Skip to content
2000
Volume 32, Issue 23
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Lung cancer is the leading cause of cancer-related deaths worldwide, of which non-small cell lung cancer (NSCLC) is the most common type, and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are widely used for the treatment of NSCLC. EGFR-TKIs are known to develop a drug-resistant response after a certain number of cycles of dosing, and how to alleviate or even reverse EGFR-TKI resistance is an urgent problem at present. This review focuses on the role of ncRNAs in the resistance of NSCLC to EGFR-TKIs and the potential mechanisms underlying the development of NSCLC resistance to EGFR-TKIs. NcRNAs are involved in NSCLC resistance to EGFR-TKIs by mediating cellular drug efflux, epithelial-mesenchymal transition, apoptosis, autophagy, and EGFR mutation. ncRNAs play a crucial role in NSCLC resistance to EGFR-TKIs. Hopefully, the results will provide some guidance and help for the treatment and prognosis of NSCLC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673275752231219080500
2024-02-16
2025-10-22
Loading full text...

Full text loading...

References

  1. TianX. GuT. LeeM.H. DongZ. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer.Biochim. Biophys. Acta Rev. Cancer20221877118864510.1016/j.bbcan.2021.18864534793897
    [Google Scholar]
  2. LahiriA. MajiA. PotdarP.D. SinghN. ParikhP. BishtB. MukherjeeA. PaulM.K. Lung cancer immunotherapy: Progress, pitfalls, and promises.Mol. Cancer20232214010.1186/s12943‑023‑01740‑y36810079
    [Google Scholar]
  3. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  4. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2018.CA Cancer J. Clin.201868173010.3322/caac.2144229313949
    [Google Scholar]
  5. YoshimuraA. YamadaT. OkuraN. TakedaT. HiroseK. KubotaY. ShiotsuS. HiranumaO. ChiharaY. TamiyaN. KanekoY. UchinoJ. TakayamaK. Clinical Characteristics of Osimertinib Responder in Non-Small Cell Lung Cancer Patients with EGFR-T790M Mutation Clinical characteristics of osimertinib responder in non-small cell lung cancer patients with EGFR-T790M mutation.Cancers201911336510.3390/cancers1103036530875919
    [Google Scholar]
  6. MillerK.D. NogueiraL. DevasiaT. MariottoA.B. YabroffK.R. JemalA. KramerJ. SiegelR.L. Cancer treatment and survivorship statistics, 2022.CA Cancer J. Clin.202272540943610.3322/caac.2173135736631
    [Google Scholar]
  7. CheemaP.K. RothensteinJ. MeloskyB. BradeA. HirshV. Perspectives on treatment advances for stage III locally advanced unresectable non-small-cell lung cancer.Curr. Oncol.2019261374210.3747/co.25.409630853796
    [Google Scholar]
  8. KastelijnE.A. de LangenA.J. PetersB.J.M. Treatment of oncogene-driven non-small cell lung cancer.Curr. Opin. Pulm. Med.201925330030710.1097/MCP.000000000000057230865033
    [Google Scholar]
  9. NagasakaM. GadgeelS.M. Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer.Expert Rev. Anticancer Ther.2018181637010.1080/14737140.2018.140962429168933
    [Google Scholar]
  10. DasS. RoyS. RahamanS.B. AkbarS. AhmedB. HalderD. RamachandranA.K. JosephA. Structure-activity relationship insight of naturally occurring bioactive molecules and their derivatives against non-small cell lung cancer: A comprehensive review.Curr. Med. Chem.202229396030606210.2174/092986732966622050911242335579166
    [Google Scholar]
  11. KoE.C. RabenD. FormentiS.C. The integration of radiotherapy with immunotherapy for the treatment of non–small cell lung cancer.Clin. Cancer Res.201824235792580610.1158/1078‑0432.CCR‑17‑362029945993
    [Google Scholar]
  12. MaL. MenY. FengL. KangJ. SunX. YuanM. JiangW. HuiZ. A current review of dose-escalated radiotherapy in locally advanced non-small cell lung cancer.Radiol. Oncol.201953161410.2478/raon‑2019‑000630840594
    [Google Scholar]
  13. ShroffG.S. de GrootP.M. PapadimitrakopoulouV.A. TruongM.T. CarterB.W. Targeted therapy and immunotherapy in the treatment of non–small cell lung cancer.Radiol. Clin. North Am.201856348549510.1016/j.rcl.2018.01.01229622080
    [Google Scholar]
  14. SureshK. NaidooJ. LinC.T. DanoffS. Immune checkpoint immunotherapy for non-small cell lung cancer.Chest201815461416142310.1016/j.chest.2018.08.104830189190
    [Google Scholar]
  15. AsaoT. TakahashiF. TakahashiK. Resistance to molecularly targeted therapy in non-small-cell lung cancer.Respir. Investig.2019571202610.1016/j.resinv.2018.09.00130293943
    [Google Scholar]
  16. KohsakaS. PetronczkiM. SolcaF. MaemondoM. Tumor clonality and resistance mechanisms in EGFR mutation-positive non-small-cell lung cancer: Implications for therapeutic sequencing.Future Oncol.201915663765210.2217/fon‑2018‑073630404555
    [Google Scholar]
  17. ZhuW. WangJ.P. MengQ.Z. ZhuF. HaoX.F. MiR-142-5p reverses the resistance to gefitinib through targeting HOXD8 in lung cancer cells.Eur. Rev. Med. Pharmacol. Sci.20202484306431332373967
    [Google Scholar]
  18. YangZ. ZhaoY. LinG. ZhouX. JiangX. ZhaoH. Noncoding RNA activated by DNA damage (NORAD): Biologic function and mechanisms in human cancers.Clin. Chim. Acta20194895910.1016/j.cca.2018.11.02530468715
    [Google Scholar]
  19. SunQ. HaoQ. PrasanthK.V. Nuclear long noncoding RNAs: Key regulators of gene expression.Trends Genet.201834214215710.1016/j.tig.2017.11.00529249332
    [Google Scholar]
  20. MengX. LouQ.Y. YangW.Y. WangY.R. ChenR. WangL. XuT. ZhangL. The role of non-coding RNAs in drug resistance of oral squamous cell carcinoma and therapeutic potential.Cancer Commun.20214110981100610.1002/cac2.1219434289530
    [Google Scholar]
  21. FerlitaA.L. BattagliaR. AndronicoF. CarusoS. CianciA. PurrelloM. PietroC.D. Non-coding RNAs in endometrial physiopathology.Int. J. Mol. Sci.2018197212010.3390/ijms1907212030037059
    [Google Scholar]
  22. WangJ. ZhuS. MengN. HeY. LuR. YanG.R. ncRNA-encoded peptides or proteins and cancer.Mol. Ther.201927101718172510.1016/j.ymthe.2019.09.00131526596
    [Google Scholar]
  23. HuaQ. MiB. XuF. WenJ. ZhaoL. LiuJ. HuangG. Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis.Theranostics202010114762477810.7150/thno.4383932308748
    [Google Scholar]
  24. YangH. LuM.M. ZhangL. WhitsettJ.A. MorriseyE.E. GATA6 regulates differentiation of distal lung epithelium.Development200212992233224610.1242/dev.129.9.223311959831
    [Google Scholar]
  25. CheungW.K.C. ZhaoM. LiuZ. StevensL.E. CaoP.D. FangJ.E. WestbrookT.F. NguyenD.X. Control of alveolar differentiation by the lineage transcription factors GATA6 and HOPX inhibits lung adenocarcinoma metastasis.Cancer Cell201323672573810.1016/j.ccr.2013.04.00923707782
    [Google Scholar]
  26. LiangG. MengW. HuangX. ZhuW. YinC. WangC. FassanM. YuY. KudoM. XiaoS. ZhaoC. ZouP. WangY. LiX. CroceC.M. CuiR. miR-196b-5p–mediated downregulation of TSPAN12 and GATA6 promotes tumor progression in non-small cell lung cancer.Proc. Natl. Acad. Sci. USA202011784347435710.1073/pnas.191753111732041891
    [Google Scholar]
  27. YangH. QiC. LiB. ChengL. Non-coding RNAs as novel biomarkers in cancer drug resistance.Curr. Med. Chem.202229583784810.2174/092986732866621080409064434348605
    [Google Scholar]
  28. KüblerH. ScheelB. Gnad-VogtU. MillerK. Schultze-SeemannW. vom DorpF. ParmianiG. HampelC. WedelS. TrojanL. JochamD. MaurerT. RippinG. Fotin-MleczekM. von der MülbeF. ProbstJ. HoerrI. KallenK.J. LanderT. StenzlA. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: A first-in-man phase I/IIa study.J. Immunother. Cancer2015312610.1186/s40425‑015‑0068‑y26082837
    [Google Scholar]
  29. TorreL.A. BrayF. SiegelR.L. FerlayJ. Lortet-TieulentJ. JemalA. Global cancer statistics, 2012.CA Cancer J. Clin.20156528710810.3322/caac.2126225651787
    [Google Scholar]
  30. EttingerD.S. AkerleyW. BeplerG. BlumM.G. ChangA. CheneyR.T. ChirieacL.R. D’AmicoT.A. DemmyT.L. GantiA.K.P. GovindanR. GrannisF.W.Jr JahanT. JahanzebM. JohnsonD.H. KessingerA. KomakiR. KongF.M. KrisM.G. KrugL.M. LeQ.T. LennesI.T. MartinsR. O’MalleyJ. OsarogiagbonR.U. OttersonG.A. PatelJ.D. PistersK.M. ReckampK. RielyG.J. RohrenE. SimonG.R. SwansonS.J. WoodD.E. YangS.C. NCCN Non-Small Cell Lung Cancer Panel Members Non-small cell lung cancer.J. Natl. Compr. Canc. Netw.20108774080110.6004/jnccn.2010.005620679538
    [Google Scholar]
  31. ArbourK.C. RielyG.J. Systemic therapy for locally advanced and metastatic non–small cell lung cancer.JAMA2019322876477410.1001/jama.2019.1105831454018
    [Google Scholar]
  32. FanH. ShaoZ.Y. XiaoY.Y. XieZ.H. ChenW. XieH. QinG.Y. ZhaoN.Q. Incidence and survival of non-small cell lung cancer in Shanghai: A population-based cohort study.BMJ Open2015512e00941910.1136/bmjopen‑2015‑00941926700282
    [Google Scholar]
  33. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature2518329364287
    [Google Scholar]
  34. ShiY. AuJ.S.K. ThongprasertS. SrinivasanS. TsaiC.M. KhoaM.T. HeeromaK. ItohY. CornelioG. YangP.C. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER).J. Thorac. Oncol.20149215416210.1097/JTO.000000000000003324419411
    [Google Scholar]
  35. FangB. MehranR.J. HeymachJ.V. SwisherS.G. Predictive biomarkers in precision medicine and drug development against lung cancer.Chin. J. Cancer20153432610.1186/s40880‑015‑0028‑426134262
    [Google Scholar]
  36. Danen-van OorschotA.A.A.M. VoskampP. SeelenM.C.M.J. van MiltenburgM.H.A.M. BolkM.W. TaitS.W. Boesen-de CockJ.G.R. RohnJ.L. BorstJ. NotebornM.H.M. Human death effector domain-associated factor interacts with the viral apoptosis agonist Apoptin and exerts tumor-preferential cell killing.Cell Death Differ.200411556457310.1038/sj.cdd.440139114765135
    [Google Scholar]
  37. GrozioA. CatassiA. CavalieriZ. PaleariL. CesarioA. RussoP. Nicotine, lung and cancer.Anticancer. Agents Med. Chem.20077446146610.2174/18715200778105858717630920
    [Google Scholar]
  38. LambrosL. CaumontC. GuibourgB. BarelF. Quintin-RouéI. MarcorellesP. MerlioJ.P. UguenA. Evaluation of a fast and fully automated platform to diagnose EGFR and KRAS mutations in formalin-fixed and paraffin-embedded non-small cell lung cancer samples in less than one day.J. Clin. Pathol.201770654454910.1136/jclinpath‑2016‑20420228153953
    [Google Scholar]
  39. CostantiniA. FalletV. CornyJ. FriardS. ChouaidC. DuchemannB. Giroux-LeprieurE. TailladeL. DoucetL. BrosseauS. WislezM. TredanielJ. CadranelJ. Nivolumab-refractory patients with advanced non-small-cell lung cancer.Lung Cancer201913012813410.1016/j.lungcan.2019.01.01530885333
    [Google Scholar]
  40. WangX. AdjeiA.A. Lung cancer and metastasis: New opportunities and challenges.Cancer Metastasis Rev.201534216917110.1007/s10555‑015‑9562‑425956388
    [Google Scholar]
  41. SandlerA. GrayR. PerryM.C. BrahmerJ. SchillerJ.H. DowlatiA. LilenbaumR. JohnsonD.H. Paclitaxel-carboplatin alone or with bevacizumab for non-small cell lung cancer.N. Engl. J. Med.2006355242542255010.1056/NEJMoa06188417167137
    [Google Scholar]
  42. EconomopoulouP. MountziosG. Non-small cell lung cancer (NSCLC) and central nervous system (CNS) metastases: Role of tyrosine kinase inhibitors (TKIs) and evidence in favor or against their use with concurrent cranial radiotherapy.Transl. Lung Cancer Res.20165658859810.21037/tlcr.2016.12.0628149754
    [Google Scholar]
  43. LiZ. LiuF. WuS. DingS. ChenY. LiuJ. Research progress on the drug resistance of ALK kinase inhibitors.Curr. Med. Chem.202229142456247510.2174/092986732866621080612034734365942
    [Google Scholar]
  44. HaqueI. KawsarH.I. MotesH. SharmaM. BanerjeeS. BanerjeeS.K. GodwinA.K. HuangC.H. Downregulation of miR-506-3p facilitates EGFR-TKI resistance through induction of sonic hedgehog signaling in non-small-cell lung cancer cell lines.Int. J. Mol. Sci.20202123930710.3390/ijms2123930733291316
    [Google Scholar]
  45. FengC. ZhaoY. LiY. ZhangT. MaY. LiuY. LncRNA MALAT1 promotes lung cancer proliferation and gefitinib resistance by acting as a miR-200a Sponge.Arch. Bronconeumol.2019551262763310.1016/j.arbres.2019.03.02631133357
    [Google Scholar]
  46. CiardielloF. Epidermal growth factor receptor inhibitors in cancer treatment.Future Oncol.20051222123410.1517/14796694.1.2.22116555994
    [Google Scholar]
  47. YardenY. SliwkowskiM.X. Untangling the ErbB signalling network.Nat. Rev. Mol. Cell Biol.20012212713710.1038/3505207311252954
    [Google Scholar]
  48. LiffersK. KolbeK. WestphalM. LamszusK. SchulteA. Histone deacetylase inhibitors resensitize EGFR/EGFRvIII-overexpressing, erlotinib-resistant glio-blastoma cells to tyrosine kinase inhibition.Target. Oncol.2016111294010.1007/s11523‑015‑0372‑y26032687
    [Google Scholar]
  49. SharmaS.V. BellD.W. SettlemanJ. HaberD.A. Epidermal growth factor receptor mutations in lung cancer.Nat. Rev. Cancer20077316918110.1038/nrc208817318210
    [Google Scholar]
  50. TebbuttN. PedersenM.W. JohnsT.G. Targeting the ERBB family in cancer: Couples therapy.Nat. Rev. Cancer201313966367310.1038/nrc355923949426
    [Google Scholar]
  51. TanC.S. KumarakulasingheN.B. HuangY.Q. AngY.L.E. ChooJ.R.E. GohB.C. SooR.A. Third generation EGFR TKIs: Current data and future directions.Mol. Cancer20181712910.1186/s12943‑018‑0778‑029455654
    [Google Scholar]
  52. MaemondoM. InoueA. KobayashiK. SugawaraS. OizumiS. IsobeH. GemmaA. HaradaM. YoshizawaH. KinoshitaI. FujitaY. OkinagaS. HiranoH. YoshimoriK. HaradaT. OguraT. AndoM. MiyazawaH. TanakaT. SaijoY. HagiwaraK. MoritaS. NukiwaT. North-East Japan Study Group Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR.N. Engl. J. Med.2010362252380238810.1056/NEJMoa090953020573926
    [Google Scholar]
  53. RosellR. CarcerenyE. GervaisR. VergnenegreA. MassutiB. FelipE. PalmeroR. Garcia-GomezR. PallaresC. SanchezJ.M. PortaR. CoboM. GarridoP. LongoF. MoranT. InsaA. De MarinisF. CorreR. BoverI. IllianoA. DansinE. de CastroJ. MilellaM. ReguartN. AltavillaG. JimenezU. ProvencioM. MorenoM.A. TerrasaJ. Muñoz-LangaJ. ValdiviaJ. IslaD. DomineM. MolinierO. MazieresJ. BaizeN. Garcia-CampeloR. RobinetG. Rodriguez-AbreuD. Lopez-VivancoG. GebbiaV. Ferrera-DelgadoL. BombaronP. BernabeR. BearzA. ArtalA. CortesiE. RolfoC. Sanchez-RoncoM. DrozdowskyjA. QueraltC. de AguirreI. RamirezJ.L. SanchezJ.J. MolinaM.A. TaronM. Paz-AresL. Spanish Lung Cancer Group in collaboration with Groupe Français de Pneumo-Cancérologie and Associazione Italiana Oncologia Toracica Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial.Lancet Oncol.201213323924610.1016/S1470‑2045(11)70393‑X22285168
    [Google Scholar]
  54. JiangT. SuC. RenS. CappuzzoF. RoccoG. PalmerJ.D. van ZandwijkN. BlackhallF. LeX. PennellN.A. ZhouC. written on behalf of the AME Lung Cancer Collaborative Group A consensus on the role of osimertinib in non-small cell lung cancer from the AME lung cancer collaborative group.J. Thorac. Dis.20181073909392110.21037/jtd.2018.07.6130174832
    [Google Scholar]
  55. CamidgeD.R. PaoW. SequistL.V. Acquired resistance to TKIs in solid tumours: Learning from lung cancer.Nat. Rev. Clin. Oncol.201411847348110.1038/nrclinonc.2014.10424981256
    [Google Scholar]
  56. ZhangW. CaiX. YuJ. LuX. QianQ. QianW. Exosome-mediated transfer of lncRNA RP11-838N2.4 promotes erlotinib resistance in non-small cell lung cancer.Int. J. Oncol.201853252753810.3892/ijo.2018.441229845246
    [Google Scholar]
  57. LiuQ. YuS. ZhaoW. QinS. ChuQ. WuK. EGFR-TKIs resistance via EGFR-independent signaling pathways.Mol. Cancer20181715310.1186/s12943‑018‑0793‑129455669
    [Google Scholar]
  58. KobayashiS. BoggonT.J. DayaramT. JänneP.A. KocherO. MeyersonM. JohnsonB.E. EckM.J. TenenD.G. HalmosB. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib.N. Engl. J. Med.2005352878679210.1056/NEJMoa04423815728811
    [Google Scholar]
  59. GiacominiK.M. HuangS.M. TweedieD.J. BenetL.Z. BrouwerK.L.R. ChuX. DahlinA. EversR. FischerV. HillgrenK.M. HoffmasterK.A. IshikawaT. KepplerD. KimR.B. LeeC.A. NiemiM. PolliJ.W. SugiyamaY. SwaanP.W. WareJ.A. WrightS.H. Wah YeeS. Zamek-GliszczynskiM.J. ZhangL. International Transporter Consortium Membrane transporters in drug development.Nat. Rev. Drug Discov.20109321523610.1038/nrd302820190787
    [Google Scholar]
  60. HirschF.R. Varella-GarciaM. BunnP.A.Jr Di MariaM.V. VeveR. BremnesR.M. BarónA.E. ZengC. FranklinW.A. Epidermal growth factor receptor in non-small-cell lung carcinomas: Correlation between gene copy number and protein expression and impact on prognosis.J. Clin. Oncol.200321203798380710.1200/JCO.2003.11.06912953099
    [Google Scholar]
  61. LeeY. KimM. HanJ. YeomK.H. LeeS. BaekS.H. KimV.N. MicroRNA genes are transcribed by RNA polymerase II.EMBO J.200423204051406010.1038/sj.emboj.760038515372072
    [Google Scholar]
  62. YiR. QinY. MacaraI.G. CullenB.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs.Genes Dev.200317243011301610.1101/gad.115880314681208
    [Google Scholar]
  63. FilipowiczW. BhattacharyyaS.N. SonenbergN. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight?Nat. Rev. Genet.20089210211410.1038/nrg229018197166
    [Google Scholar]
  64. NormannoN. MaielloM.R. De LucaA. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs): Simple drugs with a complex mechanism of action?J. Cell. Physiol.20031941131910.1002/jcp.1019412447985
    [Google Scholar]
  65. WangF. MengF. WongS.C.C. ChoW.C.S. YangS. ChanL.W.C. Combination therapy of gefitinib and miR-30a-5p may overcome acquired drug resistance through regulating the PI3K/AKT pathway in non-small cell lung cancer.Ther. Adv. Respir. Dis.202014,175346662091515610.1177/175346662091515632552611
    [Google Scholar]
  66. XiongR. SunX. WuH. XuG. WangG. SunX. XuM. XieM. Mechanism research of miR-34a regulates Axl in non-small-cell lung cancer with gefitinib-acquired resistance.Thorac. Cancer202011115616510.1111/1759‑7714.1325831777195
    [Google Scholar]
  67. ZhangW. DongY.Z. DuX. PengX.N. ShenQ.M. MiRNA-153-3p promotes gefitinib-sensitivity in non-small cell lung cancer by inhibiting ATG5 expression and autophagy.Eur. Rev. Med. Pharmacol. Sci.20192362444245230964170
    [Google Scholar]
  68. NingZ.Q. LuH. ChenC. WangL. CaiW. LiY. CaoT. ZhuJ. ShuY.Q. ShenH. MicroRNA-30e reduces cell growth and enhances drug sensitivity to gefitinib in lung carcinoma.Oncotarget2017834572458110.18632/oncotarget.1394427992364
    [Google Scholar]
  69. AmriJ. MolaeeN. BaazmM. KaramiH. Targeting epidermal growth factor receptor by mirna-145 inhibits cell growth and sensitizes NSCLC cells to erlotinib.Asian Pac. J. Cancer Prev.20192092781278710.31557/APJCP.2019.20.9.278131554377
    [Google Scholar]
  70. GeP. CaoL. ChenX. JingR. YueW. miR-762 activation confers acquired resistance to gefitinib in non-small cell lung cancer.BMC Cancer2019191120310.1186/s12885‑019‑6416‑431823748
    [Google Scholar]
  71. ZhuJ. TaoL. JinL. MicroRNA-506-3p reverses gefitinib resistance in non-small cell lung cancer by targeting Yes-associated protein 1.Mol. Med. Rep.20191921331133930535506
    [Google Scholar]
  72. YinJ. HuW. PanL. FuW. DaiL. JiangZ. ZhangF. ZhaoJ. let-7 and miR-17 promote self-renewal and drive gefitinib resistance in non-small cell lung cancer.Oncol. Rep.201942249550810.3892/or.2019.719731233201
    [Google Scholar]
  73. YangY. WangW. ChangH. HanZ. YuX. ZhangT. Reciprocal regulation of miR-206 and IL-6/STAT3 pathway mediates IL6-induced gefitinib resistance in EGFR-mutant lung cancer cells.J. Cell. Mol. Med.201923117331734110.1111/jcmm.1459231507089
    [Google Scholar]
  74. ZhangW. LinJ. WangP. SunJ. miR-17-5p down-regulation contributes to erlotinib resistance in non-small cell lung cancer cells.J. Drug Target.201725212513110.1080/1061186X.2016.120764727633093
    [Google Scholar]
  75. HuF. CaoX. XuQ. DengY. LaiS. MaJ. HuJ. miR-124 modulates gefitinib resistance through SNAI2 and STAT3 in non-small cell lung cancer.J. Huazhong Univ. Sci. Technolog. Med. Sci.201636683984510.1007/s11596‑016‑1672‑x27924500
    [Google Scholar]
  76. MaD. QinM. ShiL. DingX. MicroRNA-6077 enhances the sensitivity of patients-derived lung adenocarcinoma cells to anlotinib by repressing the activation of glucose transporter 1 pathway.Cell. Signal.20196410939110.1016/j.cellsig.2019.10939131421224
    [Google Scholar]
  77. WangN. ZhangT. Downregulation of MicroRNA-135 promotes sensitivity of non-small cell lung cancer to gefitinib by targeting TRIM16.Oncol. Res.20182671005101410.3727/096504017X1514475563368029295721
    [Google Scholar]
  78. LiaoJ. LinJ. LinD. ZouC. KurataJ. LinR. HeZ. SuY. Down-regulation of miR-214 reverses erlotinib resistance in non-small-cell lung cancer through up-regulating LHX6 expression.Sci. Rep.20177178110.1038/s41598‑017‑00901‑628396596
    [Google Scholar]
  79. HanZ. ZhouX. LiS. QinY. ChenY. LiuH. Inhibition of miR-23a increases the sensitivity of lung cancer stem cells to erlotinib through PTEN/PI3K/Akt pathway.Oncol. Rep.20173853064307010.3892/or.2017.593828901474
    [Google Scholar]
  80. ZhangH. ChenF. HeY. YiL. GeC. ShiX. TangC. WangD. WuY. NianW. Sensitivity of non-small cell lung cancer to erlotinib is regulated by the Notch/miR-223/ FBXW7 pathway.Biosci. Rep.2017373BSR2016047810.1042/BSR2016047828507201
    [Google Scholar]
  81. LiF. LiH. LiS. LvB. ShiJ. YanH. ZhangH. HeY. miR-365a-5p suppresses gefitinib resistance in non-small-cell lung cancer through targeting PELI3.Pharmacogenomics2020211177178310.2217/pgs‑2020‑000632635799
    [Google Scholar]
  82. ZhangW.C. WellsJ.M. ChowK.H. HuangH. YuanM. SaxenaT. MelnickM.A. PolitiK. AsaraJ.M. CostaD.B. BultC.J. SlackF.J. miR-147b-mediated TCA cycle dysfunction and pseudohypoxia initiate drug tolerance to EGFR inhibitors in lung adenocarcinoma.Nat. Metab.20191446047410.1038/s42255‑019‑0052‑931535082
    [Google Scholar]
  83. ZhangY. LiM. HuC. Exosomal transfer of miR-214 mediates gefitinib resistance in non-small cell lung cancer.Biochem. Biophys. Res. Commun.20185071-445746410.1016/j.bbrc.2018.11.06130458987
    [Google Scholar]
  84. HuG. LiaoK. NiuF. YangL. DallonB.W. CallenS. TianC. ShuJ. CuiJ. SunZ. LyubchenkoY.L. KaM. ChenX.M. BuchS. Astrocyte EV-Induced lincRNA-Cox2 regulates microglial phagocytosis: Implications for morphine-mediated neurodegeneration.Mol. Ther. Nucleic Acids20181345046310.1016/j.omtn.2018.09.01930388619
    [Google Scholar]
  85. LiaoL.M. ZhangF.H. YaoG.J. AiS.F. ZhengM. HuangL. Role of long noncoding RNA 799 in the metastasis of cervical cancer through upregulation of TBL1XR1 expression.Mol. Ther. Nucleic Acids20181358058910.1016/j.omtn.2018.10.00730439646
    [Google Scholar]
  86. BartonicekN. MaagJ.L.V. DingerM.E. Long noncoding RNAs in cancer: Mechanisms of action and technological advancements.Mol. Cancer20161514310.1186/s12943‑016‑0530‑627233618
    [Google Scholar]
  87. SchmittA.M. ChangH.Y. Long noncoding RNAs in cancer pathways.Cancer Cell201629445246310.1016/j.ccell.2016.03.01027070700
    [Google Scholar]
  88. LiuB. WuS. MaJ. YanS. XiaoZ. WanL. ZhangF. ShangM. MaoA. lncRNA GAS5 reverses EMT and tumor stem cell-mediated gemcitabine resistance and metastasis by targeting miR-221/SOCS3 in pancreatic cancer.Mol. Ther. Nucleic Acids20181347248210.1016/j.omtn.2018.09.02630388621
    [Google Scholar]
  89. YuY. ZhangM. LiuJ. XuB. YangJ. WangN. YanS. WangF. HeX. JiG. LiQ. MiaoL. Long non-coding RNA PVT1 promotes cell proliferation and migration by silencing ANGPTL4 expression in cholangiocarcinoma.Mol. Ther. Nucleic Acids20181350351310.1016/j.omtn.2018.10.00130388624
    [Google Scholar]
  90. XiongX. RenX. CaiM. YangJ.W. LiuX. YangJ.M. Long non-coding RNAs: An emerging powerhouse in the battle between life and death of tumor cells.Drug Resist. Updat.201626284210.1016/j.drup.2016.04.00127180308
    [Google Scholar]
  91. HuangZ. MaY. ZhangP. SiJ. XiongY. YangY. Long non-coding RNA H19 confers resistance to gefitinib via miR-148b-3p/DDAH1 axis in lung adenocarcinoma.Anticancer Drugs2020311445410.1097/CAD.000000000000083131503013
    [Google Scholar]
  92. WangQ. LiX. RenS. SuC. LiC. LiW. YuJ. ChengN. ZhouC. HOTAIR induces EGFR-TKIs resistance in non-small cell lung cancer through epithelial-mesenchymal transition.Lung Cancer20201479910510.1016/j.lungcan.2020.06.03732683208
    [Google Scholar]
  93. NakanoY. IsobeK. KobayashiH. KaburakiK. IsshikiT. SakamotoS. TakaiY. TochigiN. MikamiT. IyodaA. HommaS. KishiK. Clinical importance of long non-coding RNA LINC00460 expression in EGFR-mutant lung adenocarcinoma.Int. J. Oncol.202056124325731789388
    [Google Scholar]
  94. ZhengG. ChenW. LiW. DingY. TuP. ChenW. E2F1-induced ferritin heavy chain 1 pseudogene 3 (FTH1P3) accelerates non-small cell lung cancer gefitinib resistance.Biochem. Biophys. Res. Commun.2020530462463110.1016/j.bbrc.2020.07.04432762943
    [Google Scholar]
  95. ShuD. XuY. ChenW. Knockdown of lncRNA BLACAT1 reverses the resistance of afatinib to non-small cell lung cancer via modulating STAT3 signalling.J. Drug Target.202028330030610.1080/1061186X.2019.165036831359792
    [Google Scholar]
  96. HuangJ. PanB. XiaG. ZhuJ. LiC. FengJ. LncRNA SNHG15 regulates EGFR-TKI acquired resistance in lung adenocarcinoma through sponging miR-451 to upregulate MDR-1.Cell Death Dis.202011752510.1038/s41419‑020‑2683‑x32655137
    [Google Scholar]
  97. WuK. LiJ. QiY. ZhangC. ZhuD. LiuD. ZhaoS. SNHG14 confers gefitinib resistance in non-small cell lung cancer by up-regulating ABCB1 via sponging miR-206-3p.Biomed. Pharmacother.201911610899510.1016/j.biopha.2019.10899531121484
    [Google Scholar]
  98. HuJ. DongS. PeiY. WangJ. ZhangJ. WeiX. LncRNA MITA1 promotes gefitinib resistance by inducing autophagy in lung cancer cells.Biochem. Biophys. Res. Commun.2021551212610.1016/j.bbrc.2021.02.13033714755
    [Google Scholar]
  99. WangZ. PanL. YuH. WangY. The long non-coding RNA SNHG5 regulates gefitinib resistance in lung adenocarcinoma cells by targetting miR-377 /CASP1 axis.Biosci. Rep.2018384BSR2018040010.1042/BSR2018040029592872
    [Google Scholar]
  100. QuS. YangX. LiX. WangJ. GaoY. ShangR. SunW. DouK. LiH. CircularR.N.A. Circular RNA: A new star of noncoding RNAs.Cancer Lett.2015365214114810.1016/j.canlet.2015.06.00326052092
    [Google Scholar]
  101. WangP.L. BaoY. YeeM.C. BarrettS.P. HoganG.J. OlsenM.N. DinnenyJ.R. BrownP.O. SalzmanJ. Circular RNA is expressed across the eukaryotic tree of life.PLoS One201493e9085910.1371/journal.pone.009085924609083
    [Google Scholar]
  102. LiB. ZhuL. LuC. WangC. WangH. JinH. MaX. ChengZ. YuC. WangS. ZuoQ. ZhouY. WangJ. YangC. LvY. JiangL. QinW. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity.Nat. Commun.202112129510.1038/s41467‑020‑20527‑z33436560
    [Google Scholar]
  103. WangX. FangL. Advances in circular RNAs and their roles in breast cancer.J. Exp. Clin. Cancer Res.201837120610.1186/s13046‑018‑0870‑830157902
    [Google Scholar]
  104. DuW.W. ZhangC. YangW. YongT. AwanF.M. YangB.B. Identifying and characterizing circRNA-protein interaction.Theranostics20177174183419110.7150/thno.2129929158818
    [Google Scholar]
  105. WawrzyniakO. ZarębskaŻ. KuczyńskiK. Gotz-WięckowskaA. RolleK. Protein-related circular RNAs in human pathologies.Cells202098184110.3390/cells908184132781555
    [Google Scholar]
  106. ZhangH. JiangL. SunD. HouJ. JiZ. CircRNA: A novel type of biomarker for cancer.Breast Cancer20182511710.1007/s12282‑017‑0793‑928721656
    [Google Scholar]
  107. ZhangX. LuN. WangL. WangY. LiM. ZhouY. YanH. CuiM. ZhangM. ZhangL. Circular RNAs and esophageal cancer.Cancer Cell Int.202020136210.1186/s12935‑020‑01451‑032774156
    [Google Scholar]
  108. ZhongY. DuY. YangX. MoY. FanC. XiongF. RenD. YeX. LiC. WangY. WeiF. GuoC. WuX. LiX. LiY. LiG. ZengZ. XiongW. Circular RNAs function as ceRNAs to regulate and control human cancer progression.Mol. Cancer20181717910.1186/s12943‑018‑0827‑829626935
    [Google Scholar]
  109. YangW. GuJ. WangX. WangY. FengM. ZhouD. GuoJ. ZhouM. Inhibition of circular RNA CDR1as increases chemosensitivity of 5-FU-resistant BC cells through up-regulating miR-7.J. Cell. Mol. Med.20192353166317710.1111/jcmm.1417130884120
    [Google Scholar]
  110. HuangX. LiZ. ZhangQ. WangW. LiB. WangL. XuZ. ZengA. ZhangX. ZhangX. HeZ. LiQ. SunG. WangS. LiQ. WangL. ZhangL. XuH. XuZ. CircularR.N.A. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression.Mol. Cancer20191817110.1186/s12943‑019‑0969‑330927924
    [Google Scholar]
  111. HuangY. DaiY. WenC. HeS. ShiJ. ZhaoD. WuL. ZhouH. circSETD3 contributes to acquired resistance to gefitinib in non-small-cell lung cancer by targeting the miR-520h/ABCG2 pathway.Mol. Ther. Nucleic Acids20202188589910.1016/j.omtn.2020.07.02732805491
    [Google Scholar]
  112. ZhouY. ZhengX. XuB. ChenL. WangQ. DengH. JiangJ. Circular RNA hsa_circ_0004015 regulates the proliferation, invasion, and TKI drug resistance of non-small cell lung cancer by miR-1183/PDPK1 signaling pathway.Biochem. Biophys. Res. Commun.2019508252753510.1016/j.bbrc.2018.11.15730509491
    [Google Scholar]
  113. ZhengG. HuangJ. ChenW. YouP. DingY. TuP. circUBAP2 exacerbates malignant capabilities of NSCLC by targeting KLF4 through miR-3182 modulation.Aging2021138110831109510.18632/aging.20274533882454
    [Google Scholar]
  114. YangB. TengF. ChangL. WangJ. LiuD.L. CuiY.S. LiG.H. Tumor-derived exosomal circRNA_102481 contributes to EGFR-TKIs resistance via the miR-30a-5p/ROR1 axis in non-small cell lung cancer.Aging (Albany NY)2021139132641328610.18632/aging.20301133952725
    [Google Scholar]
  115. WangT. LiuZ. SheY. DengJ. ZhongY. ZhaoM. LiS. XieD. SunX. HuX. ChenC. A novel protein encoded by circASK1 ameliorates gefitinib resistance in lung adenocarcinoma by competitively activating ASK1-dependent apoptosis.Cancer Lett.202152032133110.1016/j.canlet.2021.08.00734389432
    [Google Scholar]
  116. ShapiraA. LivneyY.D. BroxtermanH.J. AssarafY.G. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance.Drug Resist. Updat.201114315016310.1016/j.drup.2011.01.00321330184
    [Google Scholar]
  117. ChenK.G. SikicB.I. Molecular pathways: Regulation and therapeutic implications of multidrug resistance.Clin. Cancer Res.20121871863186910.1158/1078‑0432.CCR‑11‑159022344233
    [Google Scholar]
  118. MaliepaardM. SchefferG.L. FaneyteI.F. van GastelenM.A. PijnenborgA.C. SchinkelA.H. van De VijverM.J. ScheperR.J. SchellensJ.H. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues.Cancer Res.20016183458346411309308
    [Google Scholar]
  119. ZengZ. ZhaoG. ZhuH. NieL. HeL. LiuJ. LiR. XiaoS. HuaG. LncRNA FOXD3-AS1 promoted chemo-resistance of NSCLC cells via directly acting on miR-127-3p/MDM2 axis.Cancer Cell Int.202020135010.1186/s12935‑020‑01402‑932742197
    [Google Scholar]
  120. ThieryJ.P. SleemanJ.P. Complex networks orchestrate epithelial–mesenchymal transitions.Nat. Rev. Mol. Cell Biol.20067213114210.1038/nrm183516493418
    [Google Scholar]
  121. ChenZ. ShiT. ZhangL. ZhuP. DengM. HuangC. HuT. JiangL. LiJ. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade.Cancer Lett.2016370115316410.1016/j.canlet.2015.10.01026499806
    [Google Scholar]
  122. TulchinskyE. DemidovO. KriajevskaM. BarlevN.A. ImyanitovE. EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer.Biochim. Biophys. Acta Rev. Cancer201918711293910.1016/j.bbcan.2018.10.00330419315
    [Google Scholar]
  123. McWilliamsT.G. PrescottA.R. Villarejo-ZoriB. BallG. BoyaP. GanleyI.G. A comparative map of macroautophagy and mitophagy in the vertebrate eye.Autophagy20191571296130810.1080/15548627.2019.158050930786807
    [Google Scholar]
  124. SchäferJ.A. SchessnerJ.P. BirchamP.W. TsujiT. FunayaC. PajonkO. SchaeffK. RuffiniG. PapagiannidisD. KnopM. FujimotoT. SchuckS. ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast.EMBO J.2020392e10258610.15252/embj.201910258631802527
    [Google Scholar]
  125. KaushikS. CuervoA.M. The coming of age of chaperone-mediated autophagy.Nat. Rev. Mol. Cell Biol.201819636538110.1038/s41580‑018‑0001‑629626215
    [Google Scholar]
  126. YangY. JiangC. YangY. GuoL. HuangJ. LiuX. WuC. ZouJ. Silencing of LncRNA-HOTAIR decreases drug resistance of non-small cell lung cancer cells by inactivating autophagy via suppressing the phosphorylation of ULK1.Biochem. Biophys. Res. Commun.201849741003101010.1016/j.bbrc.2018.02.14129470986
    [Google Scholar]
  127. JensenL.E. WhiteheadA.S. Pellino3, a novel member of the Pellino protein family, promotes activation of c-Jun and Elk-1 and may act as a scaffolding protein.J. Immunol.200317131500150610.4049/jimmunol.171.3.150012874243
    [Google Scholar]
  128. ZouH. LiY. LiuX. WangX. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9.J. Biol. Chem.199927417115491155610.1074/jbc.274.17.1154910206961
    [Google Scholar]
  129. JiangJ. FengX. ZhouW. WuY. YangY. MiR-128 reverses the gefitinib resistance of the lung cancer stem cells by inhibiting the c-met/PI3K/AKT pathway.Oncotarget2016745731887319910.18632/oncotarget.1228327690301
    [Google Scholar]
  130. WeiY. PattingreS. SinhaS. BassikM. LevineB. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy.Mol. Cell200830667868810.1016/j.molcel.2008.06.00118570871
    [Google Scholar]
  131. ChenJ. CuiJ. GuoX. CaoX. LiQ. Increased expression of miR-641 contributes to erlotinib resistance in non-small-cell lung cancer cells by targeting NF 1.Cancer Med.2018741394140310.1002/cam4.132629493886
    [Google Scholar]
  132. ShenH. ZhuF. LiuJ. XuT. PeiD. WangR. QianY. LiQ. WangL. ShiZ. ZhengJ. ChenQ. JiangB. ShuY. Alteration in Mir-21/PTEN expression modulates gefitinib resistance in non-small cell lung cancer.PLoS One201497e10330510.1371/journal.pone.010330525058005
    [Google Scholar]
  133. WestoverD. ZugazagoitiaJ. ChoB.C. LovlyC.M. Paz-AresL. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors.Ann. Oncol.201829Suppl. 1i10i1910.1093/annonc/mdx70329462254
    [Google Scholar]
  134. BalakM.N. GongY. RielyG.J. SomwarR. LiA.R. ZakowskiM.F. ChiangA. YangG. OuerfelliO. KrisM.G. LadanyiM. MillerV.A. PaoW. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors.Clin. Cancer Res.200612216494650110.1158/1078‑0432.CCR‑06‑157017085664
    [Google Scholar]
  135. UchiboriK. InaseN. NishioM. FujitaN. KatayamaR. Identification of mutation accumulation as resistance mechanism emerging in first-line osimertinib treatment.J. Thorac. Oncol.201813791592510.1016/j.jtho.2018.04.00529702287
    [Google Scholar]
  136. LiuX. JiangT. LiX. ZhaoC. LiJ. ZhouF. ZhangL. ZhaoS. JiaY. ShiJ. GaoG. LiW. ZhaoJ. ChenX. SuC. RenS. ZhouC. Exosomes transmit T790M mutation-induced resistance in EGFR-mutant NSCLC by activating PI3K/AKT signalling pathway.J. Cell. Mol. Med.20202421529154010.1111/jcmm.1483831894895
    [Google Scholar]
  137. YamaguchiF. FukuchiK. YamazakiY. TakayasuH. TazawaS. TatenoH. KatoE. WakabayashiA. FujimoriM. IwasakiT. HayashiM. TsuchiyaY. YamashitaJ. TakedaN. KokubuF. Acquired resistance L747S mutation in an epidermal growth factor receptor-tyrosine kinase inhibitor-naïve patient: A report of three cases.Oncol. Lett.20147235736010.3892/ol.2013.170524396447
    [Google Scholar]
  138. ChmieleckiJ. MokT. WuY.L. HanJ.Y. AhnM.J. RamalingamS.S. JohnT. OkamotoI. YangJ.C.H. ShepherdF.A. BulusuK.C. LausG. CollinsB. BarrettJ.C. HartmaierR.J. PapadimitrakopoulouV. Analysis of acquired resistance mechanisms to osimertinib in patients with EGFR-mutated advanced non-small cell lung cancer from the AURA3 trial.Nat. Commun.2023141107110.1038/s41467‑023‑35962‑x36849516
    [Google Scholar]
  139. YangZ. YangN. OuQ. XiangY. JiangT. WuX. BaoH. TongX. WangX. ShaoY.W. LiuY. WangY. ZhouC. Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non–small cell lung cancer patients.Clin. Cancer Res.201824133097310710.1158/1078‑0432.CCR‑17‑231029506987
    [Google Scholar]
  140. TüreciÖ. VormehrM. DikenM. KreiterS. HuberC. SahinU. Targeting the heterogeneity of cancer with individualized neoepitope vaccines.Clin. Cancer Res.20162281885189610.1158/1078‑0432.CCR‑15‑150927084742
    [Google Scholar]
  141. KaurJ. ElmsJ. MunnA.L. GoodD. WeiM.Q. Immunotherapy for non-small cell lung cancer (NSCLC), as a stand-alone and in combination therapy.Crit. Rev. Oncol. Hematol.202116410341710.1016/j.critrevonc.2021.10341734242772
    [Google Scholar]
  142. PollardC. De KokerS. SaelensX. VanhamG. GrootenJ. Challenges and advances towards the rational design of mRNA vaccines.Trends Mol. Med.2013191270571310.1016/j.molmed.2013.09.00224138818
    [Google Scholar]
  143. Linares-FernándezS. LacroixC. ExpositoJ.Y. VerrierB. Tailoring mRNA vaccine to balance innate/adaptive immune response.Trends Mol. Med.202026331132310.1016/j.molmed.2019.10.00231699497
    [Google Scholar]
  144. KarikóK. MuramatsuH. WelshF.A. LudwigJ. KatoH. AkiraS. WeissmanD. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability.Mol. Ther.200816111833184010.1038/mt.2008.20018797453
    [Google Scholar]
  145. KauffmanK.J. WebberM.J. AndersonD.G. Materials for non-viral intracellular delivery of messenger RNA therapeutics.J. Control. Release201624022723410.1016/j.jconrel.2015.12.03226718856
    [Google Scholar]
  146. GuanS. RoseneckerJ. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems.Gene Ther.201724313314310.1038/gt.2017.528094775
    [Google Scholar]
  147. ThessA. GrundS. MuiB.L. HopeM.J. BaumhofP. Fotin-MleczekM. SchlakeT. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals.Mol. Ther.20152391456146410.1038/mt.2015.10326050989
    [Google Scholar]
  148. KarikóK. MuramatsuH. LudwigJ. WeissmanD. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA.Nucleic Acids Res.20113921e14210.1093/nar/gkr69521890902
    [Google Scholar]
  149. MiaoL. ZhangY. HuangL. mRNA vaccine for cancer immunotherapy.Mol. Cancer20212014110.1186/s12943‑021‑01335‑533632261
    [Google Scholar]
  150. VigneronN. Human tumor antigens and cancer immunotherapy.Bio. Med. Res. Int.2015201511710.1155/2015/94850126161423
    [Google Scholar]
  151. GuoC. ManjiliM.H. SubjeckJ.R. SarkarD. FisherP.B. WangX.Y. Therapeutic cancer vaccines: Past, present, and future.Adv. Cancer Res.201311942147510.1016/B978‑0‑12‑407190‑2.00007‑123870514
    [Google Scholar]
  152. SahinU. OehmP. DerhovanessianE. JabulowskyR.A. VormehrM. GoldM. MaurusD. Schwarck-KokarakisD. KuhnA.N. OmokokoT. KranzL.M. DikenM. KreiterS. HaasH. AttigS. RaeR. CukK. Kemmer-BrückA. BreitkreuzA. TolliverC. CasparJ. QuinkhardtJ. HebichL. SteinM. HohbergerA. VoglerI. LiebigI. RenkenS. SikorskiJ. LeiererM. MüllerV. Mitzel-RinkH. MiedererM. HuberC. GrabbeS. UtikalJ. PinterA. KaufmannR. HasselJ.C. LoquaiC. TüreciÖ. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma.Nature2020585782310711210.1038/s41586‑020‑2537‑932728218
    [Google Scholar]
  153. MatsumuraY. MaedaH. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.Cancer Res.19864612 Pt 1638763922946403
    [Google Scholar]
  154. MukherjeeS. PatraC.R. Therapeutic application of anti-angiogenic nanomaterials in cancers.Nanoscale2016825124441247010.1039/C5NR07887C27067119
    [Google Scholar]
  155. ShoyeleS. MaherC. LakshmikuttyammaA. PerepelyukM. Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins.Int. J. Nanomedicine2016113533354410.2147/IJN.S11048827555773
    [Google Scholar]
  156. LeeH.Y. MohammedK.A. KayeF. SharmaP. MoudgilB.M. ClappW.L. NasreenN. Targeted delivery of let-7a microRNA encapsulated ephrin-A1 conjugated liposomal nanoparticles inhibit tumor growth in lung cancer.Int. J. Nanomedicine201384481449424293999
    [Google Scholar]
  157. ShenY. TanTaiJ. Co-delivery anticancer drug nanoparticles for synergistic therapy against lung cancer cells.Drug Des. Devel. Ther.2020144503451010.2147/DDDT.S27512333122893
    [Google Scholar]
  158. ShaurovaT. YanL. SuY. RichL.J. Vincent-ChongV.K. CalkinsH. PokharelS. PetkovichM. SeshadriM. WuY. HershbergerP.A. A nanotherapeutic strategy to target drug-tolerant cells and overcome EGFR tyrosine kinase inhibitor resistance in lung cancer. Cancer Commun 202343450310.1002/cac2.12401
    [Google Scholar]
  159. ShivajiK. ManiS. PonmuruganP. De CastroC.S. Lloyd DaviesM. BalasubramanianM.G. PitchaimuthuS. Green-synthesis-derived CdS quantum dots using tea leaf extract: Antimicrobial, bioimaging, and therapeutic applications in lung cancer cells.ACS Appl. Nano Mater.2018141683169310.1021/acsanm.8b00147
    [Google Scholar]
  160. CaiX. MiaoJ. SunR. WangS. Molina-VilaM.A. ChaibI. RosellR. CaoP. Dihydroartemisinin overcomes the resistance to osimertinib in EGFR-mutant non-small-cell lung cancer.Pharmacol. Res.202117010570110.1016/j.phrs.2021.10570134087353
    [Google Scholar]
  161. XiaX. LiX. LiF. WuX. ZhangM. ZhouH. HuangN. YangX. XiaoF. LiuD. YangL. ZhangN. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1.Mol. Cancer201918113110.1186/s12943‑019‑1056‑531470874
    [Google Scholar]
  162. XiangX. FuY. ZhaoK. MiaoR. ZhangX. MaX. LiuC. ZhangN. QuK. Cellular senescence in hepatocellular carcinoma induced by a long non-coding RNA-encoded peptide PINT87aa by blocking FOXM1-mediated PHB2.Theranostics202111104929494410.7150/thno.5567233754036
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673275752231219080500
Loading
/content/journals/cmc/10.2174/0109298673275752231219080500
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test