Skip to content
2000
Volume 32, Issue 12
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Over the past few decades, women have been troubled by grave diseases such as breast cancer, which are biologically and molecularly classified as hereditary diseases. Even though the risk of other cancers is relatively different and the downstream pathway of genetic mutation differs from breast cancer, the continued transformation of genes such as BRCA1 and BRCA2 leads to breast cancer malignancy. Notably at the molecular level, a parallel connection between the normal growth of breast and the progression of mammary cancer where the breast cancer stem cells play a crucial role in the advancement of mammary carcinoma. Arguably, several significant signaling pathways, for instance, ER signaling, HER2 signaling, and Wnt signaling control the typical breast development as well as breast stem cells, thereby cell proliferation, cell differentiation, and cell motility are involved. Incidentally, the Mouse Mammary Tumor Virus (MMTV) is notable among the unexplained viral components influenced by virus-corrupting mammary carcinomas. According to the genesis, MMTV proviral DNA is integrated into mammary epithelial cells, and genomic lymphoid cells during viral replication and triggers the progression of cellular oncogenesis. This overview reveals the deadliest theories on breast cancer, molecular mechanisms, and the MMTV transmission cycle. To establish prevention therapies that are both acceptable and efficacious, addressing apprehensions related to the toxicity of these interventions must be a preliminary hurdle to overcome.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673286234240123100955
2024-05-08
2025-08-14
Loading full text...

Full text loading...

References

  1. KamińskaM. CiszewskiT. Łopacka-SzatanK. MiotłaP. StarosławskaE. Breast cancer risk factors.Menopause Review/Przegląd Menopauzalny201514319620210.5114/pm.2015.54346
    [Google Scholar]
  2. SunY.S. ZhaoZ. YangZ.N. XuF. LuH.J. ZhuZ.Y. ShiW. JiangJ. YaoP.P. ZhuH.P. Risk factors and preventions of breast cancer.Int. J. Biol. Sci.201713111387139710.7150/ijbs.2163529209143
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  4. RiggioA.I. VarleyK.E. WelmA.L. The lingering mysteries of metastatic recurrence in breast cancer.Br. J. Cancer20211241132610.1038/s41416‑020‑01161‑433239679
    [Google Scholar]
  5. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  6. GhonchehM. PournamdarZ. SalehiniyaH. Incidence and mortality and epidemiology of breast cancer in the world.Asian Pac. J. Cancer Prev.201617sup3434610.7314/APJCP.2016.17.S3.4327165206
    [Google Scholar]
  7. GandhiA.K. KumarP. BhandariM. DevnaniB. RathG.K. Burden of preventable cancers in India: Time to strike the cancer epidemic.J. Egypt. Natl. Canc. Inst.2017291111810.1016/j.jnci.2016.08.00227591115
    [Google Scholar]
  8. GoldE.B. The timing of the age at which natural menopause occurs.Obstet. Gynecol. Clin. North Am.201138342544010.1016/j.ogc.2011.05.00221961711
    [Google Scholar]
  9. Rivera-FrancoM.M. Leon-RodriguezE. Delays in breast cancer detection and treatment in developing countries.Breast Cancer201812.10.1177/117822341775267729434475
    [Google Scholar]
  10. MarphatiaA.A. AmbaleG.S. ReidA.M. Women’s marriage age matters for public health: A review of the broader health and social implications in South Asia.Front. Public Health2017526910.3389/fpubh.2017.0026929094035
    [Google Scholar]
  11. DeyS. BoffettaP. MathewsA. BrennanP. SolimanA. MathewA. Risk factors according to estrogen receptor status of breast cancer patients in Trivandrum, South India.Int. J. Cancer200912571663167010.1002/ijc.2446019452528
    [Google Scholar]
  12. DallG.V. BrittK.L. Estrogen effects on the mammary gland in early and late life and breast cancer risk.Front. Oncol.2017711010.3389/fonc.2017.0011028603694
    [Google Scholar]
  13. AnsteyE.H. ShoemakerM.L. BarreraC.M. O’NeilM.E. VermaA.B. HolmanD.M. Breastfeeding and breast cancer risk reduction: Implications for black mothers.Am. J. Prev. Med.2017533S40S4610.1016/j.amepre.2017.04.02428818244
    [Google Scholar]
  14. McDonaldJ.A. GoyalA. TerryM.B. Alcohol intake and breast cancer risk: Weighing the overall evidence.Curr. Breast Cancer Rep.20135320822110.1007/s12609‑013‑0114‑z24265860
    [Google Scholar]
  15. Smith-WarnerS.A. SpiegelmanD. YaunS.S. van den BrandtP.A. FolsomA.R. GoldbohmR.A. GrahamS. HolmbergL. HoweG.R. MarshallJ.R. MillerA.B. PotterJ.D. SpeizerF.E. WillettW.C. WolkA. HunterD.J. Alcohol and breast cancer in women: A pooled analysis of cohort studies.JAMA1998279753554010.1001/jama.279.7.5359480365
    [Google Scholar]
  16. BosronW.F. LiT.K. Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationship to alcohol metabolism and alcoholism.Hepatology19866350251010.1002/hep.18400603303519419
    [Google Scholar]
  17. CrabbD.W. MatsumotoM. ChangD. YouM. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology.Proc. Nutr. Soc.2004631496310.1079/PNS200332715099407
    [Google Scholar]
  18. LiuY. NguyenN. ColditzG.A. Links between alcohol consumption and breast cancer: A look at the evidence.Womens Health2015111657710.2217/WHE.14.6225581056
    [Google Scholar]
  19. DumitrescuR.G. ShieldsP.G. The etiology of alcohol-induced breast cancer.Alcohol200535321322510.1016/j.alcohol.2005.04.00516054983
    [Google Scholar]
  20. SarhadiM. AryanL. ZareiM. The estrogen receptor and breast cancer: a complete review.CRPASE Trans. Appl. Sci.20206309314 https://www.researchgate.net/publication/347388568_CRPASE_TRANSACTIONS_OF_APPLIED_SCIENCES_The_Estrogen_Receptor_and_Breast_Cancer_A_Complete_Review
    [Google Scholar]
  21. AhnS. WooJ.W. LeeK. ParkS.Y. HER2 status in breast cancer: Changes in guidelines and complicating factors for interpretation.J. Pathol. Transl. Med.2020541344410.4132/jptm.2019.11.0331693827
    [Google Scholar]
  22. Abreu de OliveiraW.A. El LaithyY. BrunaA. AnnibaliD. LluisF. Wnt signaling in the breast: From development to disease.Front. Cell Dev. Biol.20221088446710.3389/fcell.2022.88446735663403
    [Google Scholar]
  23. AfzalS. FiazK. NoorA. SindhuA.S. HanifA. BibiA. AsadM. NawazS. ZafarS. AyubS. HasnainS.B. ShahidM. Interrelated oncogenic viruses and breast cancer.Front. Mol. Biosci.2022978111110.3389/fmolb.2022.78111135419411
    [Google Scholar]
  24. BarnardM.E. BoekeC.E. TamimiR.M. Established breast cancer risk factors and risk of intrinsic tumor subtypes.Biochim. Biophys. Acta201518561738526071880
    [Google Scholar]
  25. ColditzG.A. KaphingstK.A. HankinsonS.E. RosnerB. Family history and risk of breast cancer: urses’ health study.Breast Cancer Res. Treat.201213331097110410.1007/s10549‑012‑1985‑922350789
    [Google Scholar]
  26. FengY. SpeziaM. HuangS. YuanC. ZengZ. ZhangL. JiX. LiuW. HuangB. LuoW. LiuB. LeiY. DuS. VuppalapatiA. LuuH.H. HaydonR.C. HeT.C. RenG. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis.Genes Dis.2018527710610.1016/j.gendis.2018.05.00130258937
    [Google Scholar]
  27. Collaborative Group on Hormonal Factors in Breast CancerFamilial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58 209 women with breast cancer and 101 986 women without the disease.Lancet200135892911389139910.1016/S0140‑6736(01)06524‑211705483
    [Google Scholar]
  28. DugganC. TrapaniD. IlbawiA.M. FidarovaE. LaversanneM. CuriglianoG. BrayF. AndersonB.O. National health system characteristics, breast cancer stage at diagnosis, and breast cancer mortality: A population-based analysis.Lancet Oncol.202122111632164210.1016/S1470‑2045(21)00462‑934653370
    [Google Scholar]
  29. Breast Cancer Risk Factors You Can’t Change2023Available from: https://www.cancer.org/cancer/types/breast-cancer/risk-and-prevention/breast-cancer-risk-factors-youcannot-change.html
  30. ColditzG.A. KaphingstK.A. HankinsonS.E. RosnerB. Family history and risk of breast cancer: Nurses’ health study.Breast Cancer Res. Treat.201213331097110410.1007/s10549‑012‑1985‑922350789
    [Google Scholar]
  31. WeyandC.M. GoronzyJ.J. Clinical practice. Giant-cell arteritis and polymyalgia rheumatica.N. Engl. J. Med.20143711505710.1056/NEJMcp121482524988557
    [Google Scholar]
  32. NarayanP. AhsanM.D. WebsterE.M. PerezL. LeviS.R. HarveyB. WolfeI. BeaumontS. BrewerJ.T. SiegelD. ThomasC. ChristosP. HicknerA. Chapman-DavisE. CantilloE. HolcombK. SharafR.N. FreyM.K. Partner and localizer of BRCA2 (PALB2) pathogenic variants and ovarian cancer: A systematic review and meta-analysis.Gynecol. Oncol.2023177728510.1016/j.ygyno.2023.07.01737651980
    [Google Scholar]
  33. MoslemiM. VafaeiM. KhaniP. SoheiliM. NedaeiniaR. ManianM. MoradiY. SohrabiE. The prevalence of ataxia telangiectasia mutated (ATM) variants in patients with breast cancer patients: A systematic review and meta-analysis.Cancer Cell Int.202121147410.1186/s12935‑021‑02172‑834493284
    [Google Scholar]
  34. ShilohY. ATM and related protein kinases: Safeguarding genome integrity.Nat. Rev. Cancer20033315516810.1038/nrc101112612651
    [Google Scholar]
  35. Chenevix-TrenchG. SpurdleA.B. GateiM. KellyH. MarshA. ChenX. DonnK. CummingsM. NyholtD. JenkinsM.A. ScottC. PupoG.M. DörkT. BendixR. KirkJ. TuckerK. McCredieM.R. HopperJ.L. SambrookJ. MannG.J. KhannaK.K. Dominant negative ATM mutations in breast cancer families.J. Natl. Cancer Inst.200294320521510.1093/jnci/94.3.20511830610
    [Google Scholar]
  36. Cancer Genome Atlas NetworkComprehensive molecular portraits of human breast tumours. Nature20124907418617010.1038/nature1141223000897
    [Google Scholar]
  37. Silwal-PanditL. VollanH.K.M. ChinS.F. RuedaO.M. McKinneyS. OsakoT. QuigleyD.A. KristensenV.N. AparicioS. Børresen-DaleA.L. CaldasC. LangerødA. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance.Clin. Cancer Res.201420133569358010.1158/1078‑0432.CCR‑13‑294324803582
    [Google Scholar]
  38. PinticanR.M. ChioreanA. DumaM. FeierD. SzepM. EniuD. GoidescuI. DudeaS. Are mutation carrier patients different from non-carrier patients? genetic, pathology, and us features of patients with breast cancer.Cancers20221411275910.3390/cancers1411275935681739
    [Google Scholar]
  39. YariK. HakimiA. MohammadiM. Ammari-AllahyariM. SalariN. GhasemiH. The association of PTEN gene mutations with the breast cancer risk: A systematic review and meta-analysis.Biochem. Genet.20231910.1007/s10528‑023‑10464‑z37658255
    [Google Scholar]
  40. BrewerT. YehiaL. BazeleyP. EngC. Exome sequencing reveals a distinct somatic genomic landscape in breast cancer from women with germline PTEN variants.Am. J. Hum. Genet.202210981520153310.1016/j.ajhg.2022.07.00535931053
    [Google Scholar]
  41. BückerL. LehmannU. CDH1 (E-cadherin) gene methylation in human breast cancer: Critical appraisal of a long and twisted story.Cancers20221418437710.3390/cancers1418437736139537
    [Google Scholar]
  42. MuroK. Van CutsemE. NaritaY. PentheroudakisG. BabaE. LiJ. RyuM.H. ZamaniahW.I.W. YongW.P. YehK.H. KatoK. LuZ. ChoB.C. NorI.M. NgM. ChenL.T. NakajimaT.E. ShitaraK. KawakamiH. TsushimaT. YoshinoT. LordickF. MartinelliE. SmythE.C. ArnoldD. MinamiH. TaberneroJ. DouillardJ.Y. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with metastatic gastric cancer: A JSMO–ESMO initiative endorsed by CSCO, KSMO, MOS, SSO and TOS.Ann. Oncol.2019301193310.1093/annonc/mdy50230475956
    [Google Scholar]
  43. MiricescuD. DiaconuC. StefaniC. StanescuA.M. TotanA. RusuI. BratuO. SpinuD. GreabuM. The serine/threonine protein kinase (Akt)/protein kinase B (PkB) signaling pathway in breast cancer.J. Mind. Med. Sci202071343910.22543/7674.71.P3439
    [Google Scholar]
  44. IbraheemA. OlopadeO.I. HuoD. Propensity score analysis of the prognostic value of genomic assays for breast cancer in diverse populations using the National Cancer Data Base.Cancer2020126174013402210.1002/cncr.3295632521056
    [Google Scholar]
  45. WangJ. CostantinoJ.P. Tan-ChiuE. WickerhamD.L. PaikS. WolmarkN. Lower-category benign breast disease and the risk of invasive breast cancer.J. Natl. Cancer Inst.200496861662010.1093/jnci/djhs10515100339
    [Google Scholar]
  46. StachsA. StubertJ. ReimerT. HartmannS. Benign breast disease in women.Dtsch. Arztebl. Int.201911633-3456557431554551
    [Google Scholar]
  47. LaddhaA.G. ShuklaS. KaduR.P. BhakeA.S. VaghaS. JagtapM. Histopathological types of benign proliferative lesions in peritumoural vicinity of carcinoma breast.J. Clin. Diagn. Res.2020145.10.7860/JCDR/2020/43291.13701
    [Google Scholar]
  48. LewisM.C. IrshadA. AckermanS. CluverA. PavicD. SpruillL. RalstonJ. LeddyR.J. Assessing the relationship of mammographic breast density and proliferative breast disease.Breast J.201622554154610.1111/tbj.1262027261096
    [Google Scholar]
  49. GomezA.L. DelconteM.B. AltamiranoG.A. VigezziL. BosquiazzoV.L. BarbisanL.F. RamosJ.G. LuqueE.H. Muñoz-de-ToroM. KassL. Perinatal exposure to bisphenol A or diethylstilbestrol increases the susceptibility to develop mammary gland lesions after estrogen replacement therapy in middle-aged rats.Horm. Cancer201782788910.1007/s12672‑016‑0282‑128078498
    [Google Scholar]
  50. PoggioF. Del MastroL. BruzzoneM. CeppiM. RazetiM.G. FregattiP. RuelleT. PronzatoP. MassarottiC. FranzoiM.A. LambertiniM. Safety of systemic hormone replacement therapy in breast cancer survivors: A systematic review and meta-analysis.Breast Cancer Res. Treat.202217
    [Google Scholar]
  51. WangF. HouJ. ShenQ. YueY. XieF. WangX. JinH. Mouse mammary tumor virus-like virus infection and the risk of human breast cancer: A meta-analysis.Am. J. Transl. Res.20146324826624936218
    [Google Scholar]
  52. NarteyT. MoranH. MarinT. ArcaroK.F. AndertonD.L. EtkindP. HollandJ.F. MelanaS.M. PogoB.G.T. Human mammary tumor virus (HMTV) sequences in human milk.Infect. Agent. Cancer2014912010.1186/1750‑9378‑9‑2025120582
    [Google Scholar]
  53. KudelaE. KudelovaE. KozubíkE. RokosT. PribulovaT. HolubekovaV. BiringerK. HPV-associated breast cancer: Myth or fact?Pathogens20221112151010.3390/pathogens1112151036558844
    [Google Scholar]
  54. FarahmandM. MonavariS.H. ShojaZ. GhaffariH. TavakoliM. TavakoliA. Epstein–Barr virus and risk of breast cancer: A systematic review and meta-analysis.Future Oncol.201915242873288510.2217/fon‑2019‑023231342783
    [Google Scholar]
  55. zur HausenH. de VilliersE.M. Dairy cattle serum and milk factors contributing to the risk of colon and breast cancers.Int. J. Cancer2015137495996710.1002/ijc.2946625648405
    [Google Scholar]
  56. BuehringG.C. SansH.M. Breast cancer gone viral? Review of possible role of bovine leukemia virus in breast cancer, and related opportunities for cancer prevention.Int. J. Environ. Res. Public Health201917120910.3390/ijerph1701020931892207
    [Google Scholar]
  57. MaciasH. HinckL. Mammary gland development.Wiley Interdiscip. Rev. Dev. Biol.20121453355710.1002/wdev.3522844349
    [Google Scholar]
  58. HuebnerR.J. EwaldA.J. Cellular foundations of mammary tubulogenesis.Seminars in cell & developmental biologyAcademic Press20143112413110.1016/j.semcdb.2014.04.019
    [Google Scholar]
  59. SeverR. BruggeJ.S. Signal transduction in cancer.Cold Spring Harb. Perspect. Med.201554a00609810.1101/cshperspect.a00609825833940
    [Google Scholar]
  60. LiuZ. AltweggK.A. LiuJ. WeintraubS.T. ChenY. LaiZ. SareddyG.R. ViswanadhapalliS. VadlamudiR.K. Global genomic and proteomic analysis identified critical pathways modulated by proto-oncogene PELP1 in TNBC.Cancers202214493010.3390/cancers1404093035205680
    [Google Scholar]
  61. RenoirJ.M. MarsaudV. LazennecG. Estrogen receptor signaling as a target for novel breast cancer therapeutics.Biochem. Pharmacol.201385444946510.1016/j.bcp.2012.10.01823103568
    [Google Scholar]
  62. RoyS.S. VadlamudiR.K. Role of estrogen receptor signaling in breast cancer metastasis.Int. J. Breast Cancer20122012.10.1155/2012/654698
    [Google Scholar]
  63. LiangY. ZhangH. SongX. YangQ. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets.Seminars in Cancer BiologyAcademic Press2020601427
    [Google Scholar]
  64. ClusanL. FerrièreF. FlouriotG. PakdelF. A basic review on estrogen receptor signaling pathways in breast cancer.Int. J. Mol. Sci.2023247683410.3390/ijms2407683437047814
    [Google Scholar]
  65. Le RomancerM. PoulardC. CohenP. SentisS. RenoirJ.M. CorboL. Cracking the estrogen receptor’s post translational code in breast tumors.Endocr. Rev.201132559762210.1210/er.2010‑001621680538
    [Google Scholar]
  66. WangL. DiL.J. BRCA1 and estrogen/estrogen receptor in breast cancer: where they interact?Int. J. Biol. Sci.201410556657510.7150/ijbs.857924910535
    [Google Scholar]
  67. BaiX. SunP. WangX. LongC. LiaoS. DangS. ZhuangS. DuY. ZhangX. LiN. HeK. ZhangZ. Structure and dynamics of the EGFR/HER2 heterodimer.Cell Discov.2023911810.1038/s41421‑023‑00523‑536781849
    [Google Scholar]
  68. MajumderA. SandhuM. BanerjiD. SteriV. OlshenA. MoasserM.M. The role of HER2 and HER3 in HER2-amplified cancers beyond breast cancers.Sci. Rep.2021111909110.1038/s41598‑021‑88683‑w33907275
    [Google Scholar]
  69. AminD.N. SerginaN. AhujaD. McMahonM. BlairJ.A. WangD. HannB. KochK.M. ShokatK.M. MoasserM.M. Resiliency and vulnerability in the HER2-HER3 tumorigenic driver.Sci. Transl. Med.201021616ra710.1126/scitranslmed.300038920371474
    [Google Scholar]
  70. BursteinH.J. StornioloA.M. FrancoS. ForsterJ. SteinS. RubinS. SalazarV.M. BlackwellK.L. A phase II study of lapatinib monotherapy in chemotherapy-refractory HER2-positive and HER2-negative advanced or metastatic breast cancer.Ann. Oncol.20081961068107410.1093/annonc/mdm60118283035
    [Google Scholar]
  71. NusseR. CleversH. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities.Cell2017169698599910.1016/j.cell.2017.05.01628575679
    [Google Scholar]
  72. MasudaT. IshitaniT. Context-dependent regulation of the β-catenin transcriptional complex supports diverse functions of Wnt/β-catenin signaling.J. Biochem.2017161191710.1093/jb/mvw07228013224
    [Google Scholar]
  73. ZhangX. YuX. Crosstalk between Wnt/β-catenin signaling pathway and DNA damage response in cancer: a new direction for overcoming therapy resistance.Front. Pharmacol.202314123082210.3389/fphar.2023.123082237601042
    [Google Scholar]
  74. CallahanR. SmithG.H. MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways.Oncogene2000198992100110.1038/sj.onc.120327610713682
    [Google Scholar]
  75. CallahanR. SmithG.H. Common integration sites for MMTV in viral induced mouse mammary tumors.J. Mammary Gland Biol. Neoplasia200813330932110.1007/s10911‑008‑9092‑618709449
    [Google Scholar]
  76. AxelR. SchlomJ. SpiegelmanS. Presence in human breast cancer of RNA homologous to mouse mammary tumour virus RNA.Nature19722355332323610.1038/235032a04332799
    [Google Scholar]
  77. Mesa-TejadaR. OsterM.W. FenoglioC.M. MagidsonJ. SpiegelmanS. Diagnosis of primary breast carcinoma through immunohistochemical detection of antigen related to mouse mammary tumor virus in metastatic lesions: A report of two cases.Cancer198249226126810.1002/1097‑0142(19820115)49:2<261::AID‑CNCR2820490211>3.0.CO;2‑36274506
    [Google Scholar]
  78. SpiegelmanS. BurnyA. DasM.R. KeydarJ. SchlomJ. TravnicekM. WatsonK. Characterization of the products of DNA-directed DNA polymerases in oncogenic RNA viruses.Nature1970227525856356710.1038/227563a04317039
    [Google Scholar]
  79. PeurlaM. PaavolainenO.K. TammelinE. SulanderS.R. MouraoL. BoströmP. BrückN. ScheeleC.L. HartialaP. PeuhuE. Morphometric analysis of the terminal ductal lobular unit architecture in human breast.bioRxiv202310.1101/2023.03.12.532249
    [Google Scholar]
  80. MelanaS.M. NepomnaschyI. HasaJ. DjougarianA. DjougarianA. HollandJ.F. PogoB.G.T. Detection of human mammary tumor virus proteins in human breast cancer cells.J. Virol. Methods2010163115716110.1016/j.jviromet.2009.09.01519781575
    [Google Scholar]
  81. KhalidH.F. BibiS. AliA. FawadN. ShamsM.U. IdreesW. WaqasM. RafiqueS. khanA. KhanF. AlmajhdiF.N. Decoding the mystery of MMTV-like virus and its relationship with breast cancer metastasis.J. Infect. Public Health20231691396140210.1016/j.jiph.2023.07.00437480670
    [Google Scholar]
  82. LabrecqueN. McGrathH. SubramanyamM. HuberB.T. SékalyR.P. Human T cells respond to mouse mammary tumor virus-encoded superantigen: V beta restriction and conserved evolutionary features.J. Exp. Med.199317761735174310.1084/jem.177.6.17358388432
    [Google Scholar]
  83. WangY. JiangJ.D. XuD. LiY. QuC. HollandJ.F. PogoB.G.T. A mouse mammary tumor virus-like long terminal repeat superantigen in human breast cancer.Cancer Res.200464124105411110.1158/0008‑5472.CAN‑03‑388015205319
    [Google Scholar]
  84. ChenL. ZhangX. LiuG. ChenS. ZhengM. ZhuS. ZhangS. Intestinal immune system and amplification of mouse mammary tumor virus.Front. Cell. Infect. Microbiol.20221180746210.3389/fcimb.2021.80746235096654
    [Google Scholar]
  85. TangK.W. Alaei-MahabadiB. SamuelssonT. LindhM. LarssonE. The landscape of viral expression and host gene fusion and adaptation in human cancer.Nat. Commun.201341251310.1038/ncomms351324085110
    [Google Scholar]
  86. MooreR. DixonM. SmithR. PetersG. DicksonC. Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol.J. Virol.198761248049010.1128/jvi.61.2.480‑490.19873027377
    [Google Scholar]
  87. MelanaS.M. NepomnaschyI. SakalianM. AbbottA. HasaJ. HollandJ.F. PogoB.G.T. Characterization of viral particles isolated from primary cultures of human breast cancer cells.Cancer Res.200767188960896510.1158/0008‑5472.CAN‑06‑389217875739
    [Google Scholar]
  88. ParisiF. FreerG. MazzantiC.M. PistelloM. PoliA. Mouse mammary tumor virus (MMTV) and MMTV-like viruses: An in-depth look at a controversial issue.Viruses202214597710.3390/v1405097735632719
    [Google Scholar]
  89. DudleyJ.P. GolovkinaT.V. RossS.R. Lessons learned from mouse mammary tumor virus in animal models.ILAR J.2016571122310.1093/ilar/ilv04427034391
    [Google Scholar]
  90. WangY. MelanaS.M. BakerB. BleiweissI. Fernandez-CoboM. MandeliJ.F. HollandJ.F. PogoB.G.T. High prevalence of MMTV-like env gene sequences in gestational breast cancer.Med. Oncol.200320323323610.1385/MO:20:3:23314514972
    [Google Scholar]
  91. SatpathiS. GaurkarS.S. PotdukheA. WanjariM.B. WanjariM. Unveiling the role of hormonal imbalance in breast cancer development: A comprehensive review.Cureus2023157e4173710.7759/cureus.4173737575755
    [Google Scholar]
  92. AmaranteM.K. de Sousa PereiraN. VitielloG.A.F. WatanabeM.A.E. Involvement of a mouse mammary tumor virus (MMTV) homologue in human breast cancer: Evidence for, against and possible causes of controversies.Microb. Pathog.201913028329410.1016/j.micpath.2019.03.02130905715
    [Google Scholar]
  93. DuesbergP.H. BlairP.B. Isolation of the nucleic acid of mouse mammary tumor virus (MTV).Proc. Natl. Acad. Sci.19665561490149710.1073/pnas.55.6.14904289970
    [Google Scholar]
  94. VarmusH. BishopJ.M. NowinskiR.C. SarkerN.H. Mammary tumour virus specific nucleotide sequences in mouse DNA.Nat. New Biol.19722388418919110.1038/newbio238189a04340575
    [Google Scholar]
  95. Bar-SinaiA. BassaN. FischetteM. GottesmanM.M. LoveD.C. HanoverJ.A. HochmanJ. Mouse mammary tumor virus Env-derived peptide associates with nucleolar targets in lymphoma, mammary carcinoma, and human breast cancer.Cancer Res.200565167223723010.1158/0008‑5472.CAN‑04‑387916103073
    [Google Scholar]
  96. BevilacquaG. The viral origin of human breast cancer: From the mouse mammary tumor virus (MMTV) to the human betaretrovirus (HBRV).Viruses2022148170410.3390/v1408170436016325
    [Google Scholar]
  97. LiY. HivelyW.P. VarmusH.E. Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer.Oncogene20001981002100910.1038/sj.onc.120327310713683
    [Google Scholar]
  98. RoartyK. RosenJ.M. Wnt and mammary stem cells: Hormones cannot fly wingless.Curr. Opin. Pharmacol.201010664364910.1016/j.coph.2010.07.00420810315
    [Google Scholar]
  99. PfefferleA.D. DarrD.B. CalhounB.C. MottK.R. RosenJ.M. PerouC.M. The MMTV-Wnt1 murine model produces two phenotypically distinct subtypes of mammary tumors with unique therapeutic responses to an EGFR inhibitor.Dis. Model. Mech.2019127dmm.03719210.1242/dmm.03719231213486
    [Google Scholar]
  100. MasudaH. ZhangD. BartholomeuszC. DoiharaH. HortobagyiG.N. UenoN.T. Role of epidermal growth factor receptor in breast cancer.Breast Cancer Res. Treat.2012136233134510.1007/s10549‑012‑2289‑923073759
    [Google Scholar]
  101. AhmadW. PanickerN.G. AkhlaqS. GullB. BabyJ. KhaderT.A. RizviT.A. MustafaF. Global down-regulation of gene expression induced by mouse mammary tumor virus (MMTV) in normal mammary epithelial cells.Viruses2023155111010.3390/v1505111037243196
    [Google Scholar]
  102. LawsonJ.S. GünzburgW.H. WhitakerN.J. Viruses and human breast cancer.Future Microbiol.200611335110.2217/17460913.1.1.33
    [Google Scholar]
  103. IndikS. GünzburgW.H. SalmonsB. RouaultF. Mouse mammary tumor virus infects human cells.Cancer Res.200565156651665910.1158/0008‑5472.CAN‑04‑260916061645
    [Google Scholar]
  104. FaschingerA. RouaultF. SollnerJ. LukasA. SalmonsB. GünzburgW.H. IndikS. Mouse mammary tumor virus integration site selection in human and mouse genomes.J. Virol.20088231360136710.1128/JVI.02098‑0718032509
    [Google Scholar]
  105. LawsonJ.S. SalmonsB. GlennW.K. Oncogenic viruses and breast cancer: Mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma virus (HPV), and epstein–barr virus (EBV).Front. Oncol.20188110.3389/fonc.2018.0000129404275
    [Google Scholar]
  106. WangF. ZhangX. YangM. LinJ. YueY. LiY. WangX. ShuQ. JinH. Prevalence and characteristics of mouse mammary tumor virus-like virus associated breast cancer in China.Infect. Agent. Cancer20211614710.1186/s13027‑021‑00383‑234174934
    [Google Scholar]
  107. HuangZ. WenW. ZhengY. GaoY.T. WuC. BaoP. WangC. GuK. PengP. GongY. ZhangM. XiangY. ZhongW. JinF. XiangY.B. ShuX.O. Beeghly-FadielA. Breast cancer incidence and mortality: Trends over 40 years among women in Shanghai, China.Ann. Oncol.20162761129113410.1093/annonc/mdw06927013394
    [Google Scholar]
  108. LiuF.C. LinH.T. KuoC.F. SeeL.C. ChiouM.J. YuH.P. Epidemiology and survival outcome of breast cancer in a nationwide study.Oncotarget2017810169391695010.18632/oncotarget.1520728199975
    [Google Scholar]
  109. ShariatpanahiS. FarahaniN. SalehiA.R. SalehiR. High prevalence of mouse mammary tumor virus-like gene sequences in breast cancer samples of Iranian women.Nucleosides Nucleotides Nucleic Acids2017361062163010.1080/15257770.2017.136049829185860
    [Google Scholar]
  110. AstoriM. KarapetianO. Immunization with a mouse mammary tumour virus envelope protein epitope protects against tumour formation without inhibition of the virus infection.J. Gen. Virol.19977881935193910.1099/0022‑1317‑78‑8‑19359266991
    [Google Scholar]
  111. LawsonJ.S. GlennW.K. Mouse mammary tumour virus (MMTV) in human breast cancer-the value of bradford hill criteria.Viruses202214472110.3390/v1404072135458452
    [Google Scholar]
  112. GrubbsC.J. HillD.L. BlandK.I. BeenkenS.W. LinT.H. EtoI. AtigaddaV.R. VinesK.K. BrouilletteW.J. MuccioD.D. 9cUAB30, an RXR specific retinoid, and/or tamoxifen in the prevention of methylnitrosourea-induced mammary cancers.Cancer Lett.20032011172410.1016/S0304‑3835(03)00461‑014580682
    [Google Scholar]
  113. LibyK. RendiM. SuhN. RoyceD.B. RisingsongR. WilliamsC.R. LamphW. LabrieF. KrajewskiS. XuX. KimH. BrownP. SpornM.B. The combination of the rexinoid, LG100268, and a selective estrogen receptor modulator, either arzoxifene or acolbifene, synergizes in the prevention and treatment of mammary tumors in an estrogen receptor-negative model of breast cancer.Clin. Cancer Res.200612195902590910.1158/1078‑0432.CCR‑06‑111917020999
    [Google Scholar]
  114. MazumdarA. MedinaD. KittrellF.S. ZhangY. HillJ.L. EdwardsD.E. BissonnetteR.P. BrownP.H. The combination of tamoxifen and the rexinoid LG100268 prevents ER-positive and ER-negative mammary tumors in p53-null mammary gland mice.Cancer Prev. Res.20125101195120210.1158/1940‑6207.CAPR‑11‑052422926341
    [Google Scholar]
  115. MoyerC.L. BrownP.H. Targeting nuclear hormone receptors for the prevention of breast cancer.Front. Med.202310120094710.3389/fmed.2023.120094737583424
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673286234240123100955
Loading
/content/journals/cmc/10.2174/0109298673286234240123100955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test