Skip to content
2000
Volume 32, Issue 18
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Metformin is a first-line drug for the treatment of type 2 diabetes with a good safety profile and relatively low cost. In recent years, many other effects of metformin have been discovered. In this review, we provide the research advances in metformin in liver disease. High-dose metformin can activate AMPK by inhibiting mitochondrial complex 1. In addition, low-dose metformin could activate lysosomal AMPK through PEN2. Activated AMPK can reduce fatty acid synthesis, inhibit tumor proliferation and metastasis, and reshape the tumor microenvironment. In addition, metformin can reduce ROS production by inhibiting mitochondrial complex 1, which can reduce liver damage. Therefore, metformin has been found to alleviate nonalcoholic fatty liver disease and cirrhosis, relieve liver damage, and reduce the incidence of hepatocellular carcinoma and cholangiocarcinoma. This information suggests that metformin may represent a new possibility for the prevention and treatment of liver diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673274268231215110330
2024-01-30
2025-10-14
Loading full text...

Full text loading...

References

  1. DaviesM.J. D’AlessioD.A. FradkinJ. KernanW.N. MathieuC. MingroneG. RossingP. TsapasA. WexlerD.J. BuseJ.B. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the american diabetes association (ADA) and the european association for the study of diabetes (EASD).Diabetes Care201841122669270110.2337/dci18‑003330291106
    [Google Scholar]
  2. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34).Lancet1998352913185486510.1016/S0140‑6736(98)07037‑89742977
    [Google Scholar]
  3. United kingdom prospective diabetes study 24: A 6-year, randomized, controlled trial comparing sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy.Ann. Intern. Med.1998128316517510.7326/0003‑4819‑128‑3‑199802010‑000019454524
    [Google Scholar]
  4. MaruthurN.M. TsengE. HutflessS. WilsonL.M. Suarez-CuervoC. BergerZ. ChuY. IyohaE. SegalJ.B. BolenS. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes.Ann. Intern. Med.20161641174075110.7326/M15‑265027088241
    [Google Scholar]
  5. PalmerS.C. MavridisD. NicolucciA. JohnsonD.W. TonelliM. CraigJ.C. MaggoJ. GrayV. De BerardisG. RuospoM. NataleP. SaglimbeneV. BadveS.V. ChoY. Nadeau-FredetteA.C. BurkeM. FaruqueL. LloydA. AhmadN. LiuY. TivS. WiebeN. StrippoliG.F.M. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes.JAMA2016316331332410.1001/jama.2016.940027434443
    [Google Scholar]
  6. Sanchez-RangelE. InzucchiS.E. Metformin: Clinical use in type 2 diabetes.Diabetologia20176091586159310.1007/s00125‑017‑4336‑x28770321
    [Google Scholar]
  7. HowlettH.C.S. BaileyC.J. A risk-benefit assessment of metformin in type 2 diabetes mellitus.Drug Saf.199920648950310.2165/00002018‑199920060‑0000310392666
    [Google Scholar]
  8. SmithF.C. StockerS.L. DantaM. CarlandJ.E. KumarS.S. LiuZ. GreenfieldJ.R. BraithwaiteH.E. ChengT.S. GrahamG.G. WilliamsK.M. DayR.O. The safety and pharmacokinetics of metformin in patients with chronic liver disease.Aliment. Pharmacol. Ther.202051556557510.1111/apt.1563531960986
    [Google Scholar]
  9. GandiniS. PuntoniM. Heckman-StoddardB.M. DunnB.K. FordL. DeCensiA. SzaboE. Metformin and cancer risk and mortality: A systematic review and meta-analysis taking into account biases and confounders.Cancer Prev. Res.20147986788510.1158/1940‑6207.CAPR‑13‑042424985407
    [Google Scholar]
  10. MoralesD.R. MorrisA.D. Metformin in cancer treatment and prevention.Annu. Rev. Med.2015661172910.1146/annurev‑med‑062613‑09312825386929
    [Google Scholar]
  11. LamannaC. MonamiM. MarchionniN. MannucciE. Effect of metformin on cardiovascular events and mortality: A meta-analysis of randomized clinical trials.Diabetes Obes. Metab.201113322122810.1111/j.1463‑1326.2010.01349.x
    [Google Scholar]
  12. BhatA. SebastianiG. BhatM. Systematic review: Preventive and therapeutic applications of metformin in liver disease.World J. Hepatol.20157121652165910.4254/wjh.v7.i12.165226140084
    [Google Scholar]
  13. BreiningP. JensenJ.B. SundelinE.I. GormsenL.C. JakobsenS. BuskM. RolighedL. BrossP. Fernandez-GuerraP. MarkussenL.K. RasmussenN.E. HansenJ.B. PedersenS.B. RichelsenB. JessenN. Metformin targets brown adipose tissue in vivo and reduces oxygen consumption in vitro.Diabetes Obes. Metab.20182092264227310.1111/dom.1336229752759
    [Google Scholar]
  14. PatroneC. ErikssonO. LindholmD. Diabetes drugs and neurological disorders: new views and therapeutic possibilities.Lancet Diabetes Endocrinol.20142325626210.1016/S2213‑8587(13)70125‑624622756
    [Google Scholar]
  15. NevenE. VervaetB. BrandK. Gottwald-HostalekU. OpdebeeckB. De MaréA. VerhulstA. LalauJ.D. KamelS. De BroeM.E. D’HaeseP.C. Metformin prevents the development of severe chronic kidney disease and its associated mineral and bone disorder.Kidney Int.201894110211310.1016/j.kint.2018.01.02729716795
    [Google Scholar]
  16. ZhangX. HarmsenW.S. MettlerT.A. KimW.R. RobertsR.O. TherneauT.M. RobertsL.R. ChaiteerakijR. Continuation of metformin use after a diagnosis of cirrhosis significantly improves survival of patients with diabetes.Hepatology20146062008201610.1002/hep.2719924798175
    [Google Scholar]
  17. TangjarusritaratornT. TangjittipokinW. KunavisarutT. Incidence and survival of hepatocellular carcinoma in type 2 diabetes patients with cirrhosis who were treated with and without metformin.Diabetes Metab. Syndr. Obes.2021141563157410.2147/DMSO.S29575333859487
    [Google Scholar]
  18. BosettiC. FranchiM. NicotraF. AsciuttoR. MerlinoL. La VecchiaC. CorraoG. Insulin and other antidiabetic drugs and hepatocellular carcinoma risk: A nested case-control study based on Italian healthcare utilization databases.Pharmacoepidemiol. Drug Saf.201524777177810.1002/pds.380126013675
    [Google Scholar]
  19. El-MirM.Y. NogueiraV. FontaineE. AvéretN. RigouletM. LeverveX. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I.J. Biol. Chem.2000275122322810.1074/jbc.275.1.22310617608
    [Google Scholar]
  20. OwenM.R. DoranE. HalestrapA.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.Biochem. J.2000348360761410.1042/bj348060710839993
    [Google Scholar]
  21. HawleyS.A. RossF.A. ChevtzoffC. GreenK.A. EvansA. FogartyS. TowlerM.C. BrownL.J. OgunbayoO.A. EvansA.M. HardieD.G. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation.Cell Metab.201011655456510.1016/j.cmet.2010.04.00120519126
    [Google Scholar]
  22. GrahamG.G. PuntJ. AroraM. DayR.O. DoogueM.P. DuongJ.K. FurlongT.J. GreenfieldJ.R. GreenupL.C. KirkpatrickC.M. RayJ.E. TimminsP. WilliamsK.M. Clinical pharmacokinetics of metformin.Clin. Pharmacokinet.2011502819810.2165/11534750‑000000000‑0000021241070
    [Google Scholar]
  23. MadirajuA.K. ErionD.M. RahimiY. ZhangX.M. BraddockD.T. AlbrightR.A. PrigaroB.J. WoodJ.L. BhanotS. MacDonaldM.J. JurczakM.J. CamporezJ.P. LeeH.Y. ClineG.W. SamuelV.T. KibbeyR.G. ShulmanG.I. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase.Nature2014510750654254610.1038/nature1327024847880
    [Google Scholar]
  24. CaoJ. MengS. ChangE. Beckwith-FickasK. XiongL. ColeR.N. RadovickS. WondisfordF.E. HeL. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK).J. Biol. Chem.201428930204352044610.1074/jbc.M114.56727124928508
    [Google Scholar]
  25. MaT. TianX. ZhangB. LiM. WangY. YangC. WuJ. WeiX. QuQ. YuY. LongS. FengJ.W. LiC. ZhangC. XieC. WuY. XuZ. ChenJ. YuY. HuangX. HeY. YaoL. ZhangL. ZhuM. WangW. WangZ.C. ZhangM. BaoY. JiaW. LinS.Y. YeZ. PiaoH.L. DengX. ZhangC.S. LinS.C. Low- dose metformin targets the lysosomal AMPK pathway through PEN2.Nature2022603789915916510.1038/s41586‑022‑04431‑835197629
    [Google Scholar]
  26. GwinnD.M. ShackelfordD.B. EganD.F. MihaylovaM.M. MeryA. VasquezD.S. TurkB.E. ShawR.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint.Mol. Cell200830221422610.1016/j.molcel.2008.03.00318439900
    [Google Scholar]
  27. NingJ. ClemmonsD.R. AMP-activated protein kinase inhibits IGF-I signaling and protein synthesis in vascular smooth muscle cells via stimulation of insulin receptor substrate 1 S794 and tuberous sclerosis 2 S1345 phosphorylation.Mol. Endocrinol.20102461218122910.1210/me.2009‑047420363874
    [Google Scholar]
  28. LiangJ. ShaoS.H. XuZ.X. HennessyB. DingZ. LarreaM. KondoS. DumontD.J. GuttermanJ.U. WalkerC.L. SlingerlandJ.M. MillsG.B. The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis.Nat. Cell Biol.20079221822410.1038/ncb153717237771
    [Google Scholar]
  29. BlandinoG. ValerioM. CioceM. MoriF. CasadeiL. PulitoC. SacconiA. BiagioniF. CorteseG. GalantiS. ManettiC. CitroG. MutiP. StranoS. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC.Nat. Commun.20123186510.1038/ncomms185922643892
    [Google Scholar]
  30. KalenderA. SelvarajA. KimS.Y. GulatiP. BrûléS. ViolletB. KempB.E. BardeesyN. DennisP. SchlagerJ.J. MaretteA. KozmaS.C. ThomasG. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner.Cell Metab.201011539040110.1016/j.cmet.2010.03.01420444419
    [Google Scholar]
  31. EfeyanA. ZoncuR. ChangS. GumperI. SnitkinH. WolfsonR.L. KirakO. SabatiniD.D. SabatiniD.M. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival.Nature2013493743467968310.1038/nature1174523263183
    [Google Scholar]
  32. AlgireC. MoiseevaO. Deschênes-SimardX. AmreinL. PetruccelliL. BirmanE. ViolletB. FerbeyreG. PollakM.N. Metformin reduces endogenous reactive oxygen species and associated DNA damage.Cancer Prev. Res.20125453654310.1158/1940‑6207.CAPR‑11‑053622262811
    [Google Scholar]
  33. HsuC.S. HsuS.J. LinH.H. TsengT.C. WangC.C. ChenD.S. KaoJ.H. A pilot study of add-on oral hypoglycemic agents in treatment-naïve genotype-1 chronic hepatitis C patients receiving peginterferon alfa-2b plus ribavirin.J. Formos. Med. Assoc.20141131071672110.1016/j.jfma.2014.05.00724974131
    [Google Scholar]
  34. Romero-GómezM. DiagoM. AndradeR.J. CallejaJ.L. SalmerónJ. Fernández-RodríguezC.M. SolàR. García-SamaniegoJ. HerreríasJ.M. De la MataM. Moreno-OteroR. NuñezÓ. OlveiraA. DuránS. PlanasR. Spanish Treatment of Resistance to Insulin in Hepatitis C Genotype 1 Group Treatment of insulin resistance with metformin in naïve genotype 1 chronic hepatitis C patients receiving peginterferon alfa-2a plus ribavirin.Hepatology20095061702170810.1002/hep.2320619845037
    [Google Scholar]
  35. YuJ.W. SunL.J. ZhaoY.H. KangP. YanB.Z. The effect of metformin on the efficacy of antiviral therapy in patients with genotype 1 chronic hepatitis C and insulin resistance.Int. J. Infect. Dis.2012166e436e44110.1016/j.ijid.2012.02.00422486858
    [Google Scholar]
  36. TsaiP.C. KuoH.T. HungC.H. TsengK.C. LaiH.C. PengC.Y. WangJ.H. ChenJ.J. LeeP.L. ChienR.N. YangC.C. LoG.H. KaoJ.H. LiuC.J. LiuC.H. YanS.L. BairM.J. LinC.Y. SuW.W. ChuC.H. ChenC.J. TungS.Y. TaiC.M. LinC.W. LoC.C. ChengP.N. ChiuY.C. WangC.C. ChengJ.S. TsaiW.L. LinH.C. HuangY.H. YehM.L. HuangC.F. HsiehM.H. HuangJ.F. DaiC.Y. ChungW.L. ChenC.Y. YuM.L. T-COACH Study Group Metformin reduces hepatocellular carcinoma incidence after successful antiviral therapy in patients with diabetes and chronic hepatitis C in Taiwan.J. Hepatol.202378228129210.1016/j.jhep.2022.09.01936208843
    [Google Scholar]
  37. ZhangW. LiY.Y. ShangQ.H. QiL. SunM.M. ChenG. AnY. LiJ.X. JiaW.P. SunZ.A. XuH.B. GaoQ.M. TangL. WangX.W. ZhangJ.Y. MuY.M. WangF.S. Randomised controlled trial: Effect of metformin add-on therapy on functional cure in entecavir-treated patients with chronic hepatitis B.Ann. Hepatol.202227610074510.1016/j.aohep.2022.10074535964909
    [Google Scholar]
  38. GotoK. LinW. ZhangL. JilgN. ShaoR.X. SchaeferE.A.K. ZhaoH. FuscoD.N. PengL.F. KatoN. ChungR.T. The AMPK-related kinase SNARK regulates hepatitis C virus replication and pathogenesis through enhancement of TGF-β signaling.J. Hepatol.201359594294810.1016/j.jhep.2013.06.02523831117
    [Google Scholar]
  39. del CampoJ.A. García-ValdecasasM. Gil-GómezA. RojasÁ. GallegoP. AmpueroJ. Gallego-DuránR. PastorH. GrandeL. PadilloF.J. MuntanéJ. Romero-GómezM. Simvastatin and metformin inhibit cell growth in hepatitis C virus infected cells via mTOR increasing PTEN and autophagy.PLoS One2018131e019180510.1371/journal.pone.019180529385181
    [Google Scholar]
  40. LinD. ReddyV. OsmanH. LopezA. KoksalA.R. RhadhiS.M. DashS. AydinY. Additional inhibition of Wnt/β-catenin signaling by metformin in DAA treatments as a novel therapeutic strategy for HCV-infected patients.Cells202110479010.3390/cells1004079033918222
    [Google Scholar]
  41. XunY.H. ZhangY.J. PanQ.C. MaoR.C. QinY.L. LiuH.Y. ZhangY.M. YuY.S. TangZ.H. LuM.J. ZangG.Q. ZhangJ.M. Metformin inhibits hepatitis B virus protein production and replication in human hepatoma cells.J. Viral Hepat.201421859760310.1111/jvh.1218724164660
    [Google Scholar]
  42. HondaM. ShirasakiT. TerashimaT. KawaguchiK. NakamuraM. OishiN. WangX. ShimakamiT. OkadaH. AraiK. YamashitaT. SakaiY. YamashitaT. MizukoshiE. KanekoS. Hepatitis B virus (HBV) core-related antigen during nucleos(t)ide analog therapy is related to intra-hepatic HBV replication and development of hepatocellular carcinoma.J. Infect. Dis.201621371096110610.1093/infdis/jiv57226621908
    [Google Scholar]
  43. BaudiI. InoueT. TanakaY. Novel biomarkers of hepatitis B and hepatocellular carcinoma: Clinical significance of HBcrAg and M2BPGi.Int. J. Mol. Sci.202021394910.3390/ijms21030949
    [Google Scholar]
  44. ZhouS.N. ZhangN. LiuH.H. XiaP. ZhangC. SongJ.W. FanX. ShiM. JinL. ZhangJ.Y. WangF.S. Skewed CD39/CD73/adenosine pathway contributes to B-cell hyperactivation and disease progression in patients with chronic hepatitis B.Gastroenterol. Rep.202191495810.1093/gastro/goaa04833747526
    [Google Scholar]
  45. CaligiuriA. BertolaniC. GuerraC.T. AleffiS. GalastriS. TrappoliereM. VizzuttiF. GelminiS. LaffiG. PinzaniM. MarraF. Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells.Hepatology200847266867610.1002/hep.2199518098312
    [Google Scholar]
  46. LiZ. DingQ. LingL.P. WuY. MengD.X. LiX. ZhangC.Q. Metformin attenuates motility, contraction, and fibrogenic response of hepatic stellate cells in vivo and in vitro by activating AMP-activated protein kinase.World J. Gastroenterol.201824781983210.3748/wjg.v24.i7.81929467552
    [Google Scholar]
  47. YangT. GuanQ. ShiJ.S. XuZ.H. GengY. Metformin alleviates liver fibrosis in mice by enriching Lactobacillus sp. MF-1 in the gut microbiota.Biochim. Biophys. Acta Mol. Basis Dis.20231869516666410.1016/j.bbadis.2023.16666436893671
    [Google Scholar]
  48. GuX. ManautouJ.E. Molecular mechanisms underlying chemical liver injury.Expert Rev. Mol. Med.201214e410.1017/S146239941100211022306029
    [Google Scholar]
  49. KimY.H. HwangJ.H. KimK.S. NohJ.R. ChoiD.H. KimD.K. TadiS. YimY.H. ChoiH.S. LeeC.H. Metformin ameliorates acetaminophen hepatotoxicity via Gadd45β-dependent regulation of JNK signaling in mice.J. Hepatol.2015631758210.1016/j.jhep.2015.02.00825681557
    [Google Scholar]
  50. TripathiS.S. SinghS. GargG. KumarR. VermaA.K. SinghA.K. BissoyiA. RizviS.I. Metformin ameliorates acetaminophen-induced sub-acute toxicity via antioxidant property.Drug Chem. Toxicol.2022451526010.1080/01480545.2019.165876931474151
    [Google Scholar]
  51. DuK. RamachandranA. WeemhoffJ.L. ChavanH. XieY. KrishnamurthyP. JaeschkeH. Editor’s highlight: Metformin protects against acetaminophen hepatotoxicity by attenuation of mitochondrial oxidant stress and dysfunction.Toxicol. Sci.2016154221422610.1093/toxsci/kfw15827562556
    [Google Scholar]
  52. LingS. ShanQ. LiuP. FengT. ZhangX. XiangP. ChenK. XieH. SongP. ZhouL. LiuJ. ZhengS. XuX. Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I.Cell Death Dis.2017811e315910.1038/cddis.2017.48229095437
    [Google Scholar]
  53. VangavetiS. DasP. KumarV.L. Metformin and silymarin afford protection in cyclosporine A induced hepatorenal toxicity in rat by modulating redox status and inflammation.J. Biochem. Mol. Toxicol.2021351e2261410.1002/jbt.2261432886845
    [Google Scholar]
  54. MoraF.A.A. MushesheN. Arroyave OspinaJ.C. GengY. SotoJ.M. RodrigoJ.A. AlievaT. Buist-HomanM. Lezoualc’hF. ChengX. SchmidtM. MoshageH. Metformin protects against diclofenac-induced toxicity in primary rat hepatocytes by preserving mitochondrial integrity via a pathway involving EPAC.Biomed. Pharmacother.202114311207210.1016/j.biopha.2021.11207234464747
    [Google Scholar]
  55. SunY. WangX. ZhouY. ZhangJ. CuiW. WangE. DuJ. WeiB. XuX. Protective effect of metformin on BPA-induced liver toxicity in rats through upregulation of cystathionine β synthase and cystathionine γ lyase expression.Sci. Total Environ.202175014168510.1016/j.scitotenv.2020.14168532862004
    [Google Scholar]
  56. BergheimI. GuoL. DavisM.A. LambertJ.C. BeierJ.I. DuveauI. LuyendykJ.P. RothR.A. ArteelG.E. Metformin prevents alcohol-induced liver injury in the mouse: Critical role of plasminogen activator inhibitor-1.Gastroenterology200613072099211210.1053/j.gastro.2006.03.02016762632
    [Google Scholar]
  57. ZhaiY. BusuttilR.W. Kupiec-WeglinskiJ.W. Liver ischemia and reperfusion injury: new insights into mechanisms of innate-adaptive immune-mediated tissue inflammation.Am. J. Transplant.20111181563156910.1111/j.1600‑6143.2011.03579.x21668640
    [Google Scholar]
  58. HowardT.K. KlintmalmG.B.G. CoferJ.B. HusbergB.S. GoldsteinR.M. GonwaT.A. The influence of preservation injury on rejection in the hepatic transplant recipient.Transplantation199049110310610.1097/00007890‑199001000‑000232300999
    [Google Scholar]
  59. HendersonJ.M. Liver transplantation and rejection: An overview.Hepatogastroenterology199946Suppl. 21482148410431709
    [Google Scholar]
  60. PeraltaC. Jiménez-CastroM.B. Gracia-SanchoJ. Hepatic ischemia and reperfusion injury: Effects on the liver sinusoidal milieu.J. Hepatol.20135951094110610.1016/j.jhep.2013.06.01723811302
    [Google Scholar]
  61. SelznerN. RudigerH. GrafR. ClavienP-A. Protective strategies against ischemic injury of the liver.Gastroenterology2003125391793610.1016/S0016‑5085(03)01048‑512949736
    [Google Scholar]
  62. JaeschkeH. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning.Am. J. Physiol. Gastrointest. Liver Physiol.20032841G15G2610.1152/ajpgi.00342.200212488232
    [Google Scholar]
  63. Montalvo-JaveE.E. Escalante-TattersfieldT. Ortega-SalgadoJ.A. PiñaE. GellerD.A. Factors in the pathophysiology of the liver ischemia-reperfusion injury.J. Surg. Res.2008147115315910.1016/j.jss.2007.06.01517707862
    [Google Scholar]
  64. BridgesH.R. JonesA.J.Y. PollakM.N. HirstJ. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria.Biochem. J.2014462347548710.1042/BJ2014062025017630
    [Google Scholar]
  65. BhamraG.S. HausenloyD.J. DavidsonS.M. CarrR.D. PaivaM. WynneA.M. MocanuM.M. YellonD.M. Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening.Basic Res. Cardiol.2008103327428410.1007/s00395‑007‑0691‑y18080084
    [Google Scholar]
  66. RussellR.R.III LiJ. CovenD.L. PypaertM. ZechnerC. PalmeriM. GiordanoF.J. MuJ. BirnbaumM.J. YoungL.H. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury.J. Clin. Invest.2004114449550310.1172/JCI1929715314686
    [Google Scholar]
  67. BatandierC. GuigasB. DetailleD. El-MirM. FontaineE. RigouletM. LeverveX.M. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin.J. Bioenerg. Biomembr.2006381334210.1007/s10863‑006‑9003‑816732470
    [Google Scholar]
  68. GengY. Hernández VillanuevaA. OunA. Buist-HomanM. BlokzijlH. FaberK.N. DolgaA. MoshageH. Protective effect of metformin against palmitate-induced hepatic cell death.Biochim. Biophys. Acta Mol. Basis Dis.20201866316562110.1016/j.bbadis.2019.16562131786336
    [Google Scholar]
  69. JiangA. DuP. LiuY. PuJ. ShiJ. ZhangH. Metformin regulates the Th17/Treg balance by glycolysis with TIGAR in hepatic ischemia-reperfusion injury.J. Pharmacol. Sci.20211461404810.1016/j.jphs.2021.01.00633858654
    [Google Scholar]
  70. WesterkampA.C. FujiyoshiM. OttensP.J. NijstenM.W.N. TouwD.J. de MeijerV.E. LismanT. LeuveninkH.G.D. MoshageH. BerendsenT.A. PorteR.J. Metformin preconditioning improves hepatobiliary function and reduces injury in a rat model of normothermic machine perfusion and orthotopic transplantation.Transplantation20201049e271e28010.1097/TP.000000000000321632150043
    [Google Scholar]
  71. LiX. WangL. YangX. HuangC. Metformin attenuates ischemia-reperfusion injury of fatty liver in rats through inhibition of the TLR4/NF-κB axis.Balkan Med. J.202137419620210.4274/balkanmedj.galenos.2020.2019.9.3132270948
    [Google Scholar]
  72. ChaiY.C. DangG.X. HeH.Q. ShiJ.H. ZhangH.K. ZhangR.T. WangB. HuL.S. LvY. Hypothermic machine perfusion with metformin-University of Wisconsin solution for ex vivo preservation of standard and marginal liver grafts in a rat model.World J. Gastroenterol.201723407221723110.3748/wjg.v23.i40.722129142469
    [Google Scholar]
  73. Tarantino, G.; Crocetto, F.; Di Vito, C.; Creta, M.; Martino, R.; Pandolfo, SD.; Pesce, S.; Napolitano, L.; Capone, D; Imbimbo, C. Association of NAFLD and insulin resistance with non metastatic bladder cancer patients: A cross-sectional retrospective study. J. Clin. Med., 2021, 10(2), 346.10.3390/jcm10020346334775797831331
  74. FullertonM.D. GalicS. MarcinkoK. SikkemaS. PulinilkunnilT. ChenZ.P. O’NeillH.M. FordR.J. PalanivelR. O’BrienM. HardieD.G. MacaulayS.L. SchertzerJ.D. DyckJ.R.B. van DenderenB.J. KempB.E. SteinbergG.R. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin.Nat. Med.201319121649165410.1038/nm.337224185692
    [Google Scholar]
  75. HuangH. LeeS.H. Sousa-LimaI. KimS.S. HwangW.M. DagonY. YangW.M. ChoS. KangM.C. SeoJ.A. ShibataM. ChoH. BelewG.D. BhinJ. DesaiB.N. RyuM.J. ShongM. LiP. MengH. ChungB.H. HwangD. KimM.S. ParkK.S. MacedoM.P. WhiteM. JonesJ. KimY.B. Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition.J. Clin. Invest.2018128125335535010.1172/JCI6356230226474
    [Google Scholar]
  76. GuoJ. ZhouY. ChengY. FangW. HuG. WeiJ. LinY. ManY. GuoL. SunM. CuiQ. LiJ. Metformin-induced changes of the coding transcriptome and non-coding RNAs in the livers of non-alcoholic fatty liver disease mice.Cell. Physiol. Biochem.20184541487150510.1159/00048757529466788
    [Google Scholar]
  77. KaraviaE.A. HatziriA. KalogeropoulouC. PapachristouN.I. XepapadakiE. ConstantinouC. NatsosA. PetropoulouP.I. SassonS. PapachristouD.J. KypreosK.E. Deficiency in apolipoprotein A-I ablates the pharmacological effects of metformin on plasma glucose homeostasis and hepatic lipid deposition.Eur. J. Pharmacol.2015766768510.1016/j.ejphar.2015.09.04026420354
    [Google Scholar]
  78. SuiY. KongX. FanR. YeY. MaiH. ZhuoS. LuW. RuanP. FangS. YangT. Long-term treatment with metformin in the prevention of fatty liver in Zucker diabetic fatty rats.Diabetol. Metab. Syndr.20191119410.1186/s13098‑019‑0491‑131749893
    [Google Scholar]
  79. TangX. LiJ. XiangW. CuiY. XieB. WangX. XuZ. GanL. Metformin increases hepatic leptin receptor and decreases steatosis in mice.J. Endocrinol.2016230222723710.1530/JOE‑16‑014227288055
    [Google Scholar]
  80. LiY. XuS. MihaylovaM.M. ZhengB. HouX. JiangB. ParkO. LuoZ. LefaiE. ShyyJ.Y.J. GaoB. WierzbickiM. VerbeurenT.J. ShawR.J. CohenR.A. ZangM. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice.Cell Metab.201113437638810.1016/j.cmet.2011.03.00921459323
    [Google Scholar]
  81. PolyzosS.A. KountourasJ. MantzorosC.S. Leptin in nonalcoholic fatty liver disease: A narrative review.Metabolism2015641607810.1016/j.metabol.2014.10.01225456097
    [Google Scholar]
  82. PolyzosS.A. AronisK.N. KountourasJ. RaptisD.D. VasiloglouM.F. MantzorosC.S. Circulating leptin in non-alcoholic fatty liver disease: A systematic review and meta-analysis.Diabetologia2016591304310.1007/s00125‑015‑3769‑326407715
    [Google Scholar]
  83. FishmanS. MuzumdarR.H. AtzmonG. MaX. YangX. EinsteinF.H. BarzilaiN. Resistance to leptin action is the major determinant of hepatic triglyceride accumulation in vivo.FASEB J.2007211536010.1096/fj.06‑6557com17099068
    [Google Scholar]
  84. LiuB. XuJ. LuL. GaoL. ZhuS. SuiY. CaoT. YangT. Metformin induces pyroptosis in leptin receptor-defective hepatocytes via overactivation of the AMPK axis.Cell Death Dis.20231428210.1038/s41419‑023‑05623‑436737598
    [Google Scholar]
  85. BradhamC.A. PlümpeJ. MannsM.P. BrennerD.A. TrautweinC. I. TNF-induced liver injury.Am. J. Physiol. Gastrointest. Liver Physiol.19982753G387G39210.1152/ajpgi.1998.275.3.G3879724248
    [Google Scholar]
  86. KakinoS. OhkiT. NakayamaH. YuanX. OtabeS. HashinagaT. WadaN. KuritaY. TanakaK. HaraK. SoejimaE. TajiriY. YamadaK. Pivotal role of TNF-α in the development and progression of nonalcoholic fatty liver disease in a murine model.Horm. Metab. Res.2018501808710.1055/s‑0043‑11866628922680
    [Google Scholar]
  87. ParkJ. RahS.Y. AnH.S. LeeJ.Y. RohG.S. RyterS.W. ParkJ.W. YangC.H. SurhY.J. KimU.H. ChungH.T. JoeY. Metformin-induced TTP mediates communication between Kupffer cells and hepatocytes to alleviate hepatic steatosis by regulating lipophagy and necroptosis.Metabolism202314115551610.1016/j.metabol.2023.15551636773805
    [Google Scholar]
  88. de Jesús Acosta-CotaS. Aguilar-MedinaE.M. Ramos-PayánR. Rendón MaldonadoJ.G. Romero-QuintanaJ.G. Montes-AvilaJ. Sarmiento-SánchezJ.I. Plazas-GuerreroC.G. Vergara-JiménezM.J. Sánchez-LópezA. CenturiónD. Osuna-MartínezU. Therapeutic effect of treatment with metformin and/or 4-hydroxychalcone in male wistar rats with nonalcoholic fatty liver disease.Eur. J. Pharmacol.201986317269910.1016/j.ejphar.2019.17269931563650
    [Google Scholar]
  89. MahzariA. LiS. ZhouX. LiD. FoudaS. AlhomraniM. AlzahraniW. RobinsonS.R. YeJ.M. Matrine protects against MCD-induced development of nash via upregulating HSP72 and downregulating mTOR in a manner distinctive from metformin.Front. Pharmacol.20191040510.3389/fphar.2019.0040531068812
    [Google Scholar]
  90. BrandtA. Hernández-ArriagaA. KehmR. SánchezV. JinC.J. NierA. BaumannA. Camarinha-SilvaA. BergheimI. Metformin attenuates the onset of non-alcoholic fatty liver disease and affects intestinal microbiota and barrier in small intestine.Sci. Rep.201991666810.1038/s41598‑019‑43228‑031040374
    [Google Scholar]
  91. KhalafH.M. IbrahimM.A. AminE.F. IbrahimS.A. Abdel-WahabS. FouadY.M. Allopurinol potentiates the hepatoprotective effect of metformin and vitamin E in fructose-induced fatty liver in rats.Clin. Exp. Hepatol.201951657410.5114/ceh.2019.8315930915409
    [Google Scholar]
  92. LiY. LiX. WangY. ShenC. ZhaoC. Metformin alleviates inflammatory response in non-alcoholic steatohepatitis by restraining signal transducer and activator of transcription 3-mediated autophagy inhibition in vitro and in vivo.Biochem. Biophys. Res. Commun.20195131647210.1016/j.bbrc.2019.03.07730935688
    [Google Scholar]
  93. StachowiczA. SuskiM. OlszaneckiR. MadejJ. OkońK. KorbutR. Proteomic analysis of liver mitochondria of apolipoprotein E knockout mice treated with metformin.J. Proteomics20127716717510.1016/j.jprot.2012.08.01522960565
    [Google Scholar]
  94. de OliveiraS. HouserightR.A. GravesA.L. GolenbergN. KorteB.G. MiskolciV. HuttenlocherA. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish.J. Hepatol.201970471072110.1016/j.jhep.2018.11.03430572006
    [Google Scholar]
  95. Martínez-ChantarM.L. Vázquez-ChantadaM. ArizU. MartínezN. VarelaM. LukaZ. CapdevilaA. RodríguezJ. AransayA.M. MatthiesenR. YangH. CalvisiD.F. EstellerM. FragaM. LuS.C. WagnerC. MatoJ.M. Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice.Hepatology20084741191119910.1002/hep.2215918318442
    [Google Scholar]
  96. ChengL. DeepakR.N.V.K. WangG. MengZ. TaoL. XieM. ChiW. ZhangY. YangM. LiaoY. ChenR. LiangY. ZhangJ. HuangY. WangW. GuoZ. WangY. LinJ.D. FanH. ChenL. Hepatic mitochondrial NAD+ transporter SLC25A47 activates AMPKα mediating lipid metabolism and tumorigenesis.Hepatology20237861828184210.1097/HEP.000000000000031436804859
    [Google Scholar]
  97. PengY. ZengQ. WanL. MaE. LiH. YangX. ZhangY. HuangL. LinH. FengJ. XuY. LiJ. LiuM. LiuJ. LinC. SunZ. ChengG. ZhangX. LiuJ. LiD. WeiM. MoY. MuX. DengX. ZhangD. DongS. HuangH. FangY. GaoQ. YangX. WuF. ZhongH. WeiC. GP73 is a TBC-domain Rab GTPase-activating protein contributing to the pathogenesis of non-alcoholic fatty liver disease without obesity.Nat. Commun.2021121700410.1038/s41467‑021‑27309‑134853313
    [Google Scholar]
  98. SinghR. Autophagy and regulation of lipid metabolism.Results Probl. Cell Differ.201152354610.1007/978‑3‑642‑14426‑4_420865370
    [Google Scholar]
  99. ShinN.R. BoseS. WangJ.H. AnsariA. LimS.K. ChinY. ChoiH. KimH. Flos lonicera combined with metformin ameliorates hepatosteatosis and glucose intolerance in association with gut microbiota modulation.Front. Microbiol.20178227110.3389/fmicb.2017.0227129204141
    [Google Scholar]
  100. SongY.M. LeeY. KimJ.W. HamD.S. KangE.S. ChaB.S. LeeH.C. LeeB.W. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway.Autophagy2015111465910.4161/15548627.2014.98427125484077
    [Google Scholar]
  101. TarantinoG. BalsanoC. SantiniS.J. BrienzaG. ClementeI. CosiminiB. SinattiG. It is high time physicians thought of natural products for alleviating NAFLD. Is there sufficient evidence to use them?Int. J. Mol. Sci.202122241342410.3390/ijms22241342434948230
    [Google Scholar]
  102. XuW.H. HuH.G. TianY. WangS.Z. LiJ. LiJ.Z. DengX. QianH. QiuL. HuZ.L. WuQ.Y. ChaiY.F. GuoC. XieW.F. ZhangJ.P. Bioactive compound reveals a novel function for ribosomal protein S5 in hepatic stellate cell activation and hepatic fibrosis.Hepatology201460264866010.1002/hep.2713824668691
    [Google Scholar]
  103. PinzaniM. GentiliniP. Biology of hepatic stellate cells and their possible relevance in the pathogenesis of portal hypertension in cirrhosis.Semin. Liver Dis.199919439741010.1055/s‑2007‑100712810643625
    [Google Scholar]
  104. HandzlikG. HoleckiM. KozaczkaJ. KuklaM. WyskidaK. KędzierskiL. PawlickiK. DuławaJ. Evaluation of metformin therapy using controlled attenuation parameter and transient elastography in patients with non-alcoholic fatty liver disease.Pharmacol. Rep.201971218318810.1016/j.pharep.2018.10.01330780126
    [Google Scholar]
  105. RittigN. AagaardN.K. VilladsenG.E. SandahlT.D. JessenN. GrønbækH. GeorgeJ. Randomised clinical study: Acute effects of metformin versus placebo on portal pressure in patients with cirrhosis and portal hypertension.Aliment. Pharmacol. Ther.202154332032810.1111/apt.1646034165199
    [Google Scholar]
  106. AdachiM. BrennerD.A. High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase.Hepatology200847267768510.1002/hep.2199118220291
    [Google Scholar]
  107. NguyenG. ParkS.Y. LeC.T. ParkW.S. ChoiD.H. ChoE.H. Metformin ameliorates activation of hepatic stellate cells and hepatic fibrosis by succinate and GPR91 inhibition.Biochem. Biophys. Res. Commun.201849542649265610.1016/j.bbrc.2017.12.14329278707
    [Google Scholar]
  108. LimJ.Y. OhM.A. KimW.H. SohnH.Y. ParkS.I. AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300.J. Cell. Physiol.201222731081108910.1002/jcp.2282421567395
    [Google Scholar]
  109. FanK. WuK. LinL. GeP. DaiJ. HeX. HuK. ZhangL. Metformin mitigates carbon tetrachloride-induced TGF-β1/Smad3 signaling and liver fibrosis in mice.Biomed. Pharmacother.20179042142610.1016/j.biopha.2017.03.07928390311
    [Google Scholar]
  110. SuY. LuS. HouC. RenK. WangM. LiuX. ZhaoS. LiuX. Mitigation of liver fibrosis via hepatic stellate cells mitochondrial apoptosis induced by metformin.Int. Immunopharmacol.202210810868310.1016/j.intimp.2022.10868335344814
    [Google Scholar]
  111. ChoW.R. WangC.C. TsaiM.Y. ChouC.K. LiuY.W. WuY.J. LinM.T. ChenK.D. ChuangC.H. HuangP.Y. HuT.H. TsaiM.C. Impact of metformin use on the recurrence of hepatocellular carcinoma after initial liver resection in diabetic patients.PLoS One2021163e024723110.1371/journal.pone.024723133661912
    [Google Scholar]
  112. El ShorbagyS. abuTalebF. LabibH.A. EbianH. HarbO.A. MohammedM.S. RashiedH.A. ElbanaK.A. HaggagR. Prognostic significance of VEGF and HIF-1 α in hepatocellular carcinoma patients receiving sorafenib versus metformin sorafenib combination.J. Gastrointest. Cancer202152126927910.1007/s12029‑020‑00389‑w32212089
    [Google Scholar]
  113. SinghS. SinghP.P. SinghA.G. MuradM.H. SanchezW. Anti-diabetic medications and the risk of hepatocellular cancer: A systematic review and meta-analysis.Am. J. Gastroenterol.2013108688189110.1038/ajg.2013.523381014
    [Google Scholar]
  114. ZhangH. GaoC. FangL. ZhaoH.C. YaoS.K. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients: A meta-analysis.Scand. J. Gastroenterol.2013481788710.3109/00365521.2012.71992623137049
    [Google Scholar]
  115. CunhaV. CotrimH.P. RochaR. CarvalhoK. Lins-KustererL. Metformin in the prevention of hepatocellular carcinoma in diabetic patients: A systematic review.Ann. Hepatol.202019323223710.1016/j.aohep.2019.10.00531836424
    [Google Scholar]
  116. LiQ. XuH. SuiC. ZhangH. Impact of metformin use on risk and mortality of hepatocellular carcinoma in diabetes mellitus.Clin. Res. Hepatol. Gastroenterol.202246210178110.1016/j.clinre.2021.10178134332136
    [Google Scholar]
  117. KramerJ.R. NatarajanY. DaiJ. YuX. LiL. El-SeragH.B. KanwalF. Effect of diabetes medications and glycemic control on risk of hepatocellular cancer in patients with nonalcoholic fatty liver disease.Hepatology20227561420142810.1002/hep.3224434779535
    [Google Scholar]
  118. FengJ. LuH. MaW. TianW. LuZ. YangH. CaiY. CaiP. SunY. ZhouZ. FengJ. DengJ. ShuY. QuK. JiaW. GaoP. ZhangH. Genome-wide CRISPR screen identifies synthetic lethality between DOCK1 inhibition and metformin in liver cancer.Protein Cell2022131182584110.1007/s13238‑022‑00906‑635217990
    [Google Scholar]
  119. HuA. HuZ. YeJ. LiuY. LaiZ. ZhangM. JiW. HuangL. ZouH. ChenB. ZhongJ. Metformin exerts anti-tumor effects via Sonic hedgehog signaling pathway by targeting AMPK in HepG2 cells.Biochem. Cell Biol.2022100214215110.1139/bcb‑2021‑040934990285
    [Google Scholar]
  120. WangM.D. WangN.Y. ZhangH.L. SunL.Y. XuQ.R. LiangL. LiC. HuangD.S. ZhuH. YangT. Fatty acid transport protein-5 (FATP5) deficiency enhances hepatocellular carcinoma progression and metastasis by reprogramming cellular energy metabolism and regulating the AMPK-mTOR signaling pathway.Oncogenesis202110117410.1038/s41389‑021‑00364‑534772914
    [Google Scholar]
  121. YangL.Y. ShenX.T. SunH.T. ZhuW.W. ZhangJ.B. LuL. Neutrophil extracellular traps in hepatocellular carcinoma are enriched in oxidized mitochondrial DNA which is highly pro-inflammatory and pro-metastatic.J. Cancer20221341261127110.7150/jca.6417035281873
    [Google Scholar]
  122. ShenZ. ZhouH. LiA. WuT. JiX. GuoL. ZhuX. ZhangD. HeX. Metformin inhibits hepatocellular carcinoma development by inducing apoptosis and pyroptosis through regulating FOXO3.Aging20211318221202213310.18632/aging.20346434546972
    [Google Scholar]
  123. XiaoH. ZhangJ. XuZ. FengY. ZhangM. LiuJ. ChenR. ShenJ. WuJ. LuZ. FangX. LiJ. ZhangY. Metformin is a novel suppressor for transforming growth factor (TGF)-β1.Sci. Rep.2016612859710.1038/srep2859727349853
    [Google Scholar]
  124. KunisadaY. EikawaS. TomonobuN. DomaeS. UeharaT. HoriS. FurusawaY. HaseK. SasakiA. UdonoH. Attenuation of CD4+CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug.EBioMedicine20172515416410.1016/j.ebiom.2017.10.00929066174
    [Google Scholar]
  125. ZhaoD. LongX.D. LuT.F. WangT. ZhangW.W. LiuY.X. CuiX.L. DaiH.J. XueF. XiaQ. Metformin decreases IL -22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma.Int. J. Cancer2015136112556256510.1002/ijc.2930525370454
    [Google Scholar]
  126. ChungY.M. KhanP.P. WangH. TsaiW.B. QiaoY. YuB. LarrickJ.W. HuM.C.T. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3.J. Immunother. Cancer2021912e00277210.1136/jitc‑2021‑00277234887262
    [Google Scholar]
  127. ChaJ.H. YangW.H. XiaW. WeiY. ChanL.C. LimS.O. LiC.W. KimT. ChangS.S. LeeH.H. HsuJ.L. WangH.L. KuoC.W. ChangW.C. HadadS. PurdieC.A. McCoyA.M. CaiS. TuY. LittonJ.K. MittendorfE.A. MoulderS.L. SymmansW.F. ThompsonA.M. Piwnica-WormsH. ChenC.H. KhooK.H. HungM.C. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1.Mol. Cell2018714606620.e710.1016/j.molcel.2018.07.03030118680
    [Google Scholar]
  128. ScharpingN.E. MenkA.V. WhetstoneR.D. ZengX. DelgoffeG.M. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia.Cancer Immunol. Res.20175191610.1158/2326‑6066.CIR‑16‑010327941003
    [Google Scholar]
  129. ChiangC.F. ChaoT.T. SuY.F. HsuC.C. ChienC.Y. ChiuK.C. ShiahS.G. LeeC.H. LiuS.Y. ShiehY.S. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling.Oncotarget2017813207062071810.18632/oncotarget.1498228157701
    [Google Scholar]
  130. DingL. LiangG. YaoZ. ZhangJ. LiuR. ChenH. ZhouY. WuH. YangB. HeQ. Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages.Oncotarget2015634364413645510.18632/oncotarget.554126497364
    [Google Scholar]
  131. WeiZ. ZhangX. YongT. BieN. ZhanG. LiX. LiangQ. LiJ. YuJ. HuangG. YanY. ZhangZ. ZhangB. GanL. HuangB. YangX. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles.Nat. Commun.202112144010.1038/s41467‑020‑20723‑x33469052
    [Google Scholar]
  132. SiddharthS. KuppusamyP. WuQ. NagalingamA. SaxenaN.K. SharmaD. Metformin enhances the anti-cancer efficacy of sorafenib via suppressing MAPK/ERK/Stat3 axis in hepatocellular carcinoma.Int. J. Mol. Sci.20222315808310.3390/ijms2315808335897659
    [Google Scholar]
  133. YouA. CaoM. GuoZ. ZuoB. GaoJ. ZhouH. LiH. CuiY. FangF. ZhangW. SongT. LiQ. ZhuX. YinH. SunH. ZhangT. Metformin sensitizes sorafenib to inhibit postoperative recurrence and metastasis of hepatocellular carcinoma in orthotopic mouse models.J. Hematol. Oncol.2016912010.1186/s13045‑016‑0253‑626957312
    [Google Scholar]
  134. GuoZ. CaoM. YouA. GaoJ. ZhouH. LiH. CuiY. FangF. ZhangW. SongT. LiQ. ZhuX. SunH. ZhangT. Metformin inhibits the prometastatic effect of sorafenib in hepatocellular carcinoma by upregulating the expression of TIP30.Cancer Sci.2016107450751310.1111/cas.1288526752068
    [Google Scholar]
  135. TangK. ChenQ. LiuY. WangL. LuW. Combination of metformin and sorafenib induces ferroptosis of hepatocellular carcinoma through p62-Keap1-Nrf2 pathway.J. Cancer202213113234324310.7150/jca.7661836118519
    [Google Scholar]
  136. HsiehS.C. TsaiJ.P. YangS.F. TangM.J. HsiehY.H. Metformin inhibits the invasion of human hepatocellular carcinoma cells and enhances the chemosensitivity to sorafenib through a downregulation of the ERK/JNK-mediated NF-κB-dependent pathway that reduces uPA and MMP-9 expression.Amino Acids201446122809282210.1007/s00726‑014‑1838‑425245054
    [Google Scholar]
  137. LiQ.L. GuF.M. WangZ. JiangJ.H. YaoL.Q. TanC.J. HuangX.Y. KeA.W. DaiZ. FanJ. ZhouJ. Activation of PI3K/AKT and MAPK pathway through a PDGFRβ-dependent feedback loop is involved in rapamycin resistance in hepatocellular carcinoma.PLoS One201273e3337910.1371/journal.pone.003337922428038
    [Google Scholar]
  138. WangC. CiglianoA. DeloguS. ArmbrusterJ. DombrowskiF. EvertM. ChenX. CalvisiD. Functional crosstalk between AKT/mTOR and Ras/MAPK pathways in hepatocarcinogenesis: Implications for the treatment of human liver cancer.Cell Cycle201312131999201010.4161/cc.2509923759595
    [Google Scholar]
  139. LingS. SongL. FanN. FengT. LiuL. YangX. WangM. LiY. TianY. ZhaoF. LiuY. HuangQ. HouZ. XuF. ShiL. LiY. Combination of metformin and sorafenib suppresses proliferation and induces autophagy of hepatocellular carcinoma via targeting the mTOR pathway.Int. J. Oncol.201750129730910.3892/ijo.2016.379927959383
    [Google Scholar]
  140. LaiH.Y. TsaiH.H. YenC.J. HungL.Y. YangC.C. HoC.H. LiangH.Y. ChenF.W. LiC.F. WangJ.M. Metformin resensitizes sorafenib-resistant HCC Cells through AMPK-dependent autophagy activation.Front. Cell Dev. Biol.2021859665510.3389/fcell.2020.59665533681180
    [Google Scholar]
  141. NyatiM.K. MorganM.A. FengF.Y. LawrenceT.S. Integration of EGFR inhibitors with radiochemotherapy.Nat. Rev. Cancer200661187688510.1038/nrc195317036041
    [Google Scholar]
  142. FengY. KeC. TangQ. DongH. ZhengX. LinW. KeJ. HuangJ. YeungS-C.J. ZhangH. Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling.Cell Death Dis.201452e108810.1038/cddis.2014.5924577086
    [Google Scholar]
  143. PernicovaI. KorbonitsM. Metformin—mode of action and clinical implications for diabetes and cancer.Nat. Rev. Endocrinol.201410314315610.1038/nrendo.2013.25624393785
    [Google Scholar]
  144. ChenH.P. ShiehJ.J. ChangC.C. ChenT.T. LinJ.T. WuM.S. LinJ.H. WuC.Y. Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: Population-based and in vitro studies.Gut201362460661510.1136/gutjnl‑2011‑30170822773548
    [Google Scholar]
  145. TianY. TangB. WangC. SunD. ZhangR. LuoN. HanZ. LiangR. GaoZ. WangL. Metformin mediates resensitivity to 5-fluorouracil in hepatocellular carcinoma via the suppression of YAP.Oncotarget2016729462304624110.18632/oncotarget.1007927323827
    [Google Scholar]
  146. WuW. YangJ.L. WangY.L. WangH. YaoM. WangL. GuJ.J. CaiY. ShiY. YaoD.F. Reversal of multidrug resistance of hepatocellular carcinoma cells by metformin through inhibiting NF-κB gene transcription.World J. Hepatol.201682398599310.4254/wjh.v8.i23.98527621764
    [Google Scholar]
  147. ZhangZ. SuT. HanY. YangZ. WeiJ. JinL. FanH. A convergent synthetic platform for dual anticancer drugs functionalized by reduced graphene nanocomposite delivery for hepatocellular cancer.Drug Deliv.20212811982199410.1080/10717544.2021.197460634569406
    [Google Scholar]
  148. ElsayedM. WagstaffW. BehbahaniK. VillalobosA. BercuZ. MajdalanyB.S. AkceM. SchusterD.M. MaoH. KokabiN. Improved tumor response in patients on metformin undergoing yttrium-90 radioembolization segmentectomy for hepatocellular carcinoma.Cardiovasc. Intervent. Radiol.202144121937194410.1007/s00270‑021‑02916‑z34312687
    [Google Scholar]
  149. JangW.I. KimM-S. LimJ.S. YooH.J. SeoY.S. HanC.J. ParkS.C. KayC.S. KimM. JangH.S. LeeD.S. ChangA.R. ParkH.J. Survival advantage associated with metformin usage in hepatocellular carcinoma patients receiving radiotherapy: A propensity score matching analysis.Anticancer Res.20153595047505426254406
    [Google Scholar]
  150. YangZ. ZhangX. RobertsR.O. RobertsL.R. ChaiteerakijR. Metformin does not improve survival of cholangiocarcinoma patients with diabetes.Hepatology201663266766810.1002/hep.2782125833233
    [Google Scholar]
  151. ChaiteerakijR. YangJ.D. HarmsenW.S. SlettedahlS.W. MettlerT.A. FredericksenZ.S. KimW.R. GoresG.J. RobertsR.O. OlsonJ.E. TherneauT.M. RobertsL.R. Risk factors for intrahepatic cholangiocarcinoma: Association between metformin use and reduced cancer risk.Hepatology201357264865510.1002/hep.2609223055147
    [Google Scholar]
  152. YuG. YuW. JinG. XuD. ChenY. XiaT. YuA. FangW. ZhangX. LiZ. XieK. PKM2 regulates neural invasion of and predicts poor prognosis for human hilar cholangiocarcinoma.Mol. Cancer201514119310.1186/s12943‑015‑0462‑626576639
    [Google Scholar]
  153. SaengboonmeeC. SeubwaiW. Cha’OnU. SawanyawisuthK. WongkhamS. WongkhamC. Metformin exerts antiproliferative and anti-metastatic effects against cholangiocarcinoma cells by targeting STAT3 and NF-ĸB.Anticancer Res.201737111512410.21873/anticanres.1129628011481
    [Google Scholar]
  154. Di MatteoS. NeviL. OveriD. LandolinaN. FaccioliJ. GiulittiF. NapoletanoC. OddiA. MarzianiA.M. CostantiniD. De RoseA.M. MelandroF. BragazziM.C. GraziG.L. BerlocoP.B. GiulianteF. DonatoG. MorettaL. CarpinoG. CardinaleV. GaudioE. AlvaroD. Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells.Sci. Rep.2021111255710.1038/s41598‑021‑81172‑033510179
    [Google Scholar]
  155. FujimoriT. KatoK. FujiharaS. IwamaH. YamashitaT. KobayashiK. KamadaH. MorishitaA. KobaraH. MoriH. OkanoK. SuzukiY. MasakiT. Antitumor effect of metformin on cholangiocarcinoma: In vitro and in vivo studies.Oncol. Rep.20153462987299610.3892/or.2015.428426398221
    [Google Scholar]
  156. Casadei-GardiniA. FilippiR. RiminiM. RapposelliI.G. FornaroL. SilvestrisN. AldrighettiL. AimarG. RovestiG. BartoliniG. VivaldiC. BrunettiO. SpertiE. La FaceR. RattiF. AndrikouK. ValgiustiM. BernardiniL. ArgentieroA. FenocchioE. FrassinetiG.L. CesarioS. GiovannelliF. QuaràV. LeoneF. CascinuS. Effects of metformin and vitamin D on clinical outcome in cholangiocarcinoma patients.Oncology202199529229910.1159/00051279633626532
    [Google Scholar]
  157. LingS. FengT. KeQ. FanN. LiL. LiZ. DongC. WangC. XuF. LiY. WangL. Metformin inhibits proliferation and enhances chemosensitivity of intrahepatic cholangiocarcinoma cell lines.Oncol. Rep.20143162611261810.3892/or.2014.315124788596
    [Google Scholar]
  158. LingS. XieH. YangF. ShanQ. DaiH. ZhuoJ. WeiX. SongP. ZhouL. XuX. ZhengS. Metformin potentiates the effect of arsenic trioxide suppressing intrahepatic cholangiocarcinoma: Roles of p38 MAPK, ERK3, and mTORC1.J. Hematol. Oncol.20171015910.1186/s13045‑017‑0424‑028241849
    [Google Scholar]
  159. TangD. XuL. ZhangM. DorfmanR. PanY. ZhouQ. ZhouL. WangY. LiY. YinY. WangL. ZouX. Metformin facilitates BG45-induced apoptosis via an anti-Warburg effect in cholangiocarcinoma cells.Oncol. Rep.20183941957196510.3892/or.2018.627529484415
    [Google Scholar]
  160. WandeeJ. PrawanA. SenggunpraiL. KongpetchS. KukongviriyapanV. Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway.Life Sci.201921715516310.1016/j.lfs.2018.12.00730528773
    [Google Scholar]
  161. WandeeJ. PrawanA. SenggunpraiL. KongpetchS. TusskornO. KukongviriyapanV. Metformin enhances cisplatin induced inhibition of cholangiocarcinoma cells via AMPK-mTOR pathway.Life Sci.201820717218310.1016/j.lfs.2018.05.04629847773
    [Google Scholar]
  162. ZhuH.Q. MaJ.B. SongX. GaoH.J. MaC.Q. ChangH. LiH.G. LiuF.F. LuJ. ZhouX. Metformin potentiates the anticancer activities of gemcitabine and cisplatin against cholangiocarcinoma cells in vitro and in vivo.Oncol. Rep.20163663488349610.3892/or.2016.518727779693
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673274268231215110330
Loading
/content/journals/cmc/10.2174/0109298673274268231215110330
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AMPK; cholangiocarcinoma; HCC; liver disease; Metformin; NAFLD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test