Skip to content
2000
Volume 32, Issue 18
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Neglected parasitic diseases constitute a broad spectrum of clinical conditions that, in the chronic phase, lack effective therapies for the target population. The utilization of vaccines based on liposomal nanocarrier systems is emerging, thereby enhancing clinical outcomes in various comorbidities. Consequently, this study aims to assess the immunological activity induced by liposomal nanocarriers against neglected parasitic diseases.

Methods

For the review, the Pubmed, Embase, and Lilacs databases were used using the descriptors vaccine, parasite, and liposome. The following inclusion criteria were adopted: and experimental articles. As exclusion criteria: book chapters, editorials, literature reviews and duplicate articles found during the database search.

Results

A total of 226 articles were identified, from which 34 were selected for review. The primary diseases identified included , , , , , , , , , and . An elevation in cytokines such as GM-CSF, MCP-1, IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, and IL-17 was observed in the studies evaluated regarding the parasitic diseases. Furthermore, cytokines such as IL-4, IL-10, and TGF-β were diminished with the administration of the vaccine systems in those studies.

Conclusion

Therefore, the administration of liposomal nanovaccine systems can effectively ameliorate the clinical condition of patients by modulating their immunological profile.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673306158240620071438
2024-07-04
2025-09-02
Loading full text...

Full text loading...

References

  1. LunaE.J.A. CamposS.R.S.L.C. O desenvolvimento de vacinas contra as doenças tropicais negligenciadas.Cad. Saude Publica20203636Suppl. 2e0021572010.1590/0102‑311x0021572033237199
    [Google Scholar]
  2. World Health Organization. Neglected Tropical Diseases. 2024.Available from: https://www.who.int/data/gho/ data/themes/
  3. KappagodaS. IoannidisJ.P.A. Neglected tropical diseases: survey and geometry of randomised evidence.BMJ2012345oct22 2e651210.1136/bmj.e651223089149
    [Google Scholar]
  4. MolehinA.J. McManusD.P. YouH. Vaccines for human schistosomiasis: Recent progress, new developments and future prospects.Int. J. Mol. Sci.2022234225510.3390/ijms2304225535216369
    [Google Scholar]
  5. RochaV. QuadrosH. MeiraC. SilvaL. CarvalhoD. HodelK. MoreiraD. SoaresM. Potential of triterpenic natural compound betulinic acid for neglected tropical diseases new treatments.Biomedicines202210483110.3390/biomedicines1004083135453582
    [Google Scholar]
  6. VeigaG.T.S. MoriggiM.R. VettorazziJ.F. Müller-SantosM. AlbrechtL. Plasmodium vivax vaccine: What is the best way to go?Front. Immunol.20231391023610.3389/fimmu.2022.91023636726991
    [Google Scholar]
  7. RaoM PeachmanK AlvingC. Liposome formulations as adjuvants for vaccines.Curr. Top. Biol. Immunol.202012810.1007/82_2020_227
    [Google Scholar]
  8. AlmeidaB. NagO.K. RogersK.E. DelehantyJ.B. Recent progress in bioconjugation strategies for liposome-mediated drug delivery.Molecules20202523567210.3390/molecules2523567233271886
    [Google Scholar]
  9. LombardoD. KiselevM.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application.Pharmaceutics202214354310.3390/pharmaceutics1403054335335920
    [Google Scholar]
  10. Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 2024.Available from: http://www.prisma- statement.org/
  11. RodriguezA.E. ZamoranoP. WilkowskyS. TorráF. FerreriL. DominguezM. Florin-ChristensenM. Delivery of recombinant vaccines against bovine herpesvirus type 1 gD and Babesia bovis MSA-2c to mice using liposomes derived from egg yolk lipids.Vet. J.2013196355055110.1016/j.tvjl.2012.10.03623183017
    [Google Scholar]
  12. AbhyankarM.M. NoorZ. TomaiM.A. ElvecrogJ. FoxC.B. PetriW.A.Jr. Nanoformulation of synergistic TLR ligands to enhance vaccination against Entamoeba histolytica. Vaccine201735691692210.1016/j.vaccine.2016.12.05728089548
    [Google Scholar]
  13. AbhyankarM.M. OrrM.T. LinS. SurajuM.O. SimpsonA. BlustM. PhamT. GuderianJ.A. TomaiM.A. ElvecrogJ. PedersenK. PetriW.A.Jr FoxC.B. Adjuvant composition and delivery route shape immune response quality and protective efficacy of a recombinant vaccine for Entamoeba histolytica. NPJ Vaccines2018312210.1038/s41541‑018‑0060‑x29900011
    [Google Scholar]
  14. GuedesD.C. SantianiM.H. CarvalhoJ. SoccolC.R. MinozzoJ.C. Machado de ÁvilaR.A. de MouraJ.F. RamosE.L.P. CastroG.R. Chávez-OlórtegiC. Thomaz-SoccolV. In silico and in vitro evaluation of mimetic peptides as potential antigen candidates for prophylaxis of leishmaniosis.Front Chem.2021860140910.3389/fchem.2020.60140933520931
    [Google Scholar]
  15. NagillR. KaurT. JoshiJ. KaurS. Immunogenicity and efficacy of recombinant 78 kDa antigen of Leishmania donovani formulated in various adjuvants against murine visceral leishmaniasis.Asian Pac. J. Trop. Med.20158751351910.1016/j.apjtm.2015.06.00826276280
    [Google Scholar]
  16. DasP. PaikD. NaskarK. ChakrabortiT. Leishmania donovani serine protease encapsulated in liposome elicits protective immunity in experimental visceral leishmaniasis.Microbes Infect.2018201374710.1016/j.micinf.2017.09.01128970116
    [Google Scholar]
  17. SaburA. BhowmickS. ChhajerR. EjaziS.A. DidwaniaN. AsadM. BhattacharyyaA. SinhaU. AliN. Liposomal elongation factor-1α triggers effector CD4 and CD8 T cells for induction of long-lasting protective immunity against visceral leishmaniasis.Front. Immunol.201891810.3389/fimmu.2018.0001829441060
    [Google Scholar]
  18. FirouzmandH. BadieeA. KhamesipourA. Heravi SharghV. AlavizadehS.H. AbbasiA. JaafariM.R. Induction of protection against leishmaniasis in susceptible BALB/c mice using simple DOTAP cationic nanoliposomes containing soluble Leishmania antigen (SLA).Acta Trop.2013128352853510.1016/j.actatropica.2013.07.02123916506
    [Google Scholar]
  19. WheatW.H. ArthunE.N. SpencerJ.S. ReganD.P. TitusR.G. DowS.W. Immunization against full-length protein and peptides from the Lutzomyia longipalpis sand fly salivary component maxadilan protects against Leishmania major infection in a murine model.Vaccine201735486611661910.1016/j.vaccine.2017.10.03929079105
    [Google Scholar]
  20. FirouzmandH. SahranavardM. BadieeA. KhamesipourA. AlavizadehS.H. SamieiA. SoroushD. Tavassoti KheiriM. MahboudiF. JaafariM.R. The role of LPD-nanoparticles containing recombinant major surface glycoprotein of Leishmania (rgp63) in protection against leishmaniasis in murine model.Immunopharmacol. Immunotoxicol.2018401728210.1080/08923973.2017.140794129210292
    [Google Scholar]
  21. NaseriH. EskandariF. JaafariM.R. KhamesipourA. AbbasiA. BadieeA. PEG ylation of cationic liposomes encapsulating soluble Leishmania antigens reduces the adjuvant efficacy of liposomes in murine model.Parasite Immunol.20173911e1249210.1111/pim.1249228921566
    [Google Scholar]
  22. EmamiT. RezayatS.M. KhamesipourA. MadaniR. HabibiG. HojatizadeM. JaafariM.R. The role of MPL and imiquimod adjuvants in enhancement of immune response and protection in BALB/c mice immunized with soluble Leishmania antigen (SLA) encapsulated in nanoliposome.Artif. Cells Nanomed. Biotechnol.201846sup232433310.1080/21691401.2018.145704229607698
    [Google Scholar]
  23. JafariI. Heravi SharghV. ShahryariM. AbbasiA. JaafariM.R. KhamesipourA. BadieeA. Cationic liposomes formulated with a novel whole Leishmania lysate (WLL) as a vaccine for leishmaniasis in murine model.Immunobiology20182236-749350010.1016/j.imbio.2017.12.00329317110
    [Google Scholar]
  24. MehravaranA. Rezaei NasabM. MirahmadiH. SharifiI. AlijaniE. NikpoorA.R. AkhtariJ. HojatizadeM. Immunogenicity and protection effects of cationic liposome containing imiquimod adjuvant on leishmaniasis in BALB/c mice.Iran. J. Basic Med. Sci.201922892293110.22038/ijbms.2019.35739.851531579449
    [Google Scholar]
  25. BiariN. AlavizadehS.H. ChavoshianO. AbbasiA. SaberiZ. JalaliS.A. KhamesipoureA. JaafariM.R. BadieeA. Sphingomyelin liposome bearing whole Leishmania lysate antigens induce strong Th2 immune response in BALB/c mice.Iran. J. Basic Med. Sci.202124222223110.22038/IJBMS.2020.50471.1149633953862
    [Google Scholar]
  26. ZamaniP. AlavizadehS.H. FakhraeeF. BadieeA. JalaliS.A. ChavoshianO. KhamesipourA. KheiriM.T. MahboudiF. JaafariM.R. Multi-antigen vaccination with LPD nanoparticles containing rgp63 and rLmaC1N proteins induced effective immune response against leishmaniasis in animal model.J. Drug Deliv. Sci. Technol.20216410263310.1016/j.jddst.2021.102633
    [Google Scholar]
  27. Toledo-MachadoC.M. BuenoL.L. Menezes-SouzaD. Machado-de-AvilaR.A. NguyenC. GranierC. BartholomeuD.C. Chávez-OlórteguiC. FujiwaraR.T. Use of Phage Display technology in development of canine visceral leishmaniasis vaccine using synthetic peptide trapped in sphingomyelin/cholesterol liposomes.Parasit. Vectors20158113310.1186/s13071‑015‑0747‑z25889286
    [Google Scholar]
  28. RibeiroP.A.F. DiasD.S. NovaisM.V.M. LageD.P. TavaresG.S.V. MendonçaD.V.C. OliveiraJ.S. Chávez-FumagalliM.A. RoattB.M. DuarteM.C. Menezes-SouzaD. LudolfF. TavaresC.A.P. OliveiraM.C. CoelhoE.A.F. CoelhoM. A Leishmania hypothetical protein-containing liposome-based formulation is highly immunogenic and induces protection against visceral leishmaniasis.Cytokine201811113113910.1016/j.cyto.2018.08.01930142534
    [Google Scholar]
  29. LageD.P. RibeiroP.A.F. DiasD.S. MendonçaD.V.C. RamosF.F. CarvalhoL.M. SteinerB.T. TavaresG.S.V. MartinsV.T. MachadoA.S. Oliveira-da-SilvaJ.A. SantosT.T.O. FreitasC.S. OliveiraJ.S. RoattB.M. Machado-de-ÁvilaR.A. HumbertM.V. ChristodoulidesM. CoelhoE.A.F. Liposomal formulation of chimerat, a multiple T-cell epitope-containing recombinant protein, is a candidate vaccine for human visceral leishmaniasis.Vaccines20208228910.3390/vaccines802028932526867
    [Google Scholar]
  30. RibeiroP.A.F. ValeD.L. DiasD.S. LageD.P. MendonçaD.V.C. RamosF.F. CarvalhoL.M. CarvalhoA.M.R.S. SteinerB.T. RoqueM.C. Oliveira-da-SilvaJ.A. OliveiraJ.S. TavaresG.S.V. GalvaniN.C. MartinsV.T. Chávez-FumagalliM.A. RoattB.M. MoreiraR.L.F. Menezes-SouzaD. OliveiraM.C. Machado-de-ÁvilaR.A. TeixeiraA.L. CoelhoE.A.F. Leishmania infantum amastin protein incorporated in distinct adjuvant systems induces protection against visceral leishmaniasis.Cytokine202012915503110.1016/j.cyto.2020.15503132062145
    [Google Scholar]
  31. EspinosaD.A. Vega-RodriguezJ. Flores-GárciaY. NoeA.R. MuñozC. ColemanR. BruckT. HaneyK. StevensA. RetallackD. AllenJ. VedvickT.S. FoxC.B. ReedS.G. HowardR.F. SalmanA.M. JanseC.J. KhanS.M. ZavalaF. GutierrezG.M. The plasmodium falciparum cell-traversal protein for ookinetes and sporozoites as a candidate for preerythrocytic and transmission-blocking vaccines.Infect. Immun.2017852e00498-1610.1128/IAI.00498‑1627895131
    [Google Scholar]
  32. FotoranW.L. SantangeloR. de MirandaB.N.M. IrvineD.J. WunderlichG. DNA-loaded cationic liposomes efficiently function as a vaccine against malarial proteins.Mol. Ther. Methods Clin. Dev.20177711010.1016/j.omtm.2017.08.00428879213
    [Google Scholar]
  33. CawlfieldA. GenitoC.J. BeckZ. Bergmann-LeitnerE.S. BitzerA.A. SotoK. ZouX. HadiwidjojoS.H. GerbasiR.V. MullinsA.B. NoeA. WatersN.C. AlvingC.R. MatyasG.R. DuttaS. Safety, toxicity and immunogenicity of a malaria vaccine based on the circumsporozoite protein (FMP013) with the adjuvant army liposome formulation containing QS21 (ALFQ).Vaccine201937293793380310.1016/j.vaccine.2019.05.05931151801
    [Google Scholar]
  34. FotoranW.L. KleiberN. GlitzC. WunderlichG. A DNA vaccine encoding Plasmodium falciparum PfRH5 in cationic liposomes for dermal tattooing immunization.Vaccines20208461910.3390/vaccines804061933092277
    [Google Scholar]
  35. SsemagandaA. GiddamA.K. LowL.M. LiuX.Q. HoM.F. ZamanM. HusseinW.M. SkwarczynskiM. TothI. StanisicD.I. GoodM.F. Mannosylated liposomes formulated with whole parasite P. falciparum blood-stage antigens are highly immunogenic in mice.Vaccine20203861494150410.1016/j.vaccine.2019.11.06331866187
    [Google Scholar]
  36. ChaudhariR. TandelN. SahuK. NegiS. BashirH. RupareliyaA. MishraR.P.N. DalaiS.K. TyagiR.K. Transdermal immunization of elastic liposome-laden recombinant chimeric fusion protein of P. falciparum (PfMSP-Fu24) mounts protective immune response.Nanomaterials202111240610.3390/nano1102040633562617
    [Google Scholar]
  37. DasS.C. PriceJ.D. GoslingK. MacLennanN. AtaídeR. SeowJ. IraniV. AtmosukartoI.I. AndersR.F. RichardsJ.S. MacRaildC.A. NortonR.S. Liposome engraftment and antigen combination potentiate the immune response towards conserved epitopes of the malaria vaccine candidate MSP2.Vaccine202139121746175710.1016/j.vaccine.2021.02.01033618946
    [Google Scholar]
  38. HuangW.C. MabroukM.T. ZhouL. BabaM. TachibanaM. ToriiM. TakashimaE. LockeE. PlieskattJ. KingC.R. CoelhoC.H. DuffyP.E. LongC. TsuboiT. MiuraK. WuY. IshinoT. LovellJ.F. Vaccine co-display of CSP and Pfs230 on liposomes targeting two Plasmodium falciparum differentiation stages.Commun. Biol.20225177310.1038/s42003‑022‑03688‑z35915227
    [Google Scholar]
  39. IslamM.T. HoM.F. NaharU.J. ShalashA.O. KoiralaP. HusseinW.M. StanisicD.I. GoodM.F. SkwarczynskiM. TothI. Investigation of liposomal self-adjuvanting peptide epitopes derived from conserved blood-stage Plasmodium antigens.PLoS One2022173e026496110.1371/journal.pone.026496135275957
    [Google Scholar]
  40. GiddamA.K. ReimanJ.M. ZamanM. SkwarczynskiM. TothI. GoodM.F. A semi-synthetic whole parasite vaccine designed to protect against blood stage malaria.Acta Biomater.2016441529530310.1016/j.actbio.2016.08.02027544810
    [Google Scholar]
  41. StanisicD HoM NevagiR CooperE WaltonM IslamM HusseinW SkwarcynskiM TothI GoodM. Development and evaluation of a cryopreserved whole-parasite vaccine in a rodent model of blood-stage malaria.mBio2021125e0265721
    [Google Scholar]
  42. TanakaS. KurodaY. IharaF. NishimuraM. HiasaJ. KojimaN. NishikawaY. Vaccination with profilin encapsulated in oligomannose-coated liposomes induces significant protective immunity against Toxoplasma gondii. Vaccine201432161781178510.1016/j.vaccine.2014.01.09524530937
    [Google Scholar]
  43. KarakavukM. CanH. GülA. DöşkayaA.D. AlakS.E. ÜnC. GürüzA.Y. DöşkayaM. GRA8 DNA vaccine formulations protect against chronic toxoplasmosis.Microb. Pathog.202115810501610.1016/j.micpath.2021.10501634098019
    [Google Scholar]
  44. HigaL. CorralS. MorillaM. RomeroE. PetrayP. Arqueossomos apresentam potencial imunoadjuvante para vacina contra doença de Chagas.Hum. Vaccin. Immunother.20139240941210.4161/hv.2278023291939
    [Google Scholar]
  45. SenguptaA AzharuddinM Al-OtaibiN HinkulaJ. Efficacy and immune response elicited by gold nanoparticle-based nanovaccines against infectious diseases.Vaccines202210450510.3390/vaccines10040505
    [Google Scholar]
  46. HowardG BenderN KhareP GutierrezB NyasembeV WeissW SimeckaJ HamerlT MaoH DinglansanR. Immunopotentiation by lymph-node targeting of a malaria transmission-blocking nanovaccine.Front. Immunol.20211272908610.3389/fimmu.2021.729086
    [Google Scholar]
  47. LeeA.J. AshkarA.A. The dual nature of type I and type II interferons.Front. Immunol.20189206110.3389/fimmu.2018.0206130254639
    [Google Scholar]
  48. AhmedA.A. RasheedZ. SalemT. Al-DhubaibiM.S. Al RobaeeA.A. AlzolibaniA.A. TNF-α : 308 G/A and IFN-γ + 874 A/T gene polymorphisms in Saudi patients with cutaneous leishmaniasis.BMC Med. Genet.202021110410.1186/s12881‑020‑01043‑932404058
    [Google Scholar]
  49. MillsK.H.G. IL-17 and IL-17-producing cells in protection versus pathology.Nat. Rev. Immunol.2023231385410.1038/s41577‑022‑00746‑935790881
    [Google Scholar]
  50. HadiW.S. SalmanR.S. Al-FahhamA.A. Faryad KhanM.U. KadirS. LaftM.H. SaeedB.Q. KadhumW.R. JalilA.T. KadhimM.M. Evaluation of IL-17 and IL-35 in patients with giardiasis in Thi-Qar province, Iraq.J. Med. Life20221591096109910.25122/jml‑2021‑032836415524
    [Google Scholar]
  51. AninagyeiE. AduP. Egyir-YawsonA. AcheampongD.O. Elevated IL-12, TNF-α, and TNF-α/IL-10 ratios in stored Plasmodium falciparum-infected whole blood: Implications for safe haemotransfusion.J. Immunol. Res.2020202011010.1155/2020/939458533195706
    [Google Scholar]
  52. CostaS.F. GomesV.O. dos Santos MacielM.O. MeloL.M. VenturinG.L. BragatoJ.P. RebechG.T. de Oliveira SantosC. Nascimento de OliveiraB.M. Gileno de Sá OliveiraG. Felix de LimaV.M. Combined in vitro IL-12 and IL-15 stimulation promotes cellular immune response in dogs with visceral leishmaniasis.PLoS Negl. Trop. Dis.2020141e000802110.1371/journal.pntd.000802131961868
    [Google Scholar]
  53. ShemeshA. PickeringH. RoybalK.T. LanierL.L. Differential IL-12 signaling induces human natural killer cell activating receptor-mediated ligand-specific expansion.J. Exp. Med.20222198e2021243410.1084/jem.2021243435758909
    [Google Scholar]
  54. RousseauD. DemartinoS. AnjuèreF. FerruaB. FragakiK. Le FichouxY. KubarJ. Sustained parasite burden in the spleen of Leishmania infantum-infected BALB/c mice is accompanied by expression of MCP-1 transcripts and lack of protection against challenge.Eur. Cytokine Netw.200112234034711399524
    [Google Scholar]
  55. ImaniM.M. SadeghiM. MohammadiM. BrühlA.B. Sadeghi-BahmaniD. BrandS. Association of blood MCP-1 levels with risk of obstructive sleep apnea: A systematic review and meta-analysis.Medicina2022589126610.3390/medicina5809126636143943
    [Google Scholar]
  56. DainesJ.M. SchellhardtL. WoodM.D. The role of the IL-4 signaling pathway in traumatic nerve injuries.Neurorehabil. Neural Repair202135543144310.1177/1545968321100102633754913
    [Google Scholar]
  57. CzimmererZ. HalaszL. DanielB. VargaZ. BeneK. DomokosA. HoeksemaM. ShenZ. BergerW.K. CsehT. JambrovicsK. KolostyakZ. FenyvesiF. VaradiJ. PoliskaS. HajasG. SzatmariI. GlassC.K. BacsiA. NagyL. The epigenetic state of IL-4-polarized macrophages enables inflammatory cistromic expansion and extended synergistic response to TLR ligands.Immunity2022551120062026.e610.1016/j.immuni.2022.10.00436323312
    [Google Scholar]
  58. AfshanK. SarfrazK. KayaniT. FirasatS. IL-4 gene polymorphisms and their association with nematodes infection in Pakistani population.Afr. Health Sci.202222221622810.4314/ahs.v22i2.2536407356
    [Google Scholar]
  59. SadickM.D. StreetN. MosmannT.R. LocksleyR.M. Cytokine regulation of murine leishmaniasis: Interleukin 4 is not sufficient to mediate progressive disease in resistant C57BL/6 mice.Infect. Immun.199159124710471410.1128/iai.59.12.4710‑4714.19911937832
    [Google Scholar]
  60. SaraivaM. VieiraP. O’GarraA. Biology and therapeutic potential of interleukin-10.J. Exp. Med.20202171e2019041810.1084/jem.2019041831611251
    [Google Scholar]
  61. MurrayH.W. Targeting IL-27 and/or IL-10 in experimental murine visceral leishmaniasis.Am. J. Trop. Med. Hyg.202010351938194110.4269/ajtmh.20‑053132815498
    [Google Scholar]
  62. BhattacharyaP. GhoshS. EjaziS.A. RahamanM. PandeyK. Ravi DasV.N. DasP. GoswamiR.P. SahaB. AliN. Induction of IL-10 and TGFβ from CD4+CD25+FoxP3+ T cells correlates with parasite load in indian kala-azar patients infected with Leishmania donovani.PLoS Negl. Trop. Dis.2016102e000442210.1371/journal.pntd.000442226829554
    [Google Scholar]
  63. DamoiseauxJ. The IL-2 – IL-2 receptor pathway in health and disease: The role of the soluble IL-2 receptor.Clin. Immunol.202021810851510.1016/j.clim.2020.10851532619646
    [Google Scholar]
  64. KupzA. PaiS. GiacominP.R. WhanJ.A. WalkerR.A. HammoudiP.M. SmithN.C. MillerC.M. Treatment of mice with S4B6 IL-2 complex prevents lethal toxoplasmosis via IL-12- and IL-18-dependent interferon-gamma production by non-CD4 immune cells.Sci. Rep.20201011311510.1038/s41598‑020‑70102‑132753607
    [Google Scholar]
  65. CostaA ChavesY CarvalhoA RamasawmyR AntonelliL BarbosaL BalieiroA MonteiroW MourãoM LacerdaM FilhoO CostaF MalheiroA NogueiraP. Increased platelet distribution width and reduced IL-2 and IL-12 are associated with thrombocytopenia in Plasmodium vivax malaria.Mem. Int. Oswaldo Cruz2020115e200080
    [Google Scholar]
  66. ChokshiA. Demory BecklerM. LalooA. KesselmanM.M. Paradoxical tumor necrosis factor-alpha (TNF-α) inhibitor-induced psoriasis: A systematic review of pathogenesis, clinical presentation, and treatment.Cureus2023158e4279110.7759/cureus.4279137664349
    [Google Scholar]
  67. PengD. FuM. WangM. WeiY. WeiX. Targeting TGF-β signal transduction for fibrosis and cancer therapy.Mol. Cancer202221110410.1186/s12943‑022‑01569‑x35461253
    [Google Scholar]
  68. KumarA. Taghi KhaniA. Sanchez OrtizA. SwaminathanS. GM-CSF: A double-edged sword in cancer immunotherapy.Front. Immunol.20221390127710.3389/fimmu.2022.90127735865534
    [Google Scholar]
  69. Arango-FrancoC.A. MigaudM. Ramírez-SánchezI.C. Arango-BustamanteK. Moncada-VélezM. RojasJ. GervaisA. Patiño-GiraldoS. Perez-ZapataL.J. Álvarez ÁlvarezJ.A. OrregoJ.C. Roncancio-VillamilG. Boisson-DupuisS. JouanguyE. AbelL. CasanovaJ.L. BustamanteJ. AriasA.A. FrancoJ.L. PuelA. Anti-GM-CSF neutralizing autoantibodies in colombian patients with disseminated cryptococcosis.J. Clin. Immunol.202343592193210.1007/s10875‑023‑01451‑536821021
    [Google Scholar]
  70. PrincipeS. PorsbjergC. Bolm DitlevS. Kjærsgaard KleinD. GolebskiK. Dyhre-PetersenN. van DijkY.E. van BragtJ.J.M.H. DankelmanL.L.H. DahlenS.E. BrightlingC.E. VijverbergS.J.H. Maitland-van der ZeeA.H. Treating severe asthma: Targeting the IL-5 pathway.Clin. Exp. Allergy2021518992100510.1111/cea.1388533887082
    [Google Scholar]
  71. Matowicka-KarnaJ. Dymicka-PiekarskaV. KemonaH. IFN-gamma, IL-5, IL-6 and IgE in patients infected with Giardia intestinalis.Folia Histochem. Cytobiol.2009471939710.2478/v10042‑009‑0013‑319419945
    [Google Scholar]
  72. AnuradhaR. GeorgeP.J. HannaL.E. ChandrasekaranV. KumaranP.P. NutmanT.B. BabuS. Parasite-antigen driven expansion of IL-5(-) and IL-5(+) Th2 human subpopulations in lymphatic filariasis and their differential dependence on IL-10 and TGFβ.PLoS Negl. Trop. Dis.201481e265810.1371/journal.pntd.000265824498448
    [Google Scholar]
  73. BelhimeurS. BriquetS. PeronetR. PhamJ. CommeréP.H. FormaglioP. AminoR. ScherfA. SilvieO. MecheriS. Plasmodium-encoded murine IL-6 impairs liver stage infection and elicits long-lasting sterilizing immunity.Front. Immunol.202314114301210.3389/fimmu.2023.114301237143657
    [Google Scholar]
  74. MutengoM.M. MduluzaT. KellyP. MwansaJ.C.L. KwendaG. MusondaP. ChipetaJ. Low IL-6, IL-10, and TNF- α and High IL-13 cytokine levels are associated with severe hepatic fibrosis in Schistosoma mansoni chronically exposed individuals.J. Parasitol. Res.201820181810.1155/2018/975406029610679
    [Google Scholar]
  75. KangS. NarazakiM. MetwallyH. KishimotoT. Historical overview of the interleukin-6 family cytokine.J. Exp. Med.20202175e2019034710.1084/jem.2019034732267936
    [Google Scholar]
  76. LeãoL. PutyB. DolabelaM.F. PovoaM.M. NéY.G.D.S. EiróL.G. FagundesN.C.F. MaiaL.C. LimaR.R. Association of cerebral malaria and TNF-α levels: A systematic review.BMC Infect. Dis.202020144210.1186/s12879‑020‑05107‑232576141
    [Google Scholar]
  77. Pereira-LeiteC. Lopes-de-CamposD. FontaineP. CuccoviaI. NunesC. ReisS. Licofelone-DPPC Interactions: Putting membrane lipids on the radar of drug development.Molecules201924351610.3390/molecules2403051630709010
    [Google Scholar]
  78. LeekumjornS. SumA.K. Molecular simulation study of structural and dynamic properties of mixed DPPC/DPPE bilayers.Biophys. J.200690113951396510.1529/biophysj.105.07659616533838
    [Google Scholar]
  79. dos SantosI.B. da SilvaD.A.M. PazF.A.C.R. GarciaD.M. CarmonaA.K. TeixeiraD. Longo-MaugériI.M. KatzS. BarbiériC.L. Leishmanicidal and immunomodulatory activities of the palladacycle complex DPPE 1.1, a potential candidate for treatment of cutaneous leishmaniasis.Front. Microbiol.20189142710.3389/fmicb.2018.0142730018604
    [Google Scholar]
  80. TonksA. MorrisR.H.K. PriceA.J. ThomasA.W. JonesK.P. JacksonS.K. Dipalmitoylphosphatidylcholine modulates inflammatory functions of monocytic cells independently of mitogen activated protein kinases.Clin. Exp. Immunol.20021241869410.1046/j.1365‑2249.2001.01479.x11359446
    [Google Scholar]
  81. WangS. DingP. ShenL. FanD. ChengH. HuoJ. WeiX. HeH. ZhangG. Inhalable hybrid nanovaccines with virus-biomimetic structure boost protective immune responses against SARS-CoV-2 variants.J. Nanobiotechnology20242217610.1186/s12951‑024‑02345‑338414031
    [Google Scholar]
  82. RattanakiatS. NishikawaM. TakakuraY. Self-assembling CpG DNA nanoparticles for efficient antigen delivery and immunostimulation.Eur. J. Pharm. Sci.201247235235810.1016/j.ejps.2012.06.01522771546
    [Google Scholar]
  83. TsagkaropoulouG. AllenF.J. ClarkeS.M. CampP.J. Self-assembly and adsorption of cetyltrimethylammonium bromide and didodecyldimethylammonium bromide surfactants at the mica–water interface.Soft Matter201915418402841110.1039/C9SM01464K31608355
    [Google Scholar]
  84. RakhymA.B. SeilkhanovaG.A. MastaiY. Physicochemical evaluation of the effect of natural zeolite modification with didodecyldimethylammonium bromide on the adsorption of bisphenol-A and propranolol hydrochloride.Microporous Mesoporous Mater.202131811102010.1016/j.micromeso.2021.111020
    [Google Scholar]
  85. WangZ. LittleN. ChenJ. LambesisK.T. LeK.T. HanW. ScottA.J. LuJ. Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for safe and synergistic cancer immunochemotherapy.Nat. Nanotechnol.202116101130114010.1038/s41565‑021‑00950‑z34385682
    [Google Scholar]
  86. KoideN. FujitaK. KurodaS. HinumaS. Binding of liposomes composed of phosphatidylcholine to scavenger receptor class B type 1 and its modulation by phosphatidic acid in HEK293T cells.Biochim. Biophys. Acta Mol. Cell Res.20211868711904310.1016/j.bbamcr.2021.11904334385682
    [Google Scholar]
  87. SunM DangU YuanY PsarasA OsipitanO BrooksT LuF PasquaA. Optimization of DOTAP/Chol cationic lipid nanoparticles for mRNA, pDNA, and oligonucleotide delivery.AAPS Pharm. Sci Tech.202223513510.1208/s12249‑022‑02294‑w
    [Google Scholar]
  88. PrashantC.K. KumarM. DindaA.K. Nanoparticle based tailoring of adjuvant function: The role in vaccine development.J. Biomed. Nanotechnol.20141092317233110.1166/jbn.2014.199125992459
    [Google Scholar]
  89. GandhapudiS.K. WardM. BushJ.P.C. Bedu-AddoF. ConnG. WoodwardJ.G. Antigen priming with enantiospecific cationic lipid nanoparticles induces potent antitumor CTL responses through novel induction of a type I IFN response.J. Immunol.2019202123524353610.4049/jimmunol.180163431053626
    [Google Scholar]
  90. LayM. CallejoB. ChangS. HongD.K. LewisD.B. CarrollT.D. MatzingerS. FrittsL. MillerC.J. WarnerJ.F. LiangL. FairmanJ. Cationic lipid/DNA complexes (JVRS-100) combined with influenza vaccine (Fluzone®) increases antibody response, cellular immunity, and antigenically drifted protection.Vaccine200927293811382010.1016/j.vaccine.2009.04.05419406188
    [Google Scholar]
  91. Holten-AndersenL. DohertyT.M. KorsholmK.S. AndersenP. Combination of the cationic surfactant dimethyl dioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines.Infect. Immun.20047231608161710.1128/IAI.72.3.1608‑1617.200414977968
    [Google Scholar]
  92. AvotaE. de LiraM.N. Schneider-SchauliesS. Sphingomyelin breakdown in T Cells: Role of membrane compartmentalization in T cell signaling and interference by a pathogen.Front. Cell Dev. Biol.2019715210.3389/fcell.2019.0015231457008
    [Google Scholar]
  93. MoradiM. VahediF. AbbassiounA. Ramezanpour ShahiA. SholehM. Taheri-AnganehM. DargahiZ. GhanavatiR. KhatamiS.H. MovahedpourA. Liposomal delivery system/adjuvant for tuberculosis vaccine.Immun. Inflamm. Dis.2023116e86710.1002/iid3.86737382263
    [Google Scholar]
  94. KrasnopolskyY. PylypenkoD. Licensed liposomal vaccines and adjuvants in the antigen delivery system.Biotechnologia2022103440942310.5114/bta.2022.12070936685697
    [Google Scholar]
  95. ThangapazhamR. PuriA. TeleS. BlumenthalR. MaheshwariR. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells.Int. J. Oncol.20083251119112310.3892/ijo.32.5.111918425340
    [Google Scholar]
  96. AndrésC.M.C. Pérez de la LastraJ.M. JuanC.A. PlouF.J. Pérez-LebeñaE. Hypochlorous acid chemistry in mammalian cells-influence on infection and role in various pathologies.Int. J. Mol. Sci.202223181073510.3390/ijms23181073536142645
    [Google Scholar]
  97. DDBAPubChem.Available from: https://pubchem. ncbi.nlm.nih.gov/compound/77293 (Accessed on May 12,2024).
  98. ElvingtonS.M. NicholsJ.W. Spontaneous, intervesicular transfer rates of fluorescent, acyl chain-labeled phosphatidylcholine analogs.Biochim. Biophys. Acta Biomembr.20071768350250810.1016/j.bbamem.2006.11.01317198675
    [Google Scholar]
  99. GaoJ. OchylL. YangE. MoonJ. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens.Int. J. Nanomedicine2017121251126410.2147/IJN.S12586628243087
    [Google Scholar]
  100. BoettcherS. MatwiejukM. ThiemJ. Acceptor-influenced and donor-tuned base-promoted glycosylation.Beilstein J. Org. Chem.20171251126410.3762/bjoc.8.4622509211
    [Google Scholar]
  101. RohokaleR. GuoJ. GuoZ. Monophosphoryl lipid a rhamnose conjugates as a new class of vaccine adjuvants.J. Med. Chem.20246797458746910.1021/acs.jmedchem.3c0238538634150
    [Google Scholar]
  102. TangJ. HeJ. LiuT. XinX. Removal of heavy metals with sequential sludge washing techniques using saponin: Optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism.RSC Advances2017753333853340110.1039/C7RA04284A
    [Google Scholar]
  103. Marty-RoixR. VladimerG.I. PouliotK. WengD. Buglione-CorbettR. WestK. MacMickingJ.D. CheeJ.D. WangS. LuS. LienE. Identification of QS-21 as an inflammasome-activating molecular component of saponin adjuvants.J. Biol. Chem.201629131123113610.1074/jbc.M115.68301126555265
    [Google Scholar]
  104. Van HoevenN. FoxC.B. GrangerB. EversT. JoshiS.W. NanaG.I. EvansS.C. LinS. LiangH. LiangL. NakajimaR. FelgnerP.L. BowenR.A. MarleneeN. HartwigA. BaldwinS.L. ColerR.N. TomaiM. ElvecrogJ. ReedS.G. CarterD. A Formulated TLR7/8 agonist is a flexible, highly potent and effective adjuvant for pandemic influenza vaccines.Sci. Rep.2017714642610.1038/srep4642628429728
    [Google Scholar]
  105. TambunlertchaiS. GearyS.M. SalemA.K. Topically applied resiquimod versus imiquimod as a potential adjuvant in melanoma treatment.Pharmaceutics20221410207610.3390/pharmaceutics1410207636297510
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673306158240620071438
Loading
/content/journals/cmc/10.2174/0109298673306158240620071438
Loading

Data & Media loading...

Supplements


  • Article Type:
    Review Article
Keyword(s): chemokines; cytokines; liposome; nanotechnology; Neglected diseases; parasite
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test