Skip to content
2000
Volume 32, Issue 18
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

End-stage kidney disease requires comprehensive management strategies to ensure patient survival and improve quality of life. Kidney transplantation remains the preferred treatment option, offering superior long-term outcomes. However, graft rejection remains a significant concern, and pediatric patients often require tailored immunosuppressive regimens due to differences in immune response compared to adults. Although the past decade has seen significant improvements in graft and patient survival among pediatric kidney transplant recipients, many questions remain unanswered. There is an ongoing search for non-invasive biomarkers capable of timely detecting graft rejection and novel treatment regimens, specifically tailored to pediatric practice. This review aims to discuss the current knowledge on kidney transplant rejection in pediatric patients, including epidemiology, pathophysiology, and risk factors. In addition, it seeks to explore the latest advancements in biomarkers for early detection of rejection and evaluate current and emerging immunosuppressive therapies. The possible outcomes of this review include identifying gaps in current research, providing recommendations for future studies, and suggesting strategies to enhance clinical practice. By synthesizing the latest evidence, this review aims to contribute to improved long-term outcomes and quality of life for pediatric kidney transplant recipients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673333693240806160544
2024-08-12
2025-10-14
Loading full text...

Full text loading...

References

  1. CanaudB. ChazotC. KoomansJ. CollinsA. Fluid and hemodynamic management in hemodialysis patients: challenges and opportunities.J. Bras. Nefrol.201941455055910.1590/2175‑8239‑JBN‑2019‑0135.
    [Google Scholar]
  2. TonelliM. WiebeN. KnollG. BelloA. BrowneS. JadhavD. KlarenbachS. GillJ. Systematic review: Kidney transplantation compared with dialysis in clinically relevant outcomes.Am. J. Transplant.201111102093210910.1111/j.1600‑6143.2011.03686.x21883901
    [Google Scholar]
  3. AlasfarS. KodaliL. SchinstockC.A. Current therapies in kidney transplant rejection.J. Clin. Med.20231215492710.3390/jcm1215492737568328
    [Google Scholar]
  4. LiQ. LanP. Activation of immune signals during organ transplantation.Signal Transduct. Target. Ther.20238111010.1038/s41392‑023‑01377‑936906586
    [Google Scholar]
  5. SharabyI. AlksasA. Abou El-GharM. EldeebM. GhazalM. GondimD. El-BazA. Biomarkers for kidney-transplant rejection: A short review study.Biomedicines2023119243710.3390/biomedicines1109243737760879
    [Google Scholar]
  6. MellonL. DoyleF. HickeyA. WardK.D. de FreitasD.G. McCormickP.A. O’ConnellO. ConlonP. Interventions for increasing immunosuppressant medication adherence in solid organ transplant recipients.Cochrane Libr.202220229CD01285410.1002/14651858.CD012854.pub236094829
    [Google Scholar]
  7. HebertS.A. SwinfordR.D. HallD.R. AuJ.K. BynonJ.S. Special considerations in pediatric kidney transplantation.Adv. Chronic Kidney Dis.201724639840410.1053/j.ackd.2017.09.00929229171
    [Google Scholar]
  8. TönshoffB. Immunosuppressive therapy post-transplantation in children: What the clinician needs to know.Expert Rev. Clin. Immunol.202016213915410.1080/1744666X.2020.171443731952458
    [Google Scholar]
  9. FernandezH.E. FosterB.J. Long-term care of the pediatric kidney transplant recipient.Clin. J. Am. Soc. Nephrol.202217229630410.2215/CJN.1689102033980614
    [Google Scholar]
  10. Global observatory on donation and transplantation. Global report on organ donation and transplantation 2020.2020Available from: https://www.transplant-observatory.org/wp-content/uploads/2022/07/2020-Global-report- para-web.pdf (Accessed on: 5 April 2024)
  11. Ghelichi-GhojoghM. MohammadizadehF. JafariF. ValiM. JahanianS. MohammadiM. JafariA. KhezriR. NikbakhtH.A. DaliriM. RajabiA. The global survival rate of graft and patient in kidney transplantation of children: A systematic review and meta-analysis.BMC Pediatr.202222150310.1186/s12887‑022‑03545‑236002803
    [Google Scholar]
  12. MageeJ.C. KrishnanS.M. BenfieldM.R. HsuD.T. ShneiderB.L. Pediatric transplantation in the United States, 1997–2006.Am. J. Transplant.20088493594510.1111/j.1600‑6143.2008.02172.x18336697
    [Google Scholar]
  13. BelliniM.I. CourtneyA.E. McCaughanJ.A. Living donor kidney transplantation improves graft and recipient survival in patients with multiple kidney transplants.J. Clin. Med.202097211810.3390/jcm907211832635614
    [Google Scholar]
  14. CransbergK. SmitsJ.M.A. OffnerG. NautaJ. PersijnG.G. Kidney transplantation without prior dialysis in children: The Eurotransplant experience.Am. J. Transplant.2006681858186410.1111/j.1600‑6143.2006.01405.x16771812
    [Google Scholar]
  15. OomenL. Bootsma-RobroeksC. CornelissenE. WallL. FeitzW. Pearls and pitfalls in pediatric kidney transplantation after 5 decades.Front Pediatr.20221085663010.3389/fped.2022.85663035463874
    [Google Scholar]
  16. McDonaldR.A. SmithJ.M. StableinD. HarmonW.E. Pretransplant peritoneal dialysis and graft thrombosis following pediatric kidney transplantation: A NAPRTCS report.Pediatr. Transplant.20037320420810.1034/j.1399‑3046.2003.00075.x12756045
    [Google Scholar]
  17. SuX. ShangW. LiuL. LiJ. FuQ. FengY. ZhangH. DengR. WuC. WangZ. PangX. NashanB. FengG. WangC. Transplantation of a single kidney from pediatric donors less than 10 kg to children with poor access to transplantation: A two-year outcome analysis.BMC Nephrol.202021125010.1186/s12882‑020‑01895‑632616005
    [Google Scholar]
  18. van HeurnE. de VriesE.E. Kidney transplantation and donation in children.Pediatr. Surg. Int.200925538539310.1007/s00383‑009‑2350‑x19330513
    [Google Scholar]
  19. MarcouM. GalianoM. TzschoppeA. SauersteinK. WachS. TaubertH. WullichB. Hirsch-KochK. ApelH. Risk factor analysis for long-term graft survival following pediatric kidney transplantation: The importance of pretransplantation time on dialysis and donor/recipient age difference.J. Clin. Med.20231222701410.3390/jcm1222701438002629
    [Google Scholar]
  20. MoreauA. VareyE. AnegonI. CuturiM.C. Effector mechanisms of rejection.Cold Spring Harb. Perspect. Med.2013311a01546110.1101/cshperspect.a01546124186491
    [Google Scholar]
  21. IngulliE. Mechanism of cellular rejection in transplantation.Pediatr. Nephrol.2010251617410.1007/s00467‑008‑1020‑x21476231
    [Google Scholar]
  22. Mohammadi AfrakotiM. NassiriA.A. HakemiM.S. AfrougheA. GanjiM.R. The renal histopathological findings in patients with renal allograft dysfunction: A retrospective single center study.Iran. J. Kidney Dis.202317316817337337801
    [Google Scholar]
  23. YangJ.J. BaekC.H. KimH. KwonH. ShinS. KimY.H. HwangS.H. OhH.B. ParkS.K. ChoD. KoD.H. Hyperacute rejection in ABO-incompatible kidney transplantation: Significance of isoagglutinin subclass.Transpl. Immunol.20216910148410.1016/j.trim.2021.10148434678463
    [Google Scholar]
  24. RodrigoE. ChedidM.F. SegundoD.S. MillánJ.C.R.S. López-HoyosM. Acute rejection following kidney transplantation: state-of-the-art and future perspectives.Curr. Pharm. Des.202026283468349610.2174/138161282666620061018443332520680
    [Google Scholar]
  25. SasakiH. TanabeT. TsujiT. HottaK. Mechanism and treatment for chronic antibody-mediated rejection in kidney transplant recipients.Int. J. Urol.202330862463310.1111/iju.1519737306194
    [Google Scholar]
  26. NankivellB.J. ChapmanJ.R. Chronic allograft nephropathy: Current concepts and future directions.Transplantation200681564365410.1097/01.tp.0000190423.82154.0116534463
    [Google Scholar]
  27. GrafalsM. ThurmanJ.M. The role of complement in organ transplantation.Front. Immunol.201910238010.3389/fimmu.2019.0238031636644
    [Google Scholar]
  28. CrossA.R. GlotzD. MooneyN. The role of the endothelium during antibody-mediated rejection: from victim to accomplice.Front. Immunol.2018910610.3389/fimmu.2018.0010629434607
    [Google Scholar]
  29. BasileD.P. AndersonM.D. SuttonT.A. Pathophysiology of acute kidney injury.Compr. Physiol.2012221303135310.1002/cphy.c11004123798302
    [Google Scholar]
  30. TamargoC.L. KantS. Pathophysiology of rejection in kidney transplantation.J. Clin. Med.20231212413010.3390/jcm1212413037373823
    [Google Scholar]
  31. BlackL.M. LeverJ.M. AgarwalA. Renal inflammation and fibrosis: A double-edged sword.J. Histochem. Cytochem.201967966368110.1369/002215541985293231116067
    [Google Scholar]
  32. ChinnakotlaS. VergheseP. ChaversB. RheaultM.N. KirchnerV. DunnT. KashtanC. NevinsT. MauerM. PruettT. KimY. NajeraL. HannaC. KizilbashS. CookM. CisekL.J. GillinghamK. YangY. MatasA. NajarianJ. Outcomes and risk factors for graft Loss: Lessons learned from 1,056 pediatric kidney transplants at the university of Minnesota.J. Am. Coll. Surg.2017224447348610.1016/j.jamcollsurg.2016.12.02728254584
    [Google Scholar]
  33. WinterbergP.D. GarroR. Long-term outcomes of kidney transplantation in children.Pediatr Clin North Am.201966126928010.1016/j.pcl.2018.09.008
    [Google Scholar]
  34. BartonK.T. HalaniK. GalbiatiS. DandamudiR. HmielS.P. DharnidharkaV.R. Late first acute rejection in pediatric kidney transplantation: A North American pediatric renal trials and collaborative studies special study.Pediatr. Transplant.2021255e1395310.1111/petr.1395333350558
    [Google Scholar]
  35. ColvinR.B. CohenA.H. SaiontzC. BonsibS. BuickM. BurkeB. CarterS. CavalloT. HaasM. LindbladA. ManivelJ.C. NastC.C. SalomonD. WeaverC. WeissM. Evaluation of pathologic criteria for acute renal allograft rejection.J. Am. Soc. Nephrol.19978121930194110.1681/ASN.V81219309402096
    [Google Scholar]
  36. RoufosseC. SimmondsN. Clahsen-van GroningenM. HaasM. HenriksenK.J. HorsfieldC. LoupyA. MengelM. Perkowska-PtasińskaA. RabantM. RacusenL.C. SolezK. BeckerJ.U. A 2018 reference guide to the banff classification of renal allograft pathology.Transplantation2018102111795181410.1097/TP.000000000000236630028786
    [Google Scholar]
  37. PeruzziL. DeaglioS. Rejection markers in kidney transplantation: do new technologies help children?Pediatr. Nephrol.20233892939295510.1007/s00467‑022‑05872‑z36648536
    [Google Scholar]
  38. LeeD.M. AbecassisM.M. FriedewaldJ.J. RoseS. FirstM.R. Kidney graft surveillance biopsy utilization and Trends: Results from a survey of high-volume transplant centers.Transplant. Proc.202052103085308910.1016/j.transproceed.2020.04.181632576474
    [Google Scholar]
  39. GordilloR. MunshiR. MonroeE.J. ShivaramG.M. SmithJ.M. Benefits and risks of protocol biopsies in pediatric renal transplantation.Pediatr. Nephrol.201934459359810.1007/s00467‑018‑3959‑629725772
    [Google Scholar]
  40. KanzelmeyerN.K. LerchC. Ahlenstiel-GrunowT. BräsenJ.H. HaffnerD. PapeL. The role of protocol biopsies after pediatric kidney transplantation.Medicine (Baltimore)20209923e2052210.1097/MD.000000000002052232502003
    [Google Scholar]
  41. MoudgilA. MartzK. StableinD.M. PuliyandaD.P. Variables affecting estimated glomerular filtration rate after renal transplantation in children: A NAPRTCS data analysis.Pediatr. Transplant.201014228829410.1111/j.1399‑3046.2009.01222.x19686443
    [Google Scholar]
  42. BloomR.D. BrombergJ.S. PoggioE.D. BunnapradistS. LangoneA.J. SoodP. MatasA.J. MehtaS. MannonR.B. SharfuddinA. FischbachB. NarayananM. JordanS.C. CohenD. WeirM.R. HillerD. PrasadP. WoodwardR.N. GrskovicM. SninskyJ.J. YeeJ.P. BrennanD.C. Cell-free DNA and active rejection in kidney allografts.J. Am. Soc. Nephrol.20172872221223210.1681/ASN.201609103428280140
    [Google Scholar]
  43. NaesensM. LerutE. EmondsM.P. HerelixkaA. EvenepoelP. ClaesK. BammensB. SprangersB. MeijersB. JochmansI. MonbaliuD. PirenneJ. KuypersD.R.J. Proteinuria as a noninvasive marker for renal allograft histology and failure.J. Am. Soc. Nephrol.201627128129210.1681/ASN.201501006226152270
    [Google Scholar]
  44. PapeL. BeckerJ.U. ImmenschuhS. AhlenstielT. Acute and chronic antibody-mediated rejection in pediatric kidney transplantation.Pediatr. Nephrol.201530341742410.1007/s00467‑014‑2851‑224865478
    [Google Scholar]
  45. GinevriF. NoceraA. ComoliP. InnocenteA. CioniM. ParodiA. FontanaI. MagnascoA. NoccoA. TagliamaccoA. SementaA. CerioloP. GhioL. ZeccaM. CardilloM. GaribottoG. GhiggeriG.M. PoliF. Posttransplant de novo donor-specific hla antibodies identify pediatric kidney recipients at risk for late antibody-mediated rejection.Am. J. Transplant.201212123355336210.1111/j.1600‑6143.2012.04251.x22959074
    [Google Scholar]
  46. MichielsenL.A. WisseB.W. KamburovaE.G. VerhaarM.C. JoostenI. AllebesW.A. van der MeerA. HilbrandsL.B. BaasM.C. SpieringsE. HackC.E. van ReekumF.E. BotsM.L. DropA.C.A.D. PlaisierL. SeelenM.A.J. SandersJ.S.F. HepkemaB.G. LambeckA.J. BungenerL.B. RoozendaalC. TilanusM.G.J. VoorterC.E. WietenL. van DuijnhovenE.M. GelensM. ChristiaansM.H.L. van IttersumF.J. NurmohamedS.A. LardyN.M. SwelsenW. van der PantK.A. van der WeerdN.C. ten BergeI.J.M. BemelmanF.J. HoitsmaA. van der BoogP.J.M. de FijterJ.W. BetjesM.G.H. HeidtS. RoelenD.L. ClaasF.H. OttenH.G. van ZuilenA.D. A paired kidney analysis on the impact of pre-transplant anti-HLA antibodies on graft survival.Nephrol. Dial. Transplant.20193461056106310.1093/ndt/gfy31630365008
    [Google Scholar]
  47. PearlM.H. ZhangQ. Palma DiazM.F. GrottsJ. RossettiM. ElashoffD. GjertsonD.W. WengP. ReedE.F. Tsai ChambersE. AngiotensinI.I. Angiotensin II Type 1 receptor antibodies are associated with inflammatory cytokines and poor clinical outcomes in pediatric kidney transplantation.Kidney Int.201893126026910.1016/j.kint.2017.06.03428927645
    [Google Scholar]
  48. HalloranP.F. PereiraA.B. ChangJ. MatasA. PictonM. De FreitasD. BrombergJ. SerónD. SellarésJ. EineckeG. ReeveJ. Microarray diagnosis of antibody-mediated rejection in kidney transplant biopsies: an international prospective study (INTERCOM).Am. J. Transplant.201313112865287410.1111/ajt.1246524119109
    [Google Scholar]
  49. SteggerdaJ.A. PizzoH. GarrisonJ. ZhangX. HaasM. KimI.K. JordanS.C. PuliyandaD.P. Use of a donor-derived cell-free DNA assay to monitor treatment response in pediatric renal transplant recipients with allograft rejection.Pediatr. Transplant.2022264e1425810.1111/petr.1425835340104
    [Google Scholar]
  50. RoedderS. SigdelT. SalomonisN. HsiehS. DaiH. BestardO. MetesD. ZeeviA. GritschA. CheesemanJ. MacedoC. PeddyR. MedeirosM. VincentiF. AsherN. SalvatierraO. ShapiroR. KirkA. ReedE. SarwalM.M. The kSORT assay to detect renal transplant patients at high risk for acute rejection: Results of the multicenter AART study.PLoS Med.20141111e100175910.1371/journal.pmed.100175925386950
    [Google Scholar]
  51. CibrikD.M. WarnerR.L. KommareddiM. SongP. LuanF.L. JohnsonK.J. Identification of a protein signature in renal allograft rejection.Proteomics Clin. Appl.2013711-1283984910.1002/prca.20120003624323459
    [Google Scholar]
  52. LimJ.H. LeeC.H. KimK.Y. JungH.Y. ChoiJ.Y. ChoJ.H. ParkS.H. KimY.L. BaekM.C. ParkJ.B. KimY.H. ChungB.H. LeeS.H. KimC.D. Novel urinary exosomal biomarkers of acute T cell-mediated rejection in kidney transplant recipients: A cross-sectional study.PLoS One2018139e020420410.1371/journal.pone.020420430226858
    [Google Scholar]
  53. ZhangP.L. LiuM.L. Extracellular vesicles mediate cellular interactions in renal diseases-Novel views of intercellular communications in the kidney.J. Cell. Physiol.202123685482549410.1002/jcp.3026833432614
    [Google Scholar]
  54. McFaulM. VenturaC. EvansS. DundarH. RumplerM.J. McCloskeyC. LoweD. VlassovA.V. Urine exosome mRNA-based test for monitoring kidney allograft rejection: Effects of sample transportation and storage, and interference substances.World J. Methodol.202313549250110.5662/wjm.v13.i5.49238229935
    [Google Scholar]
  55. Blydt-HansenT.D. GibsonI.W. GaoA. DufaultB. HoJ. Elevated urinary CXCL10-to-creatinine ratio is associated with subclinical and clinical rejection in pediatric renal transplantation.Transplantation201599479780410.1097/TP.000000000000041925222013
    [Google Scholar]
  56. MocklerC. SharmaA. GibsonI.W. GaoA. WongA. HoJ. Blydt-HansenT.D. The prognostic value of urinary chemokines at 6 months after pediatric kidney transplantation.Pediatr. Transplant.2018225e1320510.1111/petr.1320529733487
    [Google Scholar]
  57. Blydt-HansenT.D. SharmaA. GibsonI.W. MandalR. WishartD.S. Urinary metabolomics for noninvasive detection of borderline and acute T cell-mediated rejection in children after kidney transplantation.Am. J. Transplant.201414102339234910.1111/ajt.1283725138024
    [Google Scholar]
  58. FrankeD. The diagnostic value of Doppler ultrasonography after pediatric kidney transplantation.Pediatr. Nephrol.20223771511152210.1007/s00467‑021‑05253‑y34477970
    [Google Scholar]
  59. IrshadA. AckermanS.J. CampbellA.S. AnisM. An overview of renal transplantation: Current practice and use of ultrasound.Semin. Ultrasound CT MR200930429831410.1053/j.sult.2009.03.00119711642
    [Google Scholar]
  60. NtouliaA. AnupindiS.A. BackS.J. DidierR.A. HwangM. JohnsonA.M. McCarvilleM.B. PapadopoulouF. PiskunowiczM. SellarsM.E. DargeK. Contrast-enhanced ultrasound: A comprehensive review of safety in children.Pediatr. Radiol.202151122161218010.1007/s00247‑021‑05223‑434716453
    [Google Scholar]
  61. ChhajerG. Kasi ArunachalamV. RamasamyR. MehtaP. CherianM. Elastography: A surrogate marker of renal allograft fibrosis – quantification by shear-wave technique.Pol. J. Radiol.20218615115610.5114/pjr.2021.10458233828625
    [Google Scholar]
  62. FrankeD. RenzD.M. MentzelH.J. Imaging after kidney transplantation in childhood and adolescence.Radiologie (Heidelb)2024641455310.1007/s00117‑023‑01249‑x38180539
    [Google Scholar]
  63. AmoabengK.A. LaurilaS. Juárez-OrozcoL.E. MarthinsenA.B.L. MoczulskiD. RebelosE. DadsonP. The utilization of positron emission tomography in the evaluation of renal health and disease.Clin. Transl. Imaging2022101596910.1007/s40336‑021‑00469‑2
    [Google Scholar]
  64. BalaniS.S. JensenC.J. KouriA.M. KizilbashS.J. Induction and maintenance immunosuppression in pediatric kidney transplantation—Advances and controversies.Pediatr. Transplant.2021257e1407710.1111/petr.1407734216190
    [Google Scholar]
  65. BrophyP.D. ThomasS.E. McBrydeK.D. BunchmanT.E. Comparison of polyclonal induction agents in pediatric renal transplantation.Pediatr. Transplant.20015317417810.1034/j.1399‑3046.2001.00054.x11422819
    [Google Scholar]
  66. AultB.H. HonakerM.R. Osama GaberA. JonesD.P. DuhartB.T.Jr PowellS.L. HaysD.W. WyattR.J. Short-term outcomes of thymoglobulin induction in pediatric renal transplant recipients.Pediatr. Nephrol.2002171081581810.1007/s00467‑002‑0942‑y12376809
    [Google Scholar]
  67. KhositsethS. MatasA. CookM.E. GillinghamK.J. ChaversB.M. Thymoglobulin versus ATGAM induction therapy in pediatric kidney transplant recipients: a single- center report.Transplantation200579895896310.1097/01.TP.0000158325.12837.A215849550
    [Google Scholar]
  68. AcharyaS. LamaS. KanigicherlaD.A. Anti-thymocyte globulin for treatment of T-cell-mediated allograft rejection.World J. Transplant.202313629930810.5500/wjt.v13.i6.29938174145
    [Google Scholar]
  69. FurukawaA. WiselS.A. TangQ. Impact of immune- modulatory drugs on regulatory T cell.Transplantation2016100112288230010.1097/TP.000000000000137927490409
    [Google Scholar]
  70. WarejkoJ.K. HmielS.P. Single-center experience in pediatric renal transplantation using thymoglobulin induction and steroid minimization.Pediatr. Transplant.201418881682110.1111/petr.1237425311592
    [Google Scholar]
  71. CrowsonC.N. ReedR.D. SheltonB.A. MacLennanP.A. LockeJ.E. Lymphocyte-depleting induction therapy lowers the risk of acute rejection in African American pediatric kidney transplant recipients.Pediatr. Transplant.2017211P. e1282310.1111/petr.12823
    [Google Scholar]
  72. CatibogC.J.M. MarbellaM.A.G. Outcome of renal transplantation in children given rabbit anti-thymocyte globulin (rATG) as induction therapy.Transplant. Proc.202254230731110.1016/j.transproceed.2021.12.01535067378
    [Google Scholar]
  73. ShangW. FengG. GaoS. WangZ. PangX. LiJ. LiuL. FengY. XieH. ZhangS. QiaoB. Reduced ATG-F dosage for induction in pediatric renal transplantation: A single-center experience.Pediatr. Transplant.201418324024510.1111/petr.1222424438440
    [Google Scholar]
  74. AshoorI.F. BeylR.A. GuptaC. JainA. KiesslingS.G. MoudgilA. PatelH.P. SherbotieJ. WeaverD.J.Jr ZahrR.S. DharnidharkaV.R. Low-dose antithymocyte globulin has no disadvantages to standard higher dose in pediatric kidney transplant recipients: Report from the pediatric nephrology research consortium.Kidney Int. Rep.202164995100210.1016/j.ekir.2021.01.00733912749
    [Google Scholar]
  75. EllisD. ShapiroR. MoritzM. VatsA. BasuA. TanH. KaylerL. JanoskyJ. StarzlT.E. Renal transplantation in children managed with lymphocyte depleting agents and low-dose maintenance tacrolimus monotherapy.Transplantation200783121563157010.1097/01.tp.0000266576.01935.ea17589338
    [Google Scholar]
  76. HilgerC. RiedhammerC. OrsóE. WeissertR. Effects of Alemtuzumab on (Auto)antigen-specific immune responses.Front. Immunol.20201156364510.3389/fimmu.2020.56364533133074
    [Google Scholar]
  77. von EssenM.R. ChowH.H. Holm HansenR. BuheltS. SellebjergF. Immune reconstitution following alemtuzumab therapy is characterized by exhausted T cells, increased regulatory control of proinflammatory T cells and reduced B cell control.Front. Immunol.202314124920110.3389/fimmu.2023.124920137744364
    [Google Scholar]
  78. BartoshS.M. KnechtleS.J. SollingerH.W. Campath-1H use in pediatric renal transplantation.Am. J. Transplant.2005561569157310.1111/j.1600‑6143.2005.00879.x15888071
    [Google Scholar]
  79. KaabakM.M. BabenkoN.N. SamsonovD.V. SandrikovV.A. MaschanA.A. ZokoevA.K. Alemtuzumab induction in pediatric kidney transplantation.Pediatr. Transplant.201317216817810.1111/petr.1204823442101
    [Google Scholar]
  80. Supe-MarkovinaK. MelquistJ.J. ConnollyD. DiCarloH.N. WaltzerW.C. FineR.N. DarrasF.S. Alemtuzumab with corticosteroid minimization for pediatric deceased donor renal transplantation: A seven-yr experience.Pediatr. Transplant.201418436336810.1111/petr.1225324712738
    [Google Scholar]
  81. TanH.P. DonaldsonJ. EllisD. MoritzM.L. BasuA. MorganC. VatsA.N. ErkanE. ShapiroR. Pediatric living donor kidney transplantation under alemtuzumab pretreatment and tacrolimus monotherapy: 4-year experience.Transplantation200886121725173110.1097/TP.0b013e3181903da719104412
    [Google Scholar]
  82. RiadS. JacksonS. ChinnakotlaS. VergheseP. Primary pediatric live-donor-kidney transplant-recipients’ outcomes by immunosuppression induction received in the United States.Pediatr. Transplant.2021255e1392510.1111/petr.1392533333629
    [Google Scholar]
  83. RiadS. JacksonS. ChinnakotlaS. VergheseP. Primary pediatric deceased-donor kidney transplant recipients outcomes by immunosuppression induction received in the United States.Pediatr. Transplant.2021255e1392810.1111/petr.1392833314638
    [Google Scholar]
  84. PuliyandaD.P. PizzoH. RodigN. SomersM.J.G. Early outcomes comparing induction with antithymocyte globulin vs. alemtuzumab in two steroid-avoidance protocols in pediatric renal transplantation.Pediatr. Transplant.2020243e1368510.1111/petr.1368532112514
    [Google Scholar]
  85. KimI.K. ChoiJ. VoA.A. KangA. PatelM. ToyodaM. MirochaJ. KamilE.S. CohenJ.L. LouieS. GaleraO. JordanS.C. PuliyandaD.P. Safety and efficacy of alemtuzumab induction in highly sensitized pediatric renal transplant recipients.Transplantation2017101488388910.1097/TP.000000000000141627495773
    [Google Scholar]
  86. López-AbenteJ. Martínez-BonetM. Bernaldo-de-QuirósE. CaminoM. GilN. PanaderoE. Gil-JaurenaJ.M. ClementeM. UrschelS. WestL. PionM. Correa-RochaR. Basiliximab impairs regulatory T cell (TREG) function and could affect the short-term graft acceptance in children with heart transplantation.Sci. Rep.202111182710.1038/s41598‑020‑80567‑933436905
    [Google Scholar]
  87. LeeH. ParkS.H. ShinE.C. IL-15 in T-cell responses and immunopathogenesis.Immune Netw.2024241e1110.4110/in.2024.24.e1138455459
    [Google Scholar]
  88. OffnerG. ToenshoffB. HöckerB. KraussM. BullaM. CochatP. FehrenbachH. FischerW. FoulardM. HoppeB. HoyerP.F. JungraithmayrT.C. KlausG. LattaK. LeichterH. MihatschM.J. MisselwitzJ. MontoyaC. Müller-WiefelD.E. NeuhausT.J. PapeL. QuerfeldU. PlankC. SchwarkeD. WygodaS. ZimmerhacklL.B. Efficacy and safety of basiliximab in pediatric renal transplant patients receiving cyclosporine, mycophenolate mofetil, and steroids.Transplantation20088691241124810.1097/TP.0b013e318188af1519005406
    [Google Scholar]
  89. WebbN.J.A. ProkuratS. VondrakK. WatsonA.R. HughesD.A. MarksS.D. MoghalN.E. FitzpatrickM.M. MilfordD.V. SaleemM.A. JonesC.A. FrimanS. Van Damme-LombaertsR. JanssenF. HamerC. RhodesS. Multicentre prospective randomised trial of tacrolimus, azathioprine and prednisolone with or without basiliximab: two-year follow-up data.Pediatr. Nephrol.200924117718210.1007/s00467‑008‑0931‑x18688657
    [Google Scholar]
  90. GrendaR. WatsonA. VondrakK. WebbN.J.A. BeattieJ. FitzpatrickM. SaleemM.A. TrompeterR. MilfordD.V. MoghalN.E. HughesD. PernerF. FrimanS. Van Damme-LombaertsR. JanssenF. A prospective, randomized, multicenter trial of tacrolimus-based therapy with or without basiliximab in pediatric renal transplantation.Am. J. Transplant.2006671666167210.1111/j.1600‑6143.2006.01367.x16827869
    [Google Scholar]
  91. MinchamC.M. WongG. Teixeira-PintoA. KennedyS. AlexanderS. LarkinsN. LimW.H. Induction therapy, rejection, and graft outcomes in pediatric and adolescent kidney transplant recipients.Transplantation201710192146215110.1097/TP.000000000000157728832451
    [Google Scholar]
  92. Martínez-MartínezS. RedondoJ. Inhibitors of the calcineurin/NFAT pathway.Curr. Med. Chem.2004118997100710.2174/092986704345557615078162
    [Google Scholar]
  93. LeeH. MyoungH. KimS.M. Review of two immunosuppressants: Tacrolimus and cyclosporine.J. Korean Assoc. Oral Maxillofac. Surg.202349631132310.5125/jkaoms.2023.49.6.31138155084
    [Google Scholar]
  94. TrompeterR. FillerG. WebbN.J.A. WatsonA.R. MilfordD.V. TydenG. GrendaR. JandaJ. HughesD. EhrichJ.H.H. KlareB. ZacchelloG. Bjorn BrekkeI. McGrawM. PernerF. GhioL. BalzarE. FrimanS. GusmanoR. StolpeJ. Randomized trial of tacrolimus versus cyclosporin microemulsion in renal transplantation.Pediatr. Nephrol.200217314114910.1007/s00467‑001‑0795‑911956848
    [Google Scholar]
  95. FillerG. WebbN.J.A. MilfordD.V. WatsonA.R. GellermannJ. TydenG. GrendaR. VondrakK. HughesD. OffnerG. GriebelM. BrekkeI.B. McGrawM. BalzarE. FrimanS. TrompeterR. Four-year data after pediatric renal transplantation: A randomized trial of tacrolimus vs. cyclosporin microemulsion.Pediatr. Transplant.20059449850310.1111/j.1399‑3046.2005.00334.x16048603
    [Google Scholar]
  96. NeuA.M. HoP.L. FineR.N. FurthS.L. FivushB.A. Tacrolimus vs. cyclosporine A as primary immunosuppression in pediatric renal transplantation: A NAPRTCS study.Pediatr. Transplant.20037321722210.1034/j.1399‑3046.2003.00079.x12756047
    [Google Scholar]
  97. GoldsmithD. CarreyE.A. EdburyS. SmolenskiR.T. JagodzinskiP. SimmondsH.A. Mycophenolate mofetil, an inhibitor of inosine monophosphate dehydrogenase, causes a paradoxical elevation of GTP in erythrocytes of renal transplant patients.Clin. Sci. (Lond.)20041071636810.1042/CS2003033114723604
    [Google Scholar]
  98. TsesmetzisN. PaulinC.B.J. RuddS.G. HeroldN. Nucleobase and nucleoside analogues: Resistance and re-sensitisation at the level of pharmacokinetics, pharmacodynamics and metabolism.Cancers (Basel)201810724010.3390/cancers1007024030041457
    [Google Scholar]
  99. WagnerM. EarleyA.K. WebsterA.C. SchmidC.H. BalkE.M. UhligK. Mycophenolic acid versus azathioprine as primary immunosuppression for kidney transplant recipients.Cochrane Libr.2015201512CD00774610.1002/14651858.CD007746.pub226633102
    [Google Scholar]
  100. JungraithmayrT.C. WiesmayrS. StaskewitzA. KirsteG. BullaM. FehrenbachH. DippellJ. GreinerC. GriebelM. HelmchenU. KlausG. LeichterH.E. MihatschM.J. MichalkD.V. MisselwitzJ. PlankC. TönshoffB. WeberL.T. ZimmerhacklL.B. Five-year outcome in pediatric patients with mycophenolate mofetil-based renal transplantation.Transplantation200783790090510.1097/01.tp.0000258587.70166.8717460560
    [Google Scholar]
  101. CransbergK. Marlies CornelissenE.A. DavinJ.C. Van HoeckK.J.M. LilienM.R. StijnenT. NautaJ. Improved outcome of pediatric kidney transplantations in the Netherlands – Effect of the introduction of mycophenolate mofetil?Pediatr. Transplant.20059110411110.1111/j.1399‑3046.2005.00271.x15667622
    [Google Scholar]
  102. HöckerB. WeberL.T. BunchmanT. RashfordM. TönshoffB. Mycophenolate mofetil suspension in pediatric renal transplantation: Three-year data from the tricontinental trial.Pediatr. Transplant.20059450451110.1111/j.1399‑3046.2005.00335.x16048604
    [Google Scholar]
  103. Al-MowainaS. Azathioprine versus mycophenolate mofetil in combination with tacrolimus and steroids maintenance in pediatric kidney transplantation.Transplantation2018102S83910.1097/01.tp.0000543897.16577.91
    [Google Scholar]
  104. AliE.S. MitraK. AkterS. RamproshadS. MondalB. KhanI.N. IslamM.T. Sharifi-RadJ. CalinaD. ChoW.C. Recent advances and limitations of mTOR inhibitors in the treatment of cancer.Cancer Cell Int.202222128410.1186/s12935‑022‑02706‑836109789
    [Google Scholar]
  105. HarmonW. MeyersK. IngelfingerJ. McDonaldR. McIntoshM. HoM. SpaneasL. PalmerJ.A. HawkM. GeehanC. TinckamK. HancockW.W. SayeghM.H. Safety and efficacy of a calcineurin inhibitor avoidance regimen in pediatric renal transplantation.J. Am. Soc. Nephrol.20061761735174510.1681/ASN.200601004916687625
    [Google Scholar]
  106. HöckerB. FenebergR. KöpfS. WeberL.T. WaldherrR. WühlE. TönshoffB. SRL-based immunosuppression vs. CNI minimization in pediatric renal transplant recipients with chronic CNI nephrotoxicity.Pediatr. Transplant.200610559360110.1111/j.1399‑3046.2006.00526.x16856996
    [Google Scholar]
  107. TönshoffB. EttengerR. Dello StrologoL. MarksS.D. PapeL. Tedesco-SilvaH.Jr BjerreA. ChristianM. MeierM. MartzloffE.D. RauerB. NgJ. LopezP. Early conversion of pediatric kidney transplant patients to everolimus with reduced tacrolimus and steroid elimination: Results of a randomized trial.Am. J. Transplant.201919381182210.1111/ajt.1508130125462
    [Google Scholar]
  108. TönshoffB. Tedesco-SilvaH. EttengerR. ChristianM. BjerreA. Dello StrologoL. MarksS.D. PapeL. VeldandiU. LopezP. CousinM. PandeyP. MeierM. Three-year outcomes from the CRADLE study in de novo pediatric kidney transplant recipients receiving everolimus with reduced tacrolimus and early steroid withdrawal.Am. J. Transplant.202121112313710.1111/ajt.1600532406111
    [Google Scholar]
  109. SnanoudjR. FrangiéC. DeroureB. FrançoisH. CréputC. BeaudreuilS. DürrbachA. CharpentierB. The blockade of T-cell co-stimulation as a therapeutic stratagem for immunosuppression: Focus on belatacept.Biologics20071320321319707331
    [Google Scholar]
  110. van der ZwanM. HesselinkD.A. van den HoogenM.W.F. BaanC.C. Costimulation blockade in kidney transplant recipients.Drugs2020801334610.1007/s40265‑019‑01226‑631749062
    [Google Scholar]
  111. LerchC. KanzelmeyerN.K. Ahlenstiel-GrunowT. FroedeK. KreuzerM. DrubeJ. VerboomM. PapeL. Belatacept after kidney transplantation in adolescents: A retrospective study.Transpl. Int.201730549450110.1111/tri.1293228166398
    [Google Scholar]
  112. BlewK.H. ChuaA. ForemanJ. GbadegesinR. JacksonA. NagarajS. SadunR. WigfallD. KirkA.D. ChambersE.T. Tailored use of belatacept in adolescent kidney transplantation.Am. J. Transplant.202020388488810.1111/ajt.1561131550421
    [Google Scholar]
  113. HöckerB. WeberL.T. FenebergR. DrubeJ. JohnU. FehrenbachH. PohlM. ZimmeringM. FründS. KlausG. WühlE. TönshoffB. Improved growth and cardiovascular risk after late steroid withdrawal: 2-year results of a prospective, randomised trial in paediatric renal transplantation.Nephrol. Dial. Transplant.201025261762410.1093/ndt/gfp50619793929
    [Google Scholar]
  114. ZhangH. ZhengY. LiuL. FuQ. LiJ. HuangQ. LiuH. DengR. WangC. Steroid avoidance or withdrawal regimens in paediatric kidney transplantation: A meta-analysis of randomised controlled trials.PLoS One2016113e014652310.1371/journal.pone.014652326991793
    [Google Scholar]
  115. CooperJ.E. Evaluation and treatment of acute rejection in kidney allografts.Clin. J. Am. Soc. Nephrol.202015343043810.2215/CJN.1199101932066593
    [Google Scholar]
  116. SchinstockC.A. MannonR.B. BuddeK. ChongA.S. HaasM. KnechtleS. LefaucheurC. MontgomeryR.A. NickersonP. TulliusS.G. AhnC. AskarM. CrespoM. ChadbanS.J. FengS. JordanS.C. ManK. MengelM. MorrisR.E. O’DohertyI. OzdemirB.H. SeronD. TamburA.R. TanabeK. TaupinJ.L. O’ConnellP.J. Recommended treatment for antibody-mediated rejection after kidney transplantation: The 2019 expert consensus from the transplantion society working group.Transplantation2020104591192210.1097/TP.000000000000309531895348
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673333693240806160544
Loading
/content/journals/cmc/10.2174/0109298673333693240806160544
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test