Skip to content
2000
Volume 32, Issue 18
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Nonalcoholic fatty liver disease (NAFLD) is of global concern due to its high prevalence worldwide. NAFLD, as one of the most common causes of liver function abnormalities, is associated with obesity, insulin resistance, and type 2 diabetes mellitus, and there are no medications available to treat NAFLD. Extracellular vesicles (EVs) are nanosized, membrane-bound vesicles that deliver biomolecules between cells. Exosomes are a subtype of EVs that mediate intercellular communication by delivering proteins and RNAs. MicroRNAs (miRNAs) are a highly conserved class of small tissue-specific non-coding RNAs that influence the expression of many functionally interacting genes. Hepatic-derived exosomal miRNAs are tightly associated with NAFLD occurrence and progression through multiple mechanisms. In addition, the characterization of miRNAs suggests that they may serve as multifunctional biomarkers for NAFLD, be used as clinical therapeutic targets for NAFLD, and be significant predictors of patient prognosis. Here, we review recent advances in the regulation and function of exosome-derived miRNAs in NAFLD, focusing on miRNAs specifically expressed or enriched in hepatocytes (HCs), hepatic macrophages, hepatic stellate cells (HSCs), and other immune cells in the liver. Finally, we discuss future research directions on exosomal miRNAs as biomarkers for NAFLD's diagnosis and clinical therapeutic targets.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673276581231210170332
2024-01-30
2025-09-04
Loading full text...

Full text loading...

References

  1. ByrneC.D. TargherG. NAFLD: A multisystem disease.J. Hepatol.2015621Suppl.S47S6410.1016/j.jhep.2014.12.01225920090
    [Google Scholar]
  2. CobbinaE. AkhlaghiF. Non-alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters.Drug Metab. Rev.201749219721110.1080/03602532.2017.129368328303724
    [Google Scholar]
  3. FriedmanS.L. Neuschwander-TetriB.A. RinellaM. SanyalA.J. Mechanisms of NAFLD development and therapeutic strategies.Nat. Med.201824790892210.1038/s41591‑018‑0104‑929967350
    [Google Scholar]
  4. XuX. PoulsenK.L. WuL. LiuS. MiyataT. SongQ. WeiQ. ZhaoC. LinC. YangJ. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH).Signal Transduct. Target. Ther.20227128710.1038/s41392‑022‑01119‑335963848
    [Google Scholar]
  5. European Association for the Study of the Liver (EASL) European Association for the Study of Diabetes (EASD) European Association for the Study of Obesity (EASO) EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease.Diabetologia20165961121114010.1007/s00125‑016‑3902‑y27053230
    [Google Scholar]
  6. RazaS. RajakS. UpadhyayA. TewariA. Anthony SinhaR. Current treatment paradigms and emerging therapies for NAFLD/NASH.Front. Biosci.202126220623710.2741/489233049668
    [Google Scholar]
  7. TargherG. CoreyK.E. ByrneC.D. NAFLD, and cardiovascular and cardiac diseases: Factors influencing risk, prediction and treatment.Diabetes Metab.202147210121510.1016/j.diabet.2020.10121533296704
    [Google Scholar]
  8. YounossiZ. TackeF. ArreseM. Chander SharmaB. MostafaI. BugianesiE. Wai-Sun WongV. YilmazY. GeorgeJ. FanJ. VosM.B. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.Hepatology20196962672268210.1002/hep.3025130179269
    [Google Scholar]
  9. O’BrienK. BreyneK. UghettoS. LaurentL.C. BreakefieldX.O. RNA delivery by extracellular vesicles in mammalian cells and its applications.Nat. Rev. Mol. Cell Biol.2020211058560610.1038/s41580‑020‑0251‑y32457507
    [Google Scholar]
  10. VaderP. MolE.A. PasterkampG. SchiffelersR.M. Extracellular vesicles for drug delivery.Adv. Drug. Deliv. Rev.201610614815610.1016/j.addr.2016.02.006
    [Google Scholar]
  11. RossoG. CaudaV. Biomimicking extracellular vesicles with fully artificial ones: A rational design of ev-biomimetics toward effective theranostic tools in nanomedicine.ACS Biomater. Sci. Eng.202236535896
    [Google Scholar]
  12. Ramirez-GarrastachoM. Bajo-SantosC. LineA. Martens-UzunovaE.S. de la FuenteJ.M. MorosM. SoekmadjiC. TaskenK.A. LlorenteA. Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: A decade of research.Br. J. Cancer2022126333135010.1038/s41416‑021‑01610‑834811504
    [Google Scholar]
  13. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203676478eaau697710.1126/science.aau697732029601
    [Google Scholar]
  14. ZhangL. YuD. Exosomes in cancer development, metastasis, and immunity.Biochim. Biophys. Acta Rev. Cancer20191871245546810.1016/j.bbcan.2019.04.00431047959
    [Google Scholar]
  15. ZhangJ. LiS. LiL. LiM. GuoC. YaoJ. MiS. Exosome and exosomal microRNA: Trafficking, sorting, and function.Genomics Proteomics Bioinf.2015131172410.1016/j.gpb.2015.02.00125724326
    [Google Scholar]
  16. MishraS. YadavT. RaniV. Exploring miRNA based approaches in cancer diagnostics and therapeutics.Crit. Rev. Oncol. Hematol.201698122310.1016/j.critrevonc.2015.10.00326481951
    [Google Scholar]
  17. LuT.X. RothenbergM.E. MicroR.N.A. MicroRNA.J. Allergy Clin. Immunol.201814141202120710.1016/j.jaci.2017.08.03429074454
    [Google Scholar]
  18. LouL. TianM. ChangJ. LiF. ZhangG. MiRNA-192-5p attenuates airway remodeling and autophagy in asthma by targeting MMP-16 and ATG7.Biomed. Pharmacother.202012210969210.1016/j.biopha.2019.10969231918268
    [Google Scholar]
  19. SongR. HuX.Q. ZhangL. Mitochondrial MiRNA in cardiovascular function and disease.Cells2019812147510.3390/cells812147531766319
    [Google Scholar]
  20. LeeS.H. ParkS.Y. ChoiC.S. Insulin resistance: From mechanisms to therapeutic strategies.Diabetes Metab. J.2022461153710.4093/dmj.2021.028034965646
    [Google Scholar]
  21. MaudeH. Sanchez-CabanillasC. CebolaI. Epigenetics of hepatic insulin resistance.Front. Endocrinol.20211268135610.3389/fendo.2021.68135634046015
    [Google Scholar]
  22. KolodziejczykA.A. ZhengD. ShiboletO. ElinavE. The role of the microbiome in NAFLD and NASH.EMBO Mol. Med.2019112e930210.15252/emmm.20180930230591521
    [Google Scholar]
  23. GengY. FaberK.N. de MeijerV.E. BlokzijlH. MoshageH. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease?Hepatol. Int.2021151213510.1007/s12072‑020‑10121‑233548031
    [Google Scholar]
  24. AjoolabadyA. KaplowitzN. LebeaupinC. KroemerG. KaufmanR.J. MalhiH. RenJ. Endoplasmic reticulum stress in liver diseases.Hepatology202377261963910.1002/hep.3256235524448
    [Google Scholar]
  25. MansouriA. GattolliatC.H. AsselahT. Mitochondrial dysfunction and signaling in chronic liver diseases.Gastroenterology2018155362964710.1053/j.gastro.2018.06.08330012333
    [Google Scholar]
  26. BarrebyE. ChenP. AouadiM. Macrophage functional diversity in NAFLD — more than inflammation.Nat. Rev. Endocrinol.202218846147210.1038/s41574‑022‑00675‑635534573
    [Google Scholar]
  27. XuJ. LiuX. KoyamaY. WangP. LanT. KimI.G. KimI.H. MaH.Y. KisselevaT. The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies.Front. Pharmacol.2014516710.3389/fphar.2014.0016725100997
    [Google Scholar]
  28. HochreuterM.Y. DallM. TreebakJ.T. BarrèsR. MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives.Mol. Metab.20226510158110.1016/j.molmet.2022.10158136028120
    [Google Scholar]
  29. KumarS. DuanQ. WuR. HarrisE.N. SuQ. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis.Adv. Drug Deliv. Rev.202117611386910.1016/j.addr.2021.11386934280515
    [Google Scholar]
  30. GongJ. TuW. LiuJ. TianD. Hepatocytes: A key role in liver inflammation.Front. Immunol.202313108378010.3389/fimmu.2022.108378036741394
    [Google Scholar]
  31. ArreseM. CabreraD. KalergisA.M. FeldsteinA.E. Innate immunity and inflammation in NAFLD/NASH.Dig. Dis. Sci.20166151294130310.1007/s10620‑016‑4049‑x26841783
    [Google Scholar]
  32. AmarapurkarD.N. AmarapurkarA.D. PatelN.D. AgalS. BaigalR. GupteP. PramanikS. Nonalcoholic steatohepatitis (NASH) with diabetes: Predictors of liver fibrosis.Ann. Hepatol.200651303310.1016/S1665‑2681(19)32036‑816531962
    [Google Scholar]
  33. ArgoC.K. NorthupP.G. Al-OsaimiA.M.S. CaldwellS.H. Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis.J. Hepatol.200951237137910.1016/j.jhep.2009.03.01919501928
    [Google Scholar]
  34. ThietartS. RautouP.E. Extracellular vesicles as biomarkers in liver diseases: A clinician’s point of view.J. Hepatol.20207361507152510.1016/j.jhep.2020.07.01432682050
    [Google Scholar]
  35. AldersonN.L. RembiesaB.M. WallaM.D. BielawskaA. BielawskiJ. HamaH. The human FA2H gene encodes a fatty acid 2-hydroxylase.J. Biol. Chem.200427947485624856810.1074/jbc.M40664920015337768
    [Google Scholar]
  36. JiY. LuoZ. GaoH. Dos ReisF.C.G. BandyopadhyayG. JinZ. MandaK.A. IsaacR. YangM. FuW. YingW. OlefskyJ.M. Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075.Nat. Metab.2021391163117410.1038/s42255‑021‑00444‑134489604
    [Google Scholar]
  37. EckhardtM. YaghootfamA. FewouS.N. ZöllerI. GieselmannV. A mammalian fatty acid hydroxylase responsible for the formation of α-hydroxylated galactosylceramide in myelin.Biochem. J.2005388124525410.1042/BJ2004145115658937
    [Google Scholar]
  38. GuoL. ZhouD. PryseK.M. OkunadeA.L. SuX. Fatty acid 2-hydroxylase mediates diffusional mobility of Raft-associated lipids, GLUT4 level, and lipogenesis in 3T3-L1 adipocytes.J. Biol. Chem.201028533254382544710.1074/jbc.M110.11993320519515
    [Google Scholar]
  39. ShiX. KallerM. RokavecM. KirchnerT. HorstD. HermekingH. Characterization of a p53/miR-34a/CSF1R/STAT3 feedback loop in colorectal cancer.Cell. Mol. Gastroenterol. Hepatol.202010239141810.1016/j.jcmgh.2020.04.00232304779
    [Google Scholar]
  40. LiS. WeiX. HeJ. CaoQ. DuD. ZhanX. ZengY. YuanS. SunL. The comprehensive landscape of miR-34a in cancer research.Cancer Metastasis Rev.202140392594810.1007/s10555‑021‑09973‑333959850
    [Google Scholar]
  41. RokavecM. LiH. JiangL. HermekingH. The p53/miR-34 axis in development and disease.J. Mol. Cell Biol.20146321423010.1093/jmcb/mju00324815299
    [Google Scholar]
  42. XuY. ZhuY. HuS. PanX. BawaF.C. WangH.H. WangD.Q.H. YinL. ZhangY. Hepatocyte miR-34a is a key regulator in the development and progression of non-alcoholic fatty liver disease.Mol. Metab.20215110124410.1016/j.molmet.2021.10124433930596
    [Google Scholar]
  43. CastroR.E. FerreiraD.M.S. AfonsoM.B. BorralhoP.M. MachadoM.V. Cortez-PintoH. RodriguesC.M.P. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease.J. Hepatol.201358111912510.1016/j.jhep.2012.08.00822902550
    [Google Scholar]
  44. SimãoA.L. AfonsoM.B. RodriguesP.M. Gama-CarvalhoM. MachadoM.V. Cortez-PintoH. RodriguesC.M.P. CastroR.E. Skeletal muscle miR-34a/SIRT1:AMPK axis is activated in experimental and human non-alcoholic steatohepatitis.J. Mol. Med.20199781113112610.1007/s00109‑019‑01796‑831139863
    [Google Scholar]
  45. PanY. HuiX. HooR.L.C. YeD. ChanC.Y.C. FengT. WangY. LamK.S.L. XuA. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation.J. Clin. Invest.2019129283484910.1172/JCI12306930667374
    [Google Scholar]
  46. ThakralS. GhoshalK. miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir.Curr. Gene Ther.201515214215010.2174/156652321466614122409561025537773
    [Google Scholar]
  47. LewisA.P. JoplingC.L. Regulation and biological function of the liver-specific miR - 122.Biochem. Soc. Trans.20103861553155710.1042/BST038155321118125
    [Google Scholar]
  48. LongJ.K. DaiW. ZhengY.W. ZhaoS.P. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease.Mol. Med.20192512610.1186/s10020‑019‑0085‑231195981
    [Google Scholar]
  49. JinH. JiaY. YaoZ. HuangJ. HaoM. YaoS. LianN. ZhangF. ZhangC. ChenX. BianM. ShaoJ. WuL. ChenA. ZhengS. Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell.Cell. Signal.201733798510.1016/j.cellsig.2017.02.00628188823
    [Google Scholar]
  50. YuT. ZhengE. LiY. LiY. XiaJ. DingQ. HouZ. RuanX.Z. ZhaoL. ChenY. Src-mediated Tyr353 phosphorylation of IP3R1 promotes its stability and causes apoptosis in palmitic acid-treated hepatocytes.Exp. Cell Res.2021399211243810.1016/j.yexcr.2020.11243833358861
    [Google Scholar]
  51. WangW. LiF. LaiX. LiuH. WuS. HanY. ShenY. Exosomes secreted by palmitic acid-treated hepatocytes promote LX-2 cell activation by transferring miRNA-107.Cell Death Discov.20217117410.1038/s41420‑021‑00536‑734234100
    [Google Scholar]
  52. MiaoC. YangY. HeX. HuangC. HuangY. ZhangL. LvX.W. JinY. LiJ. Wnt signaling in liver fibrosis: Progress, challenges and potential directions.Biochimie201395122326233510.1016/j.biochi.2013.09.00324036368
    [Google Scholar]
  53. YangY. ChenX. LiW. WuX. HuangC. XieJ. ZhaoY. MengX. LiJ. EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis.J. Cell. Mol. Med.201721102317232810.1111/jcmm.1315328332284
    [Google Scholar]
  54. ZhaoP. XiaoX. GhobrialR.M. LiX.C. IL-9 and Th9 cells: Progress and challenges.Int. Immunol.2013251054755110.1093/intimm/dxt03924027199
    [Google Scholar]
  55. CastañoC. KalkoS. NovialsA. PárrizasM. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice.Proc. Natl. Acad. Sci.201811548121581216310.1073/pnas.180885511530429322
    [Google Scholar]
  56. LiuX.L. PanQ. CaoH.X. XinF.Z. ZhaoZ.H. YangR.X. ZengJ. ZhouH. FanJ.G. Lipotoxic hepatocyte-derived exosomal MicroRNA 192-5p activates macrophages through rictor/Akt/Forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease.Hepatology202072245446910.1002/hep.3105031782176
    [Google Scholar]
  57. NieH. PanY. ZhouY. Exosomal microRNA-194 causes cardiac injury and mitochondrial dysfunction in obese mice.Biochem. Biophys. Res. Commun.201850343174317910.1016/j.bbrc.2018.08.11330170731
    [Google Scholar]
  58. KimE.Y. LeeJ.M. NRF2 activation in autophagy defects suppresses a pharmacological transactivation of the nuclear receptor FXR.Antioxidants202211237010.3390/antiox1102037035204252
    [Google Scholar]
  59. PreidisG.A. KimK.H. MooreD.D. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.J. Clin. Invest.201712741193120110.1172/JCI8889328287408
    [Google Scholar]
  60. NieH. SongC. WangD. CuiS. RenT. CaoZ. LiuQ. ChenZ. ChenX. ZhouY. MicroRNA-194 inhibition improves dietary-induced non-alcoholic fatty liver disease in mice through targeting on FXR.Biochim. Biophys. Acta Mol. Basis Dis.20171863123087309410.1016/j.bbadis.2017.09.02028951211
    [Google Scholar]
  61. WangL. CuiM. ChengD. QuF. YuJ. WeiY. ChengL. WuX. LiuX. miR-9-5p facilitates hepatocellular carcinoma cell proliferation, migration and invasion by targeting ESR1.Mol. Cell. Biochem.2021476257558310.1007/s11010‑020‑03927‑z33106914
    [Google Scholar]
  62. LiuH. NiuQ. WangT. DongH. BianC. Lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microRNA-9-5p and activating macrophages.Int. J. Biol. Sci.202117143745375910.7150/ijbs.5761035261562
    [Google Scholar]
  63. RöszerT. Transcriptional control of apoptotic cell clearance by macrophage nuclear receptors.Apoptosis201722228429410.1007/s10495‑016‑1310‑x27787652
    [Google Scholar]
  64. HandaP. ThomasS. Morgan-StevensonV. MalikenB.D. GochanourE. BoukharS. YehM.M. KowdleyK.V. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis.J. Leukoc. Biol.201910551015102610.1002/JLB.3A0318‑108R30835899
    [Google Scholar]
  65. LuoX. LuoS.Z. XuZ.X. ZhouC. LiZ.H. ZhouX.Y. XuM.Y. Lipotoxic hepatocyte-derived exosomal miR-1297 promotes hepatic stellate cell activation through the PTEN signaling pathway in metabolic-associated fatty liver disease.World J. Gastroenterol.202127141419143410.3748/wjg.v27.i14.141933911465
    [Google Scholar]
  66. WorbyC.A. DixonJ.E. PTEN.Annu. Rev. Biochem.201483164166910.1146/annurev‑biochem‑082411‑11390724905788
    [Google Scholar]
  67. LiA. QiuM. ZhouH. WangT. GuoW. PTEN, insulin resistance and cancer.Curr. Pharm. Des.201723253667367628677502
    [Google Scholar]
  68. WeiJ. FengL. LiZ. XuG. FanX. MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling.Biomed. Pharmacother.201367538739210.1016/j.biopha.2013.03.01423643356
    [Google Scholar]
  69. TeimouriM. HosseiniH. ShabaniM. KoushkiM. NoorbakhshF. MeshkaniR. Inhibiting miR-27a and miR-142-5p attenuate nonalcoholic fatty liver disease by regulating Nrf2 signaling pathway.IUBMB Life202072336137210.1002/iub.222131889412
    [Google Scholar]
  70. ZhangM. SunW. ZhouM. TangY. MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1.Sci. Rep.2017711449310.1038/s41598‑017‑15141‑x29101357
    [Google Scholar]
  71. LuoX. XuZ.X. WuJ.C. LuoS.Z. XuM.Y. Hepatocyte-derived exosomal miR-27a activates hepatic stellate cells through the inhibition of PINK1-mediated mitophagy in MAFLD.Mol. Ther. Nucleic Acids2021261241125410.1016/j.omtn.2021.10.02234853724
    [Google Scholar]
  72. HazraS. MiyaharaT. RippeR.A. TsukamotoH. PPAR gamma and hepatic stellate cells.Comp Hepatol2004317
    [Google Scholar]
  73. SunK. WangQ. HuangX. PPAR gamma inhibits growth of rat hepatic stellate cells and TGF beta-induced connective tissue growth factor expression1.Acta Pharmacol. Sin.200627671572310.1111/j.1745‑7254.2006.00299.x16723090
    [Google Scholar]
  74. PoveroD. PaneraN. EguchiA. JohnsonC.D. PapouchadoB.G. de Araujo HorcelL. PinatelE.M. AlisiA. NobiliV. FeldsteinA.E. Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-γ.Cell. Mol. Gastroenterol. Hepatol.201516646663.e410.1016/j.jcmgh.2015.07.00726783552
    [Google Scholar]
  75. WynnT.A. VannellaK.M. Macrophages in tissue repair, regeneration, and fibrosis.Immunity201644345046210.1016/j.immuni.2016.02.01526982353
    [Google Scholar]
  76. LiH. ZhouY. WangH. ZhangM. QiuP. ZhangM. ZhangR. ZhaoQ. LiuJ. Crosstalk between liver macrophages and surrounding cells in nonalcoholic steatohepatitis.Front. Immunol.202011116910.3389/fimmu.2020.0116932670278
    [Google Scholar]
  77. LiW. ChangN. LiL. Heterogeneity and function of kupffer cells in liver injury.Front. Immunol.20221394086710.3389/fimmu.2022.94086735833135
    [Google Scholar]
  78. DixonL.J. BarnesM. TangH. PritchardM.T. NagyL.E. Kupffer cells in the liver.Compr. Physiol.20133278579710.1002/cphy.c12002623720329
    [Google Scholar]
  79. SkuratovskaiaD. VulfM. KhaziakhmatovaO. MalashchenkoV. KomarA. ShunkinE. ShupletsovaV. GoncharovA. UrazovaO. LitvinovaL. Tissue-specific role of macrophages in noninfectious inflammatory disorders.Biomedicines202081040010.3390/biomedicines810040033050138
    [Google Scholar]
  80. YingW. GaoH. Dos ReisF.C.G. BandyopadhyayG. OfrecioJ.M. LuoZ. JiY. JinZ. LyC. OlefskyJ.M. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice.Cell Metab.2021334781790.e510.1016/j.cmet.2020.12.01933450179
    [Google Scholar]
  81. GaoH. JinZ. BandyopadhyayG. Cunha e RochaK. LiuX. ZhaoH. ZhangD. JouihanH. PourshahianS. KisselevaT. BrennerD.A. YingW. OlefskyJ.M. MiR-690 treatment causes decreased fibrosis and steatosis and restores specific Kupffer cell functions in NASH.Cell Metab.2022347978990.e410.1016/j.cmet.2022.05.00835700738
    [Google Scholar]
  82. AzzimatoV. ChenP. BarrebyE. MorgantiniC. LeviL. VankovaA. JagerJ. SulenA. DiotalleviM. ShenJ.X. MillerA. EllisE. RydénM. NäslundE. ThorellA. LauschkeV.M. ChannonK.M. CrabtreeM.J. HaschemiA. CraigeS.M. MoriM. SpallottaF. AouadiM. Hepatic miR-144 drives fumarase activity preventing NRF2 activation during obesity.Gastroenterology202116161982191110.1053/j.gastro.2021.08.030
    [Google Scholar]
  83. PeaceC.G. O’NeillL.A.J. The role of itaconate in host defense and inflammation.J. Clin. Invest.20221322e14854810.1172/JCI14854835040439
    [Google Scholar]
  84. YoshiokaN. AsouH. HisanagaS.I. KawanoH. The astrocytic lineage marker calmodulin-regulated spectrin-associated protein 1 (Camsap1): Phenotypic heterogeneity of newly born Camsap1-expressing cells in injured mouse brain.J. Comp. Neurol.201252061301131710.1002/cne.2278822095662
    [Google Scholar]
  85. WanZ. YangX. LiuX. SunY. YuP. XuF. DengH. M2 macrophage-derived exosomal microRNA-411-5p impedes the activation of hepatic stellate cells by targeting CAMSAP1 in NASH model.iScience202225710459710.1016/j.isci.2022.10459735789846
    [Google Scholar]
  86. BinnewiesM. PollackJ.L. RudolphJ. DashS. AbushawishM. LeeT. JahchanN.S. CanadayP. LuE. NorngM. MankikarS. LiuV.M. DuX. ChenA. MehtaR. PalmerR. JuricV. LiangL. BakerK.P. ReynoL. KrummelM.F. StreuliM. SriramV. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy.Cell Rep.202137310984410.1016/j.celrep.2021.10984434686340
    [Google Scholar]
  87. ChandhokG. LazarouM. NeumannB. Structure, function, and regulation of mitofusin-2 in health and disease.Biol. Rev. Camb. Philos. Soc.201893293394910.1111/brv.1237829068134
    [Google Scholar]
  88. HouJ. ZhangJ. CuiP. ZhouY. LiuC. WuX. JiY. WangS. ChengB. YeH. ShuL. ZhangK. WangD. XuJ. ShuQ. ColonnaM. FangX. TREM2 sustains macrophage-hepatocyte metabolic coordination in nonalcoholic fatty liver disease and sepsis.J. Clin. Invest.20211314e13519710.1172/JCI13519733586673
    [Google Scholar]
  89. PucheJ.E. SaimanY. FriedmanS.L. Hepatic stellate cells and liver fibrosis.Compr. Physiol.2013341473149210.1002/cphy.c12003524265236
    [Google Scholar]
  90. KammD.R. McCommisK.S. Hepatic stellate cells in physiology and pathology.J. Physiol.202260081825183710.1113/JP28106135307840
    [Google Scholar]
  91. WangM. LiL. XuY. DuJ. LingC. Roles of hepatic stellate cells in NAFLD: From the perspective of inflammation and fibrosis.Front. Pharmacol.20221395842810.3389/fphar.2022.95842836313291
    [Google Scholar]
  92. EzhilarasanD. MicroRNA interplay between hepatic stellate cell quiescence and activation.Eur. J. Pharmacol.202088517350710.1016/j.ejphar.2020.17350732858048
    [Google Scholar]
  93. ChenL. CharrierA. ZhouY. ChenR. YuB. AgarwalK. TsukamotoH. LeeL.J. PaulaitisM.E. BrigstockD.R. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells.Hepatology20145931118112910.1002/hep.2676824122827
    [Google Scholar]
  94. ChenF. YuM. ZhongY. HuaW. HuangH. The role of neutrophils in asthma.Zhejiang Da Xue Xue Bao Yi Xue Ban202150112313010.3724/zdxbyxb‑2021‑003034117844
    [Google Scholar]
  95. LiewP.X. KubesP. The Neutrophil’s role during health and disease.Physiol. Rev.20199921223124810.1152/physrev.00012.201830758246
    [Google Scholar]
  96. Herrero-CerveraA. SoehnleinO. KenneE. Neutrophils in chronic inflammatory diseases.Cell. Mol. Immunol.202219217719110.1038/s41423‑021‑00832‑335039631
    [Google Scholar]
  97. HeY. HwangS. CaiY. KimS.J. XuM. YangD. GuillotA. FengD. SeoW. HouX. GaoB. MicroRNA-223 ameliorates nonalcoholic steatohepatitis and cancer by targeting multiple inflammatory and oncogenic genes in hepatocytes.Hepatology20197041150116710.1002/hep.3064530964207
    [Google Scholar]
  98. HeY. RodriguesR.M. WangX. SeoW. MaJ. HwangS. FuY. TrojnárE. MátyásC. ZhaoS. RenR. FengD. PacherP. KunosG. GaoB. Neutrophil-to-hepatocyte communication via LDLR-dependent miR-223–enriched extracellular vesicle transfer ameliorates nonalcoholic steatohepatitis.J. Clin. Invest.20211313e14151310.1172/JCI14151333301423
    [Google Scholar]
  99. YangL. HaoY. BoeckmansJ. RodriguesR.M. HeY. Immune cells and their derived microRNA-enriched extracellular vesicles in nonalcoholic fatty liver diseases: Novel therapeutic targets.Pharmacol. Ther.202324310835310.1016/j.pharmthera.2023.10835336738973
    [Google Scholar]
  100. AriyachetC. ChuaypenN. KaewsapsakP. ChantaravisootN. JindatipD. PotikanondS. TangkijvanichP. MicroRNA-223 suppresses human hepatic stellate cell activation partly via regulating the actin cytoskeleton and alleviates fibrosis in organoid models of liver injury.Int. J. Mol. Sci.20222316938010.3390/ijms2316938036012644
    [Google Scholar]
  101. WangX. SeoW. ParkS.H. FuY. HwangS. RodriguesR.M. FengD. GaoB. HeY. MicroRNA-223 restricts liver fibrosis by inhibiting the TAZ-IHH-GLI2 and PDGF signaling pathways via the crosstalk of multiple liver cell types.Int. J. Biol. Sci.20211741153116710.7150/ijbs.5836533867837
    [Google Scholar]
  102. DangC.P. LeelahavanichkulA. Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis.PLoS One2020157e023603810.1371/journal.pone.023603832658933
    [Google Scholar]
  103. TerrénI. OrrantiaA. VitalléJ. ZenarruzabeitiaO. BorregoF. NK cell metabolism and tumor microenvironment.Front. Immunol.201910227810.3389/fimmu.2019.0227831616440
    [Google Scholar]
  104. KruegerP.D. LassenM.G. QiaoH. HahnY.S. Regulation of NK cell repertoire and function in the liver.Crit. Rev. Immunol.2011311435210.1615/CritRevImmunol.v31.i1.4021395510
    [Google Scholar]
  105. WangY. LiM. ChenL. BianH. ChenX. ZhengH. YangP. ChenQ. XuH. Natural killer cell-derived exosomal miR-1249-3p attenuates insulin resistance and inflammation in mouse models of type 2 diabetes.Signal Transduct. Target. Ther.20216140910.1038/s41392‑021‑00805‑y34848693
    [Google Scholar]
  106. WangL. WangY. QuanJ. Exosomal miR-223 derived from natural killer cells inhibits hepatic stellate cell activation by suppressing autophagy.Mol. Med.20202618110.1186/s10020‑020‑00207‑w32873229
    [Google Scholar]
  107. WangX. HeY. MackowiakB. GaoB. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases.Gut202170478479510.1136/gutjnl‑2020‑32252633127832
    [Google Scholar]
  108. FangZ. DouG. WangL. MicroRNAs in the pathogenesis of nonalcoholic fatty liver disease.Int. J. Biol. Sci.20211771851186310.7150/ijbs.5958833994867
    [Google Scholar]
  109. MahmoudiA. ButlerA.E. JamialahmadiT. SahebkarA. The role of exosomal miRNA in nonalcoholic fatty liver disease.J. Cell. Physiol.202223742078209410.1002/jcp.3069935137416
    [Google Scholar]
  110. KilikeviciusA. MeisterG. CoreyD.R. Reexamining assumptions about miRNA-guided gene silencing.Nucleic Acids Res.202250261763410.1093/nar/gkab125634967419
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673276581231210170332
Loading
/content/journals/cmc/10.2174/0109298673276581231210170332
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarker; exosome; microRNA; NAFLD; NASH; steatosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test