Consortium SARS-CoV-2 infection and persistence in the human body and brain at autopsy.Nature2022612794175876310.1038/s41586‑022‑05542‑y36517603
    [Google Scholar]
  14. DufourJ.F. MarjotT. BecchettiC. TilgH. COVID-19 and liver disease.Gut202271112350236210.1136/gutjnl‑2021‑32679235701093
    [Google Scholar]
  15. ElrobaaI.H. NewK.J. COVID-19: Pulmonary and extra pulmonary manifestations.Front. Public Health2021971161610.3389/fpubh.2021.71161634650947
    [Google Scholar]
  16. RudanI. AdeloyeD. SheikhA. COVID-19: Vaccines, efficacy and effects on variants.Curr. Opin. Pulm. Med.202228318019110.1097/MCP.000000000000086835200162
    [Google Scholar]
  17. McLeanG. KamilJ. LeeB. MooreP. SchulzT.F. MuikA. SahinU. TüreciÖ. PatherS. The impact of evolving SARS-CoV-2 mutations and variants on COVID-19 vaccines.MBio2022132e02979-2110.1128/mbio.02979‑2135352979
    [Google Scholar]
  18. FirouzabadiN. GhasemiyehP. MoradishooliF. Mohammadi-SamaniS. Update on the effectiveness of COVID-19 vaccines on different variants of SARS-CoV-2.Int. Immunopharmacol.202311710996810.1016/j.intimp.2023.10996837012880
    [Google Scholar]
  19. FernandesQ. InchakalodyV.P. MerhiM. MestiriS. TaibN. Moustafa Abo El-EllaD. BedhiafiT. RazaA. Al-ZaidanL. MohsenM.O. Yousuf Al-NesfM.A. HssainA.A. YassineH.M. BachmannM.F. UddinS. DermimeS. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines.Ann. Med.202254152454010.1080/07853890.2022.203127435132910
    [Google Scholar]
  20. ShenB. YiX. SunY. BiX. DuJ. ZhangC. QuanS. ZhangF. SunR. QianL. GeW. LiuW. LiangS. ChenH. ZhangY. LiJ. XuJ. HeZ. ChenB. WangJ. YanH. ZhengY. WangD. ZhuJ. KongZ. KangZ. LiangX. DingX. RuanG. XiangN. CaiX. GaoH. LiL. LiS. XiaoQ. LuT. ZhuY. LiuH. ChenH. GuoT. Proteomic and metabolomic characterization of COVID-19 patient sera.Cell202018215972.e1510.1016/j.cell.2020.05.03232492406
    [Google Scholar]
  21. BattagliniD. Lopes-PachecoM. Castro-Faria-NetoH.C. PelosiP. RoccoP.R.M. Laboratory biomarkers for diagnosis and prognosis in COVID-19.Front. Immunol.20221385757310.3389/fimmu.2022.85757335572561
    [Google Scholar]
  22. PessoaF.S. MartinsH.B.M. NetaA.P.R. MartinsA.N. AragãoF.B.A. RêgoA.S. da Silva SouzaG. da SilvaL.C.N. BomfimM.R.Q. da Costa Brito LacerdaE.M. Mortes por COVID-19 Em Um Hospital de Uma Cidade Da Região Da Amazônia Legal: Que Lições Podem Ser Aprendidas?Medicina (Ribeirão Preto)202356e-19999410.11606/issn.2176‑7262.rmrp.2023.199994
    [Google Scholar]
  23. RehmanS.U. RehmanS.U. YooH.H. COVID-19 challenges and its therapeutics.Biomed. Pharmacother.202114211201510.1016/j.biopha.2021.11201534388532
    [Google Scholar]
  24. ChenN. ZhouM. DongX. QuJ. GongF. HanY. QiuY. WangJ. LiuY. WeiY. XiaJ. YuT. ZhangX. ZhangL. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study.Lancet20203951022350751310.1016/S0140‑6736(20)30211‑732007143
    [Google Scholar]
  25. HosseiniS.E. KashaniR.N. NikzadH. AzadbakhtJ. BafraniH.H. KashaniH.H. The novel coronavirus disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies.Virology20205511910.1016/j.virol.2020.08.01133010669
    [Google Scholar]
  26. JoseR.J. ManuelA. COVID-19 cytokine storm: The interplay between inflammation and coagulation.Lancet Respir. Med.202086e46e4710.1016/S2213‑2600(20)30216‑232353251
    [Google Scholar]
  27. ZhaoT. HuangX. ShuY. Comparing the immune response and protective effect of COVID-19 vaccine under different vaccination strategies.Hum. Vaccin. Immunother.2023193227315510.1080/21645515.2023.227315538111370
    [Google Scholar]
  28. BiX. LiuW. DingX. LiangS. ZhengY. ZhuX. QuanS. YiX. XiangN. DuJ. LyuH. YuD. ZhangC. XuL. GeW. ZhanX. HeJ. XiongZ. ZhangS. LiY. XuP. ZhuG. WangD. ZhuH. ChenS. LiJ. ZhaoH. ZhuY. LiuH. XuJ. ShenB. GuoT. Proteomic and metabolomic profiling of urine uncovers immune responses in patients with COVID-19.Cell Rep.202238311027110.1016/j.celrep.2021.11027135026155
    [Google Scholar]
  29. YuX. XuX. WuT. HuangW. XuC. XieW. LongX. APOA1 level is negatively correlated with the severity of COVID-19.Int. J. Gen. Med.20221568969810.2147/IJGM.S33295635082518
    [Google Scholar]
  30. ZhangY. CaiX. GeW. WangD. ZhuG. QianL. XiangN. YueL. LiangS. ZhangF. WangJ. ZhouK. ZhengY. LinM. SunT. LuR. ZhangC. XuL. SunY. ZhouX. YuJ. LyuM. ShenB. ZhuH. XuJ. ZhuY. GuoT. Potential use of serum proteomics for monitoring COVID-19 progression to complement RT-PCR detection.J. Proteome Res.20222119010010.1021/acs.jproteome.1c0052534783559
    [Google Scholar]
  31. MardaniR. NamavarM. GhorbiE. ShojaZ. ZaliF. KaghazianH. AghasadeghiR. MardaniM.R. SadeghiS.A. SabetiS. DarazamI.A. AhmadiN. Mousavi-NasabS.D. Association between serum inflammatory parameters and the disease severity in COVID-19 patients.J. Clin. Lab. Anal.2022361e2416210.1002/jcla.2416234874079
    [Google Scholar]
  32. DeutschE.W. OmennG.S. SunZ. MaesM. PernemalmM. PalaniappanK.K. LetunicaN. VandenbrouckY. BrunV. TaoS. YuX. GeyerP.E. IgnjatovicV. MoritzR.L. SchwenkJ.M. Advances and utility of the human plasma proteome.J. Proteome Res.202120125241526310.1021/acs.jproteome.1c0065734672606
    [Google Scholar]
  33. FooS.S. CambouM.C. MokT. FajardoV.M. JungK.L. FullerT. ChenW. KerinT. MeiJ. BhattacharyaD. ChoiY. WuX. XiaT. ShinW.J. CranstonJ. AldrovandiG. TobinN. ContrerasD. IbarrondoF.J. YangO. YangS. GarnerO. CortadoR. BrysonY. JanzenC. GhoshS. DevaskarS. AsilnejadB. MoreiraM.E. VasconcelosZ. SoniP.R. GibsonL.C. BrasilP. ComhairS.A.A. ArumugaswamiV. ErzurumS.C. RaoR. JungJ.U. Nielsen-SainesK. The systemic inflammatory landscape of COVID-19 in pregnancy: Extensive serum proteomic profiling of mother-infant dyads with in utero SARS-CoV-2.Cell Rep. Med.202121110045310.1016/j.xcrm.2021.10045334723226
    [Google Scholar]
  34. SouzaD.R.Junior SilvaA.R.M. Rosa-FernandesL. ReisL.R. AlexandriaG. BhosaleS.D. GhilardiF. de R DalçóquioT.F. BertolinA.J. NicolauJ.C. MarinhoC.R.F. WrengerC. LarsenM.R. SicilianoR.F. Di MascioP. PalmisanoG. RonseinG.E. HDL proteome remodeling associates with COVID-19 severity.J. Clin. Lipidol.202115796804
    [Google Scholar]
  35. KimuraY. NakaiY. ShinJ. HaraM. TakedaY. KuboS. JeremiahS.S. InoY. AkiyamaT. MoriyamaK. SakaiK. SajiR. NishiiM. KitamuraH. MurohashiK. YamamotoK. KanekoT. TakeuchiI. HagiwaraE. OguraT. HasegawaH. TamuraT. YamanakaT. RyoA. Identification of serum prognostic biomarkers of severe COVID-19 using a quantitative proteomic approach.Sci. Rep.20211112063810.1038/s41598‑021‑98253‑934667241
    [Google Scholar]
  36. VillarM. UrraJ.M. Rodríguez-del-RíoF.J. Artigas-JerónimoS. Jiménez-ColladosN. Ferreras-ColinoE. ContrerasM. de MeraI.G.F. Estrada-PeñaA. GortázarC. de la FuenteJ. Characterization by quantitative serum proteomics of immune-related prognostic biomarkers for COVID-19 symptomatology.Front. Immunol.20211273071010.3389/fimmu.2021.73071034566994
    [Google Scholar]
  37. RiederM. WirthL. PollmeierL. JeserichM. GollerI. BaldusN. SchmidB. BuschH.J. HofmannM. ThimmeR. RiegS. KernW. BodeC. DuerschmiedD. LotherA. Serum protein profiling reveals a specific upregulation of the immunomodulatory protein progranulin in coronavirus disease 2019.J. Infect. Dis.2021223577578410.1093/infdis/jiaa74133249471
    [Google Scholar]
  38. YanL. YiJ. HuangC. ZhangJ. FuS. LiZ. LyuQ. XuY. WangK. YangH. MaQ. CuiX. QiaoL. SunW. LiaoP. Rapid detection of COVID-19 using MALDI-TOF-based serum peptidome profiling.Anal. Chem.202193114782478710.1021/acs.analchem.0c0459033656857
    [Google Scholar]
  39. LiuX. CaoY. FuH. WeiJ. ChenJ. HuJ. LiuB. Proteomics analysis of serum from COVID-19 patients.ACS Omega20216117951795810.1021/acsomega.1c0061633778306
    [Google Scholar]
  40. LeeJ.S. HanD. KimS.Y. HongK.H. JangM. KimM.J. KimY. ParkJ.H. ChoS.I. ParkW.B. LeeK.B. ShinH.S. OhH.S. KimT.S. ParkS.S. SeongM.W. Longitudinal proteomic profiling provides insights into host response and proteome dynamics in COVID-19 progression.Proteomics20212111-12200027810.1002/pmic.20200027833945677
    [Google Scholar]
  41. LaudanskiK. JihaneH. AntaloskyB. GhaniD. PhanU. HernandezR. OkekeT. WuJ. RaderD. SusztakK. Unbiased analysis of temporal changes in immune serum markers in acute COVID-19 infection with emphasis on organ failure, anti-viral treatment, and demographic characteristics.Front. Immunol.20211265046510.3389/fimmu.2021.65046534177897
    [Google Scholar]
  42. ChenY. YaoH. ZhangN. WuJ. GaoS. GuoJ. LuX. ChengL. LuoR. LiangX. WongC.C.L. ZhengM. Proteomic analysis identifies prolonged disturbances in pathways related to cholesterol metabolism and myocardium function in the COVID-19 recovery stage.J. Proteome Res.20212073463347410.1021/acs.jproteome.1c0005434080435
    [Google Scholar]
  43. MemonD. Barrio-HernandezI. BeltraoP. Individual COVID-19 disease trajectories revealed by plasma proteomics.EMBO Mol. Med.2021138e1453210.15252/emmm.20211453234260159
    [Google Scholar]
  44. ChivteP. LaCasseZ. SeethiV.D.R. BhartiP. BlandJ. KadkolS.S. GaillardE.R. MALDI-ToF protein profiling as a potential rapid diagnostic platform for COVID-19.J. Mass Spectrom. Adv. Clin. Lab.202121314110.1016/j.jmsacl.2021.09.00134518823
    [Google Scholar]
  45. YangJ. ChenC. ChenW. HuangL. FuZ. YeK. LvL. NongZ. ZhouX. LuW. ZhongM. Proteomics and metabonomics analyses of COVID-19 complications in patients with pulmonary fibrosis.Sci. Rep.20211111460110.1038/s41598‑021‑94256‑834272434
    [Google Scholar]
  46. TallaA. VasaikarS.V. LemosM.P. MoodieZ. Lee PebworthM-P. HendersonK.E. CohenK.W. CzartoskiJ.L. LaiL. SutharM.S. HeubeckA.T. GengeP.C. RollC.R. WeissM. ReadingJ. KondzaN. MacMillanH. FongO.C. ThomsonZ.J. GraybuckL.T. OkadaL.Y. NewellE.W. CoffeyE.M. MeijerP. BeckerL.A. De RosaS.C. SkeneP.J. TorgersonT.R. LiX-J. SzetoG.L. McElrathM.J. BumolT.F. Longitudinal immune dynamics of mild COVID-19 define signatures of recovery and persistence.bioRxiv2021[Preprint].10.1101/2021.05.26.442666
    [Google Scholar]
  47. PapeC. RemmeR. WolnyA. OlbergS. WolfS. CerroneL. CorteseM. KlausS. LucicB. UllrichS. Anders-ÖssweinM. WolfS. CerikanB. NeufeldtC.J. GanterM. SchnitzlerP. MerleU. LusicM. BoulantS. StaniferM. BartenschlagerR. HamprechtF.A. KreshukA. TischerC. KräusslichH.G. MüllerB. LaketaV. Microscopy-based assay for semi-quantitative detection of SARS-CoV-2 specific antibodies in human sera.BioEssays2021433200025710.1002/bies.20200025733377226
    [Google Scholar]
  48. LeiQ. LiY. HouH. WangF. OuyangZ. ZhangY. LaiD. Banga NdzouboukouJ.L. XuZ. ZhangB. ChenH. XueJ. LinX. ZhengY. YaoZ. WangX. YuC. JiangH. ZhangH. QiH. GuoS. HuangS. SunZ. TaoS. FanX. Antibody dynamics to SARS-CoV-2 in asymptomatic COVID-19 infections.Allergy202176255156110.1111/all.1462233040337
    [Google Scholar]
  49. HausburgM.A. BantonK.L. RoshonM. Bar-OrD. Clinically distinct COVID-19 cases share notably similar immune response progression: A follow-up analysis.Heliyon202171e0587710.1016/j.heliyon.2020.e0587733437888
    [Google Scholar]
  50. WangH. WuX. ZhangX. HouX. LiangT. WangD. TengF. DaiJ. DuanH. GuoS. LiY. YuX. SARS-CoV-2 proteome microarray for mapping COVID-19 antibody interactions at amino acid resolution.ACS Cent. Sci.20206122238224910.1021/acscentsci.0c0074233372199
    [Google Scholar]
  51. LooR.L. LodgeS. KimhoferT. BongS.H. BegumS. WhileyL. GrayN. LindonJ.C. NitschkeP. LawlerN.G. SchäferH. SpraulM. RichardsT. NicholsonJ.K. HolmesE. Quantitative in-vitro diagnostic NMR spectroscopy for lipoprotein and metabolite measurements in plasma and serum: Recommendations for analytical artifact minimization with special reference to COVID-19/SARS-CoV-2 samples.J. Proteome Res.202019114428444110.1021/acs.jproteome.0c0053732852212
    [Google Scholar]
  52. D’AlessandroA. ThomasT. DzieciatkowskaM. HillR.C. FrancisR.O. HudsonK.E. ZimringJ.C. HodE.A. SpitalnikS.L. HansenK.C. Serum proteomics in COVID-19 patients: Altered coagulation and complement status as a function of IL-6 level.J. Proteome Res.202019114417442710.1021/acs.jproteome.0c0036532786691
    [Google Scholar]
  53. HouX. ZhangX. WuX. LuM. WangD. XuM. WangH. LiangT. DaiJ. DuanH. XuY. YuX. LiY. Serum protein profiling reveals a landscape of inflammation and immune signaling in early-stage COVID-19 infection.Mol. Cell. Proteomics202019111749175910.1074/mcp.RP120.00212832788344
    [Google Scholar]
  54. Gozalbo-RoviraR. GimenezE. LatorreV. Francés-GómezC. AlbertE. BuesaJ. MarinaA. BlascoM.L. Signes-CostaJ. Rodríguez-DíazJ. GellerR. NavarroD. SARS-CoV-2 antibodies, serum inflammatory biomarkers and clinical severity of hospitalized COVID-19 patients.J. Clin. Virol.202013110461110.1016/j.jcv.2020.10461132882666
    [Google Scholar]
  55. LiangX. SunR. WangJ. ZhouK. LiJ. ChenS. LyuM. LiS. XueZ. ShiY. XieY. ZhangQ. YiX. PanJ. WangD. XuJ. ZhuH. ZhuG. ZhuJ. ZhuY. ZhengY. ShenB. GuoT. Proteomics investigation of diverse serological patterns in COVID-19.Mol. Cell. Proteomics202322210049310.1016/j.mcpro.2023.10049336621767
    [Google Scholar]
  56. Vaz-RodriguesR. MazuecosL. VillarM. UrraJ.M. GortázarC. de la FuenteJ. Serum biomarkers for nutritional status as predictors in COVID-19 patients before and after vaccination.J. Funct. Foods202310110541210.1016/j.jff.2023.10541236644001
    [Google Scholar]
  57. LiC. YueL. JuY. WangJ. ChenM. LuH. LiuS. LiuT. WangJ. HuX. TuohetaerbaikeB. WenH. ZhangW. XuS. JiangC. ChenF. Serum proteomic analysis for new types of long-term persistent COVID-19 patients in Wuhan.Microbiol. Spectr.2022106e01270-2210.1128/spectrum.01270‑2236314975
    [Google Scholar]
  58. BeimdiekJ. JanciauskieneS. WrengerS. VollandS. RozyA. FugeJ. OlejnickaB. PinkI. IlligT. PopovA. ChorostowskaJ. BuettnerF.F.R. WelteT. Plasma markers of COVID-19 severity: A pilot study.Respir. Res.202223134310.1186/s12931‑022‑02272‑736514048
    [Google Scholar]
  59. KawasakiT. TakedaY. EdahiroR. ShiraiY. Nogami-ItohM. MatsukiT. KidaH. EnomotoT. HaraR. NodaY. AdachiY. NiitsuT. AmiyaS. YamaguchiY. MurakamiT. KatoY. MoritaT. YoshimuraH. YamamotoM. NakatsuboD. MiyakeK. ShiroyamaT. HirataH. AdachiJ. OkadaY. KumanogohA. Next-generation proteomics of serum extracellular vesicles combined with single-cell RNA sequencing identifies MACROH2A1 associated with refractory COVID-19.Inflamm. Regen.20224215310.1186/s41232‑022‑00243‑536451245
    [Google Scholar]
  60. BustamanteS. YauY. BoysV. ChangJ. ParamsothyS. PudipeddiA. LeongR.W. WasingerV.C. Tryptophan metabolism ‘hub’ gene expression associates with increased inflammation and severe disease outcomes in COVID-19 infection and inflammatory bowel disease.Int. J. Mol. Sci.202223231477610.3390/ijms23231477636499104
    [Google Scholar]
  61. FuZ. RaisY. DaraD. JacksonD. DrabovichA.P. Rational design and development of SARS-COV-2 serological diagnostics by immunoprecipitation-targeted proteomics.Anal. Chem.20229438129901299910.1021/acs.analchem.2c0132536095284
    [Google Scholar]
  62. DoykovI. BaldwinT. SpiewakJ. GilmourK.C. GibbonsJ.M. PadeC. ReynoldsC.J. Áine McKnight NoursadeghiM. MainiM.K. ManistyC. TreibelT. CapturG. FontanaM. BoytonR.J. AltmannD.M. BrooksT. SemperA. MoonJ.C. Kevin Mills HeywoodW.E. AbbassH. AbiodunA. AlfarihM. AlldisZ. AltmannD.M. AminO.E. AndiapenM. ArticoJ. AugustoJ.B. BacaG.L. BaileyS.N.L. BhuvaA.N. BoulterA. BowlesR. BoytonR.J. BrackenO.V. O’BrienB. BrooksT. BullockN. ButlerD.K. CapturG. CarrO. ChampionN. ChanC. ChandranA. ColemanT. Couto de SousaJ. Couto-ParadaX. CrossE. Cutino-MoguelT. D’ArcangeloS. DaviesR.H. DouglasB. Di GenovaC. Dieobi-AneneK. DinizM.O. EllisA. FeehanK. FinlayM. FontanaM. ForooghiN. FrancisS. GibbonsJ.M. GillespieD. GilroyD. HamblinM. HarkerG. HemingwayG. HewsonJ. HeywoodW. HicklingL.M. HicksB. HingoraniA.D. HowesL. ItuaI. JardimV. LeeW-Y.J. JensenM. JonesJ. JonesM. JoyG. KapilV. KellyC. KurdiH. LambourneJ. LinK-M. LiuS. LloydA. LouthS. MainiM.K. MandadapuV. ManistyC. McKnightÁ. MenachoK. MfukoC. MillsK. MillwardS. MitchelmoreO. MoonC. MoonJ. SandovalD.M. MurrayS.M. NoursadeghiM. OtterA. PadeC. PalmaS. ParkerR. PatelK. PawarovaM. PetersenS.E. PinieraB. PieperF.P. RanniganL. RapalaA. ReynoldsC.J. RichardsA. RobathanM. RosenheimJ. RoweC. RoydsM. WestJ.S. SambileG. SchmidtN.M. SelmanH. SemperA. SeraphimA. SimionM. SmitA. SugimotoM. SwadlingL. TaylorS. TempertonN. ThomasS. ThorntonG.D. TreibelT.A. TuckerA. VargheseA. VeerapenJ. VijayakumarM. WarnerT. WelchS. WhiteH. WodehouseT. WynneL. ZahediD. UK COVIDsortium Investigators Quantitative, multiplexed, targeted proteomics for ascertaining variant specific SARS-CoV-2 antibody response.Cell Reports Methods20222910027910.1016/j.crmeth.2022.10027935975199
    [Google Scholar]
  63. StamoulaE. SarantidiE. DimakopoulosV. AinatzoglouA. DardalasI. PapazisisG. KontopoulouK. AnagnostopoulosA.K. Serum proteome signatures of anti-SARS-COV-2 vaccinated healthcare workers in greece associated with their prior infection status.Int. J. Mol. Sci.202223171015310.3390/ijms23171015336077551
    [Google Scholar]
  64. BeltramiA.P. De MartinoM. DallaE. MalfattiM.C. CaponnettoF. CodrichM. StefanizziD. FabrisM. SozioE. D’AurizioF. PucilloC.E.M. SechiL.A. TasciniC. CurcioF. ForestiG.L. PiciarelliC. De NardinA. TellG. IsolaM. Combining deep phenotyping of serum proteomics and clinical data via machine learning for COVID-19 biomarker discovery.Int. J. Mol. Sci.20222316916110.3390/ijms2316916136012423
    [Google Scholar]
  65. WuS. XuY. ZhangJ. RanX. JiaX. WangJ. SunL. YangH. LiY. FuB. HuangC. LiaoP. SunW. Longitudinal serum proteome characterization of COVID-19 patients with different severities revealed potential therapeutic strategies.Front. Immunol.20221389394310.3389/fimmu.2022.89394335958562
    [Google Scholar]
  66. GaoJ. HeJ. ZhangF. XiaoQ. CaiX. YiX. ZhengS. ZhangY. WangD. ZhuG. WangJ. ShenB. RalserM. GuoT. ZhuY. Integration of protein context improves protein-based COVID-19 patient stratification.Clin. Proteomics20221913110.1186/s12014‑022‑09370‑035953823
    [Google Scholar]
  67. SchulteD. PengW. SnijderJ. Template-based assembly of proteomic short reads for de novo antibody sequencing and repertoire profiling.Anal. Chem.20229429103911039910.1021/acs.analchem.2c0130035834437
    [Google Scholar]
  68. BuyukozkanM. Alvarez-MulettS. RacanelliA.C. SchmidtF. BatraR. HoffmanK.L. SarwathH. EngelkeR. Gomez-EscobarL. SimmonsW. BenedettiE. ChetnikK. ZhangG. SchenckE. SuhreK. ChoiJ.J. ZhaoZ. Racine-BrzostekS. YangH.S. ChoiM.E. ChoiA.M.K. ChoS.J. KrumsiekJ. Integrative metabolomic and proteomic signatures define clinical outcomes in severe COVID-19.iScience202225710461210.1016/j.isci.2022.10461235756895
    [Google Scholar]
  69. NuñezE. OreraI. Carmona-RodríguezL. PañoJ.R. VázquezJ. CorralesF.J. Mapping the serum proteome of COVID-19 patients; Guidance for severity assessment.Biomedicines2022107169010.3390/biomedicines1007169035884998
    [Google Scholar]
  70. CuiT. MiaoG. JinX. YuH. ZhangZ. XuL. WuY. QuG. LiuG. ZhengY. JiangG. The adverse inflammatory response of tobacco smoking in COVID-19 patients: Biomarkers from proteomics and metabolomics.J. Breath Res.202216404600210.1088/1752‑7163/ac7d6b35772384
    [Google Scholar]
  71. FacciuoloA. ScrutenE. LipsitS. LangA. Parker CatesZ. LewJ.M. FalzaranoD. GerdtsV. KusalikA.J. NapperS. High-resolution analysis of long-term serum antibodies in humans following convalescence of SARS-CoV-2 infection.Sci. Rep.2022121904510.1038/s41598‑022‑12032‑835641545
    [Google Scholar]
  72. TepasseP.R. VollenbergR. SteinebreyN. KönigS. The dysregulation of the renin–angiotensin system in COVID-19 studied by serum proteomics: Angiotensinogen increases with disease severity.Molecules2022278249510.3390/molecules2708249535458690
    [Google Scholar]
  73. Soares-SchanoskiA. SauerwaldN. GoforthC.W. PeriasamyS. WeirD.L. LizewskiS. LizewskiR. GeY. KuzminaN.A. NairV.D. VangetiS. MarjanovicN. CappuccioA. ChengW.S. MofsowitzS. MillerC.M. YuX.B. GeorgeM.C. ZaslavskyE. BukreyevA. TroyanskayaO.G. SealfonS.C. LetiziaA.G. RamosI. Asymptomatic SARS-CoV-2 infection is associated with higher levels of serum IL-17C, matrix metalloproteinase 10 and fibroblast growth factors than mild symptomatic COVID-19.Front. Immunol.20221382173010.3389/fimmu.2022.82173035479098
    [Google Scholar]
  74. ChenY. ZhangN. ZhangJ. GuoJ. DongS. SunH. GaoS. ZhouT. LiM. LiuX. GuoY. YeB. ZhaoY. YuT. ZhanJ. JiangY. WongC.C.L. GaoG.F. LiuW.J. Immune response pattern across the asymptomatic, symptomatic and convalescent periods of COVID-19.Biochim. Biophys. Acta. Proteins Proteomics20221870214073610.1016/j.bbapap.2021.14073634774760
    [Google Scholar]
  75. ShuT. NingW. WuD. XuJ. HanQ. HuangM. ZouX. YangQ. YuanY. BieY. PanS. MuJ. HanY. YangX. ZhouH. LiR. RenY. ChenX. YaoS. QiuY. ZhangD.Y. XueY. ShangY. ZhouX. Plasma proteomics identify biomarkers and pathogenesis of COVID-19.Immunity202053511081122.e510.1016/j.immuni.2020.10.00833128875
    [Google Scholar]
  76. ZhangQ. LiJ. WengL. A bibliometric analysis of COVID-19 publications in neurology by using the visual mapping method.Front. Public Health20221093700810.3389/fpubh.2022.93700835958855
    [Google Scholar]
  77. KumarS. SharmaD. RaoS. LimW.M. ManglaS.K. Past, present, and future of sustainable finance: insights from big data analytics through machine learning of scholarly research.Ann. Oper. Res.202214435002001
    [Google Scholar]
  78. GareevI. GallyametdinovA. BeylerliO. ValitovE. AlyshovA. PavlovV. IzmailovA. ZhaoS. The opportunities and challenges of telemedicine during COVID-19 pandemic.Front. Biosci.202113229129810.52586/E88534937315
    [Google Scholar]
  79. GrafC. Fernández-ÁvilaD.G. PlazzottaF. SorianoE.R. Telehealth and telemedicine in latin American rheumatology, a new era after COVID-19.J. Clin. Rheumatol.202329316516910.1097/RHU.000000000000196836959199
    [Google Scholar]
  80. GambardellaC. PagliucaR. PomillaG. GambardellaA. COVID-19 risk contagion: Organization and procedures in a South Italy geriatric oncology ward.J. Geriatr. Oncol.20201171187118810.1016/j.jgo.2020.05.00832467027
    [Google Scholar]
  81. ToloneS. GambardellaC. BruscianoL. del GenioG. LucidoF.S. DocimoL. Telephonic triage before surgical ward admission and telemedicine during COVID-19 outbreak in Italy. Effective and easy procedures to reduce in-hospital positivity.Int. J. Surg.20207812312510.1016/j.ijsu.2020.04.06032360932
    [Google Scholar]
  82. VöllmyF. van den ToornH. Zenezini ChiozziR. ZucchettiO. PapiA. VoltaC.A. MarracinoL. Vieceli Dalla SegaF. FortiniF. DemichevV. Tober-LauP. CampoG. ContoliM. RalserM. KurthF. SpadaroS. RizzoP. HeckA.J.R. A serum proteome signature to predict mortality in severe COVID-19 patients.Life Sci. Alliance202149e20210109910.26508/lsa.20210109934226277
    [Google Scholar]
  83. BloomJ.D. ChanY.A. BaricR.S. BjorkmanP.J. CobeyS. DevermanB.E. FismanD.N. GuptaR. IwasakiA. LipsitchM. MedzhitovR. NeherR.A. NielsenR. PattersonN. StearnsT. van NimwegenE. WorobeyM. RelmanD.A. Investigate the origins of COVID-19.Science2021372654369410.1126/science.abj001633986172
    [Google Scholar]
  84. RossiM.J. BrandJ.C. Journal article titles impact their citation rates.Arthroscopy20203672025202910.1016/j.arthro.2020.02.01832109575
    [Google Scholar]
  85. AnkaA.U. TahirM.I. AbubakarS.D. AlsabbaghM. ZianZ. HamedifarH. SabzevariA. AziziG. Coronavirus disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and management.Scand. J. Immunol.2021934e1299810.1111/sji.1299833190302
    [Google Scholar]
  86. PacesJ. StrizovaZ. SmrzD. CernyJ. COVID-19 and the immune system.Physiol. Res.202069337938810.33549/physiolres.93449232469225
    [Google Scholar]
  87. LiK. HuangB. WuM. ZhongA. LiL. CaiY. WangZ. WuL. ZhuM. LiJ. WangZ. WuW. LiW. BoscoB. GanZ. QiaoQ. WuJ. WangQ. WangS. XiaX. Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19.Nat. Commun.2020111604410.1038/s41467‑020‑19943‑y33247152
    [Google Scholar]
  88. MarraA.R. KobayashiT. SuzukiH. AlsuhaibaniM. TofanetoB.M. BarianiL.M. AulerM.A. SalinasJ.L. EdmondM.B. DollM. KutnerJ.M. PinhoJ.R.R. RizzoL.V. MiragliaJ.L. SchweizerM.L. Short-term effectiveness of COVID-19 vaccines in immunocompromised patients: A systematic literature review and meta-analysis.J. Infect.202284329731010.1016/j.jinf.2021.12.03534982962
    [Google Scholar]
  89. ZhouC. BuG. SunY. RenC. QuM. GaoY. ZhuY. WangL. SunL. LiuY. Evaluation of serum IgM and IgG antibodies in COVID-19 patients by enzyme linked immunosorbent assay.J. Med. Virol.20219352857286610.1002/jmv.2674133331654
    [Google Scholar]
  90. TazT.A. AhmedK. PaulB.K. Al-ZahraniF.A. MahmudS.M.H. MoniM.A. Identification of biomarkers and pathways for the SARS-CoV-2 infections that make complexities in pulmonary arterial hypertension patients.Brief. Bioinform.20212221451146510.1093/bib/bbab02633611340
    [Google Scholar]
  91. GeyerP.E. ArendF.M. DollS. LouisetM.L. Virreira WinterS. Müller-ReifJ.B. TorunF.M. WeigandM. EichhornP. BruegelM. StraussM.T. HoldtL.M. MannM. TeupserD. High-resolution serum proteome trajectories in COVID-19 reveal patient-specific seroconversion.EMBO Mol. Med.2021138e1416710.15252/emmm.20211416734232570
    [Google Scholar]
  92. UrwylerP. MoserS. CharitosP. HeijnenI.A.F.M. RudinM. SommerG. GiannettiB.M. BassettiS. SendiP. TrendelenburgM. OsthoffM. Treatment of COVID-19 with conestat alfa, a regulator of the complement, contact activation and kallikrein-kinin system.Front. Immunol.202011207210.3389/fimmu.2020.0207232922409
    [Google Scholar]
  93. HenryB.M. de OliveiraM.H.S. BenoitS. PlebaniM. LippiG. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis.Clin. Chem. Lab. Med.20205871021102810.1515/cclm‑2020‑036932286245
    [Google Scholar]
  94. ZhangZ. MateusJ. CoelhoC.H. DanJ.M. ModerbacherC.R. GálvezR.I. CortesF.H. GrifoniA. TarkeA. ChangJ. EscarregaE.A. KimC. GoodwinB. BloomN.I. FrazierA. WeiskopfD. SetteA. CrottyS. Humoral and cellular immune memory to four COVID-19 vaccines.Cell20221851424342451.e1710.1016/j.cell.2022.05.02235764089
    [Google Scholar]
  95. El KarouiK. De VrieseA.S. COVID-19 in dialysis: Clinical impact, immune response, prevention, and treatment.Kidney Int.2022101588389410.1016/j.kint.2022.01.02235176326
    [Google Scholar]
  96. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑531986264
    [Google Scholar]
  97. SackG.H.Jr. Serum amyloid A – A review.Mol. Med.20182414610.1186/s10020‑018‑0047‑030165816
    [Google Scholar]
  98. EgomE.E. ShiwaniH.A. PharithiR.B. CanningR. KhanB. HianiY.E. MaherV. Dynamic changes of the composition of plasma HDL particles in patients with cardiac disease: Spotlight on sphingosine-1-phosphate/serum amyloid A ratio.Clin. Exp. Pharmacol. Physiol.201845431932510.1111/1440‑1681.1288829112769
    [Google Scholar]
  99. LiuQ. DaiY. FengM. WangX. LiangW. YangF. Associations between serum amyloid A, interleukin-6, and COVID-19: A cross-sectional study.J. Clin. Lab. Anal.20203410e2352710.1002/jcla.2352732860278
    [Google Scholar]
  100. ChengL. YangJ.Z. BaiW.H. LiZ.Y. SunL.F. YanJ.J. ZhouC.L. TangB.P. Prognostic value of serum amyloid A in patients with COVID-19.Infection202048571572210.1007/s15010‑020‑01468‑732734556
    [Google Scholar]
  101. Siman-TovR. ShalabiR. ShlomaiA. GoldbergE. EssaW. ShustermanE. AblinJ.N. CaspiM. Rosin-ArbesfeldR. SklanE.H. Elevated serum amyloid a levels contribute to increased platelet adhesion in COVID-19 patients.Int. J. Mol. Sci.202223221424310.3390/ijms23221424336430724
    [Google Scholar]
  102. MoX.N. SuZ.Q. LeiC.L. ChenD.F. PengH. ChenR.C. SangL. WuH.K. LiS.Y. Serum amyloid A is a predictor for prognosis of COVID-19.Respirology202025776476510.1111/resp.1384032406576
    [Google Scholar]
  103. LiY. XiaojingH. ZhuanyunL. LiD. YangJ. Prognostic value of serum amyloid A in COVID-19.Medicine20221017e2888010.1097/MD.000000000002888035363202
    [Google Scholar]
  104. AlmusalamiE.M. LockettA. FerroA. PosnerJ. Serum amyloid A—A potential therapeutic target for hyper-inflammatory syndrome associated with COVID-19.Front. Med.202310113569510.3389/fmed.2023.113569537007776
    [Google Scholar]
  105. TasarS. Karadag-OncelE. Elvan-TuzA. SahinA. UstundagG. Ekemen-KelesY. OnurS. Isbilen-BasokB. Kara-AksayA. Yilmaz-CiftdoganD. Serum amyloid a levels and severity of COVID-19 in children.Indian Pediatr.202360321722010.1007/s13312‑023‑2838‑136916361
    [Google Scholar]
  106. ZhangY. ZhengL. Apolipoprotein: Prospective biomarkers in digestive tract cancer.Transl. Cancer Res.2020953712372010.21037/tcr‑19‑210635117733
    [Google Scholar]
  107. BegueF. ChemelloK. VeerenB. Lortat-JacobB. Tran-DinhA. ZappellaN. SnauwaertA. RobertT. RondeauP. Lagrange-XelotM. MontraversP. CouretD. TanakaS. MeilhacO. Plasma apolipoprotein concentrations are highly altered in severe intensive care unit COVID-19 patients: Preliminary results from the lipicor cohort study.Int. J. Mol. Sci.2023245460510.3390/ijms2405460536902035
    [Google Scholar]
  108. Kovacheva-SlavovaM. GenovJ. GolemanovB. VladimirovB. Apolipoproteins as predictors of cardiovascular risk in patients with chronic pancreatitis.Eur. Rev. Med. Pharmacol. Sci.20232724120431205038164866
    [Google Scholar]
  109. StadlerJ.T. HabischH. PrüllerF. ManggeH. BärnthalerT. KarglJ. PammerA. HolzerM. MeisslS. RaniA. MadlT. MarscheG. HDL-related parameters and COVID-19 mortality: The importance of HDL function.Antioxidants20231211200910.3390/antiox1211200938001862
    [Google Scholar]
  110. Ulloque-BadaraccoJ.R. Hernandez-BustamanteE.A. Herrera-AñazcoP. Benites-ZapataV.A. Prognostic value of apolipoproteins in COVID-19 patients: A systematic review and meta-analysis.Travel Med. Infect. Dis.20214410220010.1016/j.tmaid.2021.10220034752921
    [Google Scholar]
  111. PappaT. RefetoffS. Thyroid Hormone Transport Proteins: Thyroxine-Binding Globulin, Transthyretin, and Albumin.The curated reference collection in neuroscience and biobehavioral psychology2017483490
    [Google Scholar]
  112. ZinelluA. MangoniA.A. Serum prealbumin concentrations, COVID-19 severity, and mortality: A systematic review and meta-analysis.Front. Med.2021863852910.3389/fmed.2021.63852933575267
    [Google Scholar]
  113. KarimiA. ShobeiriP. KulasingheA. RezaeiN. Novel systemic inflammation markers to predict COVID-19 prognosis.Front. Immunol.20211274106110.3389/fimmu.2021.74106134745112
    [Google Scholar]
  114. BaiX. SchountzT. BuckleA.M. TalbertJ.L. SandhausR.A. ChanE.D. Alpha-1-antitrypsin antagonizes COVID-19: A review of the epidemiology, molecular mechanisms, and clinical evidence.Biochem. Soc. Trans.20235131361137510.1042/BST2023007837294003
    [Google Scholar]
  115. YangC. ChapmanK.R. WongA. LiuM. α1-Antitrypsin deficiency and the risk of COVID-19: An urgent call to action.Lancet Respir. Med.20219433733910.1016/S2213‑2600(21)00018‑733485406
    [Google Scholar]
  116. FerrarottiI. OttavianiS. BalderacchiA.M. BarzonV. De SilvestriA. PiloniD. MarianiF. CorsicoA.G. COVID-19 infection in severe Alpha 1-antitrypsin deficiency: Looking for a rationale.Respir. Med.202118310644010.1016/j.rmed.2021.10644033964815
    [Google Scholar]
  117. PertzovB. ShapiraG. AbushkaraS. CohenS. TurjemanA. KramerM.R. GurwitzD. ShomronN. Lower serum alpha 1 antitrypsin levels in patients with severe COVID-19 compared with patients hospitalized due to non-COVID-19 pneumonia.Infect. Dis.2022541284685110.1080/23744235.2022.211146435975662
    [Google Scholar]
  118. Rodríguez HermosaJ.L. Vargas CentanaroG. González CastroM.E. MiravitllesM. Lázaro-AseguradoL. Jiménez-RodríguezB.M. RodríguezR.A. Moreno MéndezR. Torres-DuranM. Hernández-PérezJ.M. Humanes-NavarroA.M. Calle RubioM. Severe COVID-19 illness and α1-antitrypsin deficiency: COVID-AATD study.Biomedicines202311251610.3390/biomedicines1102051636831051
    [Google Scholar]
  119. Medjeral-ThomasN.R. TroldborgA. HansenA.G. PihlR. ClarkeC.L. PetersJ.E. ThomasD.C. WillicombeM. PalarasahY. BottoM. PickeringM.C. ThielS. Protease inhibitor plasma concentrations associate with COVID-19 infection.Oxf. Open Immunol.20212iqab014
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673286915240329063441
Loading
/content/journals/cmc/10.2174/0109298673286915240329063441
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): disease progression; IgM; interleukins; proteomics; SARS-CoV-2; serum biomarkers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test