Skip to content
2000
Volume 32, Issue 22
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The proprotein convertase subtilisin/kexin type 9 (PCSK9) belongs to a member of the proprotein convertase (PC) family, which is mainly secreted by the liver and plays a central role in lipid metabolism. Furthermore, PCSK9 plays a multifunctional role in promoting the inflammatory response, inducing cell apoptosis and pyroptosis and affecting tumor homeostasis. The brain is the organ with the richest lipid content. Incidentally, PCSK9 increased in many brain diseases, including brain injury and Alzheimer’s disease (AD). Consequently, the relationship between PCSK9 and brain diseases has attracted increasing research interest. Amyloid beta (Aβ) accumulation is the central and initial event in the pathogenesis of AD. This study focuses on the effects of PCSK9 on Aβ accumulation in the brain multiple modalities to explore the potential role of PCSK9 in AD, which is characterized by progressive loss of brain cells by increasing Aβ accumulation. The study also explores the new mechanism by which PCSK9 is involved in the pathogenesis of AD, providing interesting and innovative guidance for the future of PCSK9-targeted therapy for AD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673269288231123095215
2025-07-01
2025-10-26
Loading full text...

Full text loading...

References

  1. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  2. Serrano-PozoA. FroschM.P. MasliahE. HymanB.T. Neuropathological alterations in Alzheimer disease.Cold Spring Harb. Perspect. Med.201111a00618910.1101/cshperspect.a00618922229116
    [Google Scholar]
  3. LengK. LiE. EserR. PiergiesA. SitR. TanM. NeffN. LiS.H. RodriguezR.D. SuemotoC.K. LeiteR.E.P. EhrenbergA.J. PasqualucciC.A. SeeleyW.W. SpinaS. HeinsenH. GrinbergL.T. KampmannM. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease.Nat. Neurosci.202124227628710.1038/s41593‑020‑00764‑733432193
    [Google Scholar]
  4. TiwariS. AtluriV. KaushikA. YndartA. NairM. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics.Int. J. Nanomedicine2019145541555410.2147/IJN.S20049031410002
    [Google Scholar]
  5. HardyJ.A. HigginsG.A. Alzheimer’s disease: The amyloid cascade hypothesis.Science1992256505418418510.1126/science.15660671566067
    [Google Scholar]
  6. HardyJ. SelkoeD.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics.Science2002297558035335610.1126/science.107299412130773
    [Google Scholar]
  7. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.20160621027025652
    [Google Scholar]
  8. TcwJ. GoateA.M. Genetics of β-Amyloid Precursor Protein in Alzheimer’s Disease.Cold Spring Harb. Perspect. Med.201776a02453910.1101/cshperspect.a02453928003277
    [Google Scholar]
  9. SoldanoA. HassanB.A. Beyond pathology: APP, brain development and Alzheimer’s disease.Curr. Opin. Neurobiol.201427616710.1016/j.conb.2014.02.00324632309
    [Google Scholar]
  10. WangL. HouH. ZiD. HabibA. TanJ. SawmillerD. Novel apoE receptor mimetics reduce LPS-induced microglial inflammation.Am. J. Transl. Res.20191185076508531497223
    [Google Scholar]
  11. SilverbergG.D. MayoM. SaulT. RubensteinE. McGuireD. Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis.Lancet Neurol.20032850651110.1016/S1474‑4422(03)00487‑312878439
    [Google Scholar]
  12. WangY.J. ZhouH.D. ZhouX.F. Clearance of amyloid-beta in Alzheimer’s disease: Progress, problems and perspectives.Drug Discov. Today20061119-2093193810.1016/j.drudis.2006.08.00416997144
    [Google Scholar]
  13. IliffJ.J. WangM. LiaoY. PloggB.A. PengW. GundersenG.A. BenvenisteH. VatesG.E. DeaneR. GoldmanS.A. NagelhusE.A. NedergaardM. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.Sci. Transl. Med.20124147147ra11110.1126/scitranslmed.300374822896675
    [Google Scholar]
  14. KressB.T. IliffJ.J. XiaM. WangM. WeiH.S. ZeppenfeldD. XieL. KangH. XuQ. LiewJ.A. PlogB.A. DingF. DeaneR. NedergaardM. Impairment of paravascular clearance pathways in the aging brain.Ann. Neurol.201476684586110.1002/ana.2427125204284
    [Google Scholar]
  15. Tarasoff-ConwayJ.M. CarareR.O. OsorioR.S. GlodzikL. ButlerT. FieremansE. AxelL. RusinekH. NicholsonC. ZlokovicB.V. FrangioneB. BlennowK. MénardJ. ZetterbergH. WisniewskiT. de LeonM.J. Clearance systems in the brain—implications for Alzheimer disease.Nat. Rev. Neurol.201511845747010.1038/nrneurol.2015.11926195256
    [Google Scholar]
  16. ShibataM. YamadaS. KumarS.R. CaleroM. BadingJ. FrangioneB. HoltzmanD.M. MillerC.A. StricklandD.K. GhisoJ. ZlokovicB.V. Clearance of Alzheimer’s amyloid-β1-40 peptide from brain by LDL receptor–related protein-1 at the blood-brain barrier.J. Clin. Invest.2000106121489149910.1172/JCI1049811120756
    [Google Scholar]
  17. ChengY. TianD.Y. WangY.J. Peripheral clearance of brain-derived Aβ in Alzheimer’s disease: Pathophysiology and therapeutic perspectives.Transl. Neurodegener.2020911610.1186/s40035‑020‑00195‑132381118
    [Google Scholar]
  18. CaiZ. QiaoP.-F. WanC.-Q. CaiM. ZhouN.-K. LiQ. Role of blood-brain barrier in Alzheimer’s 3 disease.J Alzheimers Dis.201863412231234
    [Google Scholar]
  19. ZhangG.S. TianY. HuangJ.Y. TaoR.R. LiaoM.H. LuY.M. YeW.F. WangR. FukunagaK. LouY.J. HanF. The γ-secretase blocker DAPT reduces the permeability of the blood-brain barrier by decreasing the ubiquitination and degradation of occludin during permanent brain ischemia.CNS Neurosci. Ther.2013191536010.1111/cns.1203223171401
    [Google Scholar]
  20. AtwalJ.K. ChenY. ChiuC. MortensenD.L. MeilandtW.J. LiuY. HeiseC.E. HoyteK. LukW. LuY. PengK. WuP. RougeL. ZhangY. LazarusR.A. Scearce-LevieK. WangW. WuY. Tessier-LavigneM. WattsR.J. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo.Sci. Transl. Med.201138484ra4310.1126/scitranslmed.300225421613622
    [Google Scholar]
  21. StorckS.E. MeisterS. NahrathJ. MeißnerJ.N. SchubertN. Di SpiezioA. BachesS. VandenbrouckeR.E. BouterY. PrikulisI. KorthC. WeggenS. HeimannA. SchwaningerM. BayerT.A. PietrzikC.U. Endothelial LRP1 transports amyloid-β1–42 across the blood-brain barrier.J. Clin. Invest.2015126112313610.1172/JCI8110826619118
    [Google Scholar]
  22. DeaneR. WuZ. SagareA. DavisJ. Du YanS. HammK. XuF. ParisiM. LaRueB. HuH.W. SpijkersP. GuoH. SongX. LentingP.J. Van NostrandW.E. ZlokovicB.V. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms.Neuron200443333334410.1016/j.neuron.2004.07.01715294142
    [Google Scholar]
  23. DeaneR. Du YanS. SubmamaryanR.K. LaRueB. JovanovicS. HoggE. WelchD. MannessL. LinC. YuJ. ZhuH. GhisoJ. FrangioneB. SternA. SchmidtA.M. ArmstrongD.L. ArnoldB. LiliensiekB. NawrothP. HofmanF. KindyM. SternD. ZlokovicB. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain.Nat. Med.20039790791310.1038/nm89012808450
    [Google Scholar]
  24. WangY. ZhouY. JiangL. WangS. ZhuL. ZhangS. YangH. HeQ. LiuL. XieY. LiangX. TangJ. ChaoF. TangY. Long-term voluntary exercise inhibited AGE/RAGE and microglial activation and reduced the loss of dendritic spines in the hippocampi of APP/PS1 transgenic mice.Exp. Neurol.202336311437110.1016/j.expneurol.2023.11437136871860
    [Google Scholar]
  25. YanS.D. ChenX. FuJ. ChenM. ZhuH. RoherA. SlatteryT. ZhaoL. NagashimaM. MorserJ. MigheliA. NawrothP. SternD. SchmidtA.M. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease.Nature1996382659368569110.1038/382685a08751438
    [Google Scholar]
  26. MaQ. ZhaoZ. SagareA.P. WuY. WangM. OwensN.C. VergheseP.B. HerzJ. HoltzmanD.M. ZlokovicB.V. Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism.Mol. Neurodegener.20181315710.1186/s13024‑018‑0286‑030340601
    [Google Scholar]
  27. DonahueJ.E. FlahertyS.L. JohansonC.E. DuncanJ.A.III SilverbergG.D. MillerM.C. TavaresR. YangW. WuQ. SaboE. HovanesianV. StopaE.G. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease.Acta Neuropathol.2006112440541510.1007/s00401‑006‑0115‑316865397
    [Google Scholar]
  28. XiangY. BuX.L. LiuY.H. ZhuC. ShenL.L. JiaoS.S. ZhuX.Y. GiuntaB. TanJ. SongW.H. ZhouH.D. ZhouX.F. WangY.J. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease.Acta Neuropathol.2015130448749910.1007/s00401‑015‑1477‑126363791
    [Google Scholar]
  29. TianD.Y. ChengY. ZhuangZ.Q. HeC.Y. PanQ.G. TangM.Z. HuX.L. ShenY.Y. WangY.R. ChenS.H. SunH.L. SunP.Y. YuZ.Y. FanD.Y. BuX.L. TanC.R. ZengG.H. WangJ. ZhaoH.W. WangY.J. Physiological clearance of amyloid-beta by the kidney and its therapeutic potential for Alzheimer’s disease.Mol. Psychiatry202126106074608210.1038/s41380‑021‑01073‑633828237
    [Google Scholar]
  30. ChengY. HeC.Y. TianD.Y. ChenS.H. RenJ.R. SunH.L. XuM.Y. TanC.R. FanD.Y. JianJ.M. SunP.Y. ZengG.H. ShenY.Y. ShiA.Y. JinW.S. BuX.L. LiuH.M. XuY.M. WangJ. WangY.J. Physiological β-amyloid clearance by the liver and its therapeutic potential for Alzheimer’s disease.Acta Neuropathol.2023145671773110.1007/s00401‑023‑02559‑z36964213
    [Google Scholar]
  31. BuscheM.A. GrienbergerC. KeskinA.D. SongB. NeumannU. StaufenbielM. FörstlH. KonnerthA. Decreased amyloid-β and increased neuronal hyperactivity by immunotherapy in Alzheimer’s models.Nat. Neurosci.201518121725172710.1038/nn.416326551546
    [Google Scholar]
  32. LiuW.W. ToddS. CoulsonD.T.R. Brent IrvineG. Peter PassmoreA. McGuinnessB. McConvilleM. CraigD. JohnstonJ.A. A novel reciprocal and biphasic relationship between membrane cholesterol and β-secretase activity in SH-SY5Y cells and in human platelets.J. Neurochem.2009108234134910.1111/j.1471‑4159.2008.05753.x19094065
    [Google Scholar]
  33. SeidahN.G. BenjannetS. WickhamL. MarcinkiewiczJ. JasminS.B. StifaniS. BasakA. PratA. ChrétienM. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation.Proc. Natl. Acad. Sci. USA2003100392893310.1073/pnas.033550710012552133
    [Google Scholar]
  34. ZimettiF. CaffarraP. RondaN. FavariE. AdorniM.P. ZanottiI. BerniniF. BaroccoF. SpallazziM. GalimbertiD. RicciC. RuscicaM. CorsiniA. FerriN. Increased PCSK9 cerebrospinal fluid concentrations in alzheimer’s disease.J. Alzheimers Dis.201655131532010.3233/JAD‑16041127662294
    [Google Scholar]
  35. PicardC. PoirierA. BélangerS. LabontéA. AuldD. PoirierJ. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in Alzheimer’s disease: A genetic and proteomic multi-cohort study.PLoS One2019148e022025410.1371/journal.pone.022025431437157
    [Google Scholar]
  36. ZhaoX.S. WuQ. PengJ. PanL.H. RenZ. LiuH.T. JiangZ.S. WangG.X. TangZ.H. LiuL.S. Hyperlipidemia-induced apoptosis of hippocampal neurons in apoE(−/−) mice may be associated with increased PCSK9 expression.Mol. Med. Rep.201715271271810.3892/mmr.2016.605528000893
    [Google Scholar]
  37. LiuL.S. BaiX.Q. GaoY. WuQ. RenZ. LiQ. PanL.H. HeN.Y. PengJ. TangZ.H. PCSK9 Promotes oxLDL-Induced PC12 Cell Apoptosis Through the Bcl-2/Bax-Caspase 9/3 Signaling Pathway.J. Alzheimers Dis.201757372373410.3233/JAD‑16113628304296
    [Google Scholar]
  38. WangJ. GuB.J. MastersC.L. WangY.J. A systemic view of Alzheimer disease — insights from amyloid-β metabolism beyond the brain.Nat. Rev. Neurol.2017131061262310.1038/nrneurol.2017.11128960209
    [Google Scholar]
  39. MontagneA. ZhaoZ. ZlokovicB.V. Alzheimer’s disease: A matter of blood–brain barrier dysfunction?J. Exp. Med.2017214113151316910.1084/jem.2017140629061693
    [Google Scholar]
  40. HuangZ. WongL.W. SuY. HuangX. WangN. ChenH. YiC. Blood-brain barrier integrity in the pathogenesis of Alzheimer’s disease.Front. Neuroendocrinol.20205910085710.1016/j.yfrne.2020.10085732781194
    [Google Scholar]
  41. GaliC.C. Fanaee-DaneshE. Zandl-LangM. AlbrecherN.M. Tam-AmersdorferC. StrackeA. SachdevV. ReichmannF. SunY. AvdiliA. ReiterM. KratkyD. HolzerP. LassA. KandimallaK.K. PanzenboeckU. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice.Mol. Cell. Neurosci.20199910339010.1016/j.mcn.2019.10339031276749
    [Google Scholar]
  42. CanuelM. SunX. AsselinM.C. ParamithiotisE. PratA. SeidahN.G. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1).PLoS One201385e6414510.1371/journal.pone.006414523675525
    [Google Scholar]
  43. HortonJ. CohenJ. HobbsH. Molecular biology of PCSK9: its role in LDL metabolism.Trends Biochem. Sci.2007322717710.1016/j.tibs.2006.12.00817215125
    [Google Scholar]
  44. PoirierS. MayerG. BenjannetS. BergeronE. MarcinkiewiczJ. NassouryN. MayerH. NimpfJ. PratA. SeidahN.G. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2.J. Biol. Chem.200828342363237210.1074/jbc.M70809820018039658
    [Google Scholar]
  45. MazuraA.D. OhlerA. StorckS.E. KurtykaM. ScharfenbergF. WeggenS. Becker-PaulyC. PietrzikC.U. PCSK9 acts as a key regulator of Aβ clearance across the blood–brain barrier.Cell. Mol. Life Sci.202279421210.1007/s00018‑022‑04237‑x35344086
    [Google Scholar]
  46. BuX-L. XiangY. JinW-S. WangJ. ShenL-L. HuangZ-L. ZhangK. LiuY-H. ZengF. LiuJ-H. SunH-L. ZhuangZ-Q. ChenS-H. YaoX-Q. GiuntaB. ShanY-C. TanJ. ChenX-W. DongZ-F. ZhouH-D. ZhouX-F. SongW. WangY-J. Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies.Mol. Psychiatry20182391948195610.1038/mp.2017.20429086767
    [Google Scholar]
  47. HW. FC. YfD. YL. MnR. MH. VS. Targeted Inhibition of RAGE reduces amyloid-β influx across the blood-brain barrier and improves cognitive deficits in Db/Db Mice.Neuropharmacology2018131
    [Google Scholar]
  48. HeJ.T. ZhaoX. XuL. MaoC.Y. Vascular risk factors and alzheimer’s disease: Blood-brain barrier disruption, metabolic syndromes, and molecular links.J. Alzheimers Dis.2020731395810.3233/JAD‑19076431815697
    [Google Scholar]
  49. BellR.D. ZlokovicB.V. Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease.Acta Neuropathol.2009118110311310.1007/s00401‑009‑0522‑319319544
    [Google Scholar]
  50. de la TorreJ.C. Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics.Lancet Neurol.20043318419010.1016/S1474‑4422(04)00683‑014980533
    [Google Scholar]
  51. Apátiga-PérezR. Soto-RojasL.O. Campa-CórdobaB.B. Luna-ViramontesN.I. CuevasE. Villanueva-FierroI. Ontiveros-TorresM.A. Bravo-MuñozM. Flores-RodríguezP. Garcés-RamirezL. de la CruzF. Montiel-SosaJ.F. Pacheco-HerreroM. Luna-MuñozJ. Neurovascular dysfunction and vascular amyloid accumulation as early events in Alzheimer’s disease.Metab. Brain Dis.2022371395010.1007/s11011‑021‑00814‑434406560
    [Google Scholar]
  52. YamazakiY. ShinoharaM. ShinoharaM. YamazakiA. MurrayM.E. LiesingerA.M. HeckmanM.G. LesserE.R. ParisiJ.E. PetersenR.C. DicksonD.W. KanekiyoT. BuG. Selective loss of cortical endothelial tight junction proteins during Alzheimer’s disease progression.Brain201914241077109210.1093/brain/awz01130770921
    [Google Scholar]
  53. WuC.Y. TangZ.H. JiangL. LiX.F. JiangZ.S. LiuL.S. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax–caspase9–caspase3 pathway.Mol. Cell. Biochem.20123591-234735810.1007/s11010‑011‑1028‑621847580
    [Google Scholar]
  54. RobertsK.F. ElbertD.L. KastenT.P. PattersonB.W. SigurdsonW.C. ConnorsR.E. OvodV. MunsellL.Y. MawuenyegaK.G. Miller-ThomasM.M. MoranC.J. CrossD.T.III DerdeynC.P. BatemanR.J. Amyloid-β efflux from the central nervous system into the plasma.Ann. Neurol.201476683784410.1002/ana.2427025205593
    [Google Scholar]
  55. ClarkeJ.R. RibeiroF.C. FrozzaR.L. De FeliceF.G. LourencoM.V. Metabolic dysfunction in Alzheimer’s Disease: From basic neurobiology to clinical approaches.J. Alzheimers Dis.201864s1S405S42610.3233/JAD‑17991129562518
    [Google Scholar]
  56. ChenZ. ZhongC. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies.Prog. Neurobiol.2013108214310.1016/j.pneurobio.2013.06.00423850509
    [Google Scholar]
  57. RobertJ. ButtonE.B. YuenB. GilmourM. KangK. BahrabadiA. StukasS. ZhaoW. KulicI. WellingtonC.L. Clearance of beta-amyloid is facilitated by apolipoprotein E and circulating high-density lipoproteins in bioengineered human vessels.eLife20176e2959510.7554/eLife.2959528994390
    [Google Scholar]
  58. TamakiC. OhtsukiS. IwatsuboT. HashimotoT. YamadaK. YabukiC. TerasakiT. Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver.Pharm. Res.20062371407141610.1007/s11095‑006‑0208‑716779710
    [Google Scholar]
  59. SehgalN. GuptaA. ValliR.K. JoshiS.D. MillsJ.T. HamelE. KhannaP. JainS.C. ThakurS.S. RavindranathV. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver.Proc. Natl. Acad. Sci. USA201210993510351510.1073/pnas.111220910922308347
    [Google Scholar]
  60. KoffR.S. SchimmelE.M. Energy Metabolism: Tissue determinants and cellular corollaries.HepatologyNew York: Raven Press1992172347347
    [Google Scholar]
  61. GhisoJ. CaleroM. MatsubaraE. GovernaleS. ChubaJ. BeavisR. WisniewskiT. FrangioneB. Alzheimer’s soluble amyloid β is a normal component of human urine.FEBS Lett.1997408110510810.1016/S0014‑5793(97)00400‑69180278
    [Google Scholar]
  62. SakaiK. SendaT. HataR. KurodaM. HasegawaM. KatoM. AbeM. KawaguchiK. NakaiS. HikiY. YuzawaY. KitaguchiN. Patients that have undergone hemodialysis exhibit lower amyloid deposition in the brain: evidence supporting a therapeutic strategy for Alzheimer’s disease by removal of blood amyloid.J. Alzheimers Dis.2016514997100210.3233/JAD‑15113926923028
    [Google Scholar]
  63. LiuY.H. XiangY. WangY.R. JiaoS.S. WangQ.H. BuX.L. ZhuC. YaoX.Q. GiuntaB. TanJ. ZhouH.D. WangY.J. Association between serum amyloid-beta and renal functions: Implications for roles of kidney in amyloid-beta clearance.Mol. Neurobiol.201552111511910.1007/s12035‑014‑8854‑y25119777
    [Google Scholar]
  64. EtgenT. ChoncholM. FörstlH. SanderD. Chronic kidney disease and cognitive impairment: A systematic review and meta-analysis.Am. J. Nephrol.201235547448210.1159/00033813522555151
    [Google Scholar]
  65. PavlakouP. LiberopoulosE. DounousiE. ElisafM. PCSK9 in chronic kidney disease.Int. Urol. Nephrol.20174961015102410.1007/s11255‑017‑1505‑228084558
    [Google Scholar]
  66. MorenaM. Le MayC. ChenineL. ArnaudL. DupuyA.M. PichelinM. Leray-MoraguesH. ChalabiL. CanaudB. CristolJ.P. CariouB. Plasma PCSK9 concentrations during the course of nondiabetic chronic kidney disease: Relationship with glomerular filtration rate and lipid metabolism.J. Clin. Lipidol.2017111879310.1016/j.jacl.2016.10.00528391915
    [Google Scholar]
  67. ChenM. InestrosaN.C. RossG.S. FernandezH.L. Platelets are the primary source of amyloid beta-peptide in human blood.Biochem. Biophys. Res. Commun.199521319610310.1006/bbrc.1995.21037639768
    [Google Scholar]
  68. EvinG. LiQ-X. Platelets and Alzheimer’s disease: Potential of APP as a biomarker.World J. Psychiatry20122610211310.5498/wjp.v2.i6.10224175176
    [Google Scholar]
  69. QiZ. HuL. ZhangJ. YangW. LiuX. JiaD. YaoZ. ChangL. PanG. ZhongH. LuoX. YaoK. SunA. QianJ. DingZ. GeJ. PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) enhances platelet activation, thrombosis, and myocardial infarct expansion by binding to platelet CD36.Circulation20211431456110.1161/CIRCULATIONAHA.120.04629032988222
    [Google Scholar]
  70. XiongH. CallaghanD. JonesA. WalkerD.G. LueL.F. BeachT.G. SueL.I. WoulfeJ. XuH. StanimirovicD.B. ZhangW. Cholesterol retention in Alzheimer’s brain is responsible for high β- and γ-secretase activities and Aβ production.Neurobiol. Dis.200829342243710.1016/j.nbd.2007.10.00518086530
    [Google Scholar]
  71. MarquerC. LaineJ. DauphinotL. HanbouchL. Lemercier-NeuilletC. PierrotN. BossersK. LeM. CorlierF. BenstaaliC. SaudouF. ThinakaranG. CartierN. OctaveJ.N. DuyckaertsC. PotierM.C. Increasing membrane cholesterol of neurons in culture recapitulates Alzheimer’s disease early phenotypes.Mol. Neurodegener.2014916010.1186/1750‑1326‑9‑6025524049
    [Google Scholar]
  72. YangD.S. StavridesP. SaitoM. KumarA. Rodriguez-NavarroJ.A. PawlikM. HuoC. WalkleyS.U. SaitoM. CuervoA.M. NixonR.A. Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits.Brain2014137123300331810.1093/brain/awu27825270989
    [Google Scholar]
  73. ChanR.B. OliveiraT.G. CortesE.P. HonigL.S. DuffK.E. SmallS.A. WenkM.R. ShuiG. Di PaoloG. Comparative lipidomic analysis of mouse and human brain with Alzheimer disease.J. Biol. Chem.201228742678268810.1074/jbc.M111.27414222134919
    [Google Scholar]
  74. TajimaY. IshikawaM. MaekawaK. MurayamaM. SenooY. Nishimaki-MogamiT. NakanishiH. IkedaK. AritaM. TaguchiR. OkunoA. MikawaR. NiidaS. TakikawaO. SaitoY. Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau for Alzheimer’s disease.Lipids Health Dis.20131216810.1186/1476‑511X‑12‑6823659495
    [Google Scholar]
  75. RousseletE. MarcinkiewiczJ. KrizJ. ZhouA. HattenM.E. PratA. SeidahN.G. PCSK9 reduces the protein levels of the LDL receptor in mouse brain during development and after ischemic stroke.J. Lipid Res.20115271383139110.1194/jlr.M01411821518694
    [Google Scholar]
  76. ZambónD. QuintanaM. MataP. AlonsoR. BenaventJ. Cruz-SánchezF. GichJ. PocovíM. CiveiraF. CapurroS. BachmanD. SambamurtiK. NicholasJ. PappollaM.A. Higher incidence of mild cognitive impairment in familial hypercholesterolemia.Am. J. Med.2010123326727410.1016/j.amjmed.2009.08.01520193836
    [Google Scholar]
  77. WingoT.S. CutlerD.J. WingoA.P. LeN.A. RabinoviciG.D. MillerB.L. LahJ.J. LeveyA.I. Association of early-onset alzheimer disease with elevated low-density lipoprotein cholesterol levels and rare genetic coding variants of APOB.JAMA Neurol.201976780981710.1001/jamaneurol.2019.064831135820
    [Google Scholar]
  78. ChungH.S. LeeJ.S. KimJ.A. RohE. LeeY.B. HongS.H. KimN.H. YooH.J. SeoJ.A. KimS.G. KimN.H. BaikS.H. ChoiK.M. Variability in total cholesterol concentration is associated with the risk of dementia: a nationwide population-based cohort study.Front. Neurol.20191044110.3389/fneur.2019.0044131133961
    [Google Scholar]
  79. ReedB. VilleneuveS. MackW. DeCarliC. ChuiH.C. JagustW. Associations between serum cholesterol levels and cerebral amyloidosis.JAMA Neurol.201471219520010.1001/jamaneurol.2013.539024378418
    [Google Scholar]
  80. BjörkhemI. Cedazo-MinguezA. LeoniV. MeaneyS. Oxysterols and neurodegenerative diseases.Mol. Aspects Med.200930317117910.1016/j.mam.2009.02.00119248803
    [Google Scholar]
  81. AltmanR. RutledgeJ.C. The vascular contribution to Alzheimer’s disease.Clin. Sci. (Lond.)20101191040742110.1042/CS2010009420684749
    [Google Scholar]
  82. OlssonA.G. AngelinB. AssmannG. BinderC.J. BjörkhemI. Cedazo-MinguezA. CohenJ. von EckardsteinA. FarinaroE. Müller-WielandD. ParhoferK.G. PariniP. RosensonR.S. Starup-LindeJ. TikkanenM.J. Yvan-CharvetL. Can LDL cholesterol be too low? Possible risks of extremely low levels.J. Intern. Med.2017281653455310.1111/joim.1261428295777
    [Google Scholar]
  83. MeffordM.T. RosensonR.S. CushmanM. FarkouhM.E. McClureL.A. WadleyV.G. IrvinM.R. BittnerV. SaffordM.M. SomaratneR. MondaK.L. MuntnerP. LevitanE.B. PCSK9 Variants, low-density lipoprotein cholesterol, and neurocognitive impairment.Circulation2018137121260126910.1161/CIRCULATIONAHA.117.02978529146683
    [Google Scholar]
  84. DeaneR. SagareA. HammK. ParisiM. LaneS. FinnM.B. HoltzmanD.M. ZlokovicB.V. ApoE. apoE isoform–specific disruption of amyloid β peptide clearance from mouse brain.J. Clin. Invest.2008118124002401310.1172/JCI3666319033669
    [Google Scholar]
  85. BellR.D. SagareA.P. FriedmanA.E. BediG.S. HoltzmanD.M. DeaneR. ZlokovicB.V. Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system.J. Cereb. Blood Flow Metab.200727590991810.1038/sj.jcbfm.960041917077814
    [Google Scholar]
  86. VergheseP.B. CastellanoJ.M. GaraiK. WangY. JiangH. ShahA. BuG. FriedenC. HoltzmanD.M. ApoE. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions.Proc. Natl. Acad. Sci.201311019E1807E181610.1073/pnas.122048411023620513
    [Google Scholar]
  87. CalsolaroV. EdisonP. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions.Alzheimers Dement.201612671973210.1016/j.jalz.2016.02.01027179961
    [Google Scholar]
  88. HenekaM.T. CarsonM.J. KhouryJ.E. LandrethG.E. BrosseronF. FeinsteinD.L. JacobsA.H. Wyss-CorayT. VitoricaJ. RansohoffR.M. HerrupK. FrautschyS.A. FinsenB. BrownG.C. VerkhratskyA. YamanakaK. KoistinahoJ. LatzE. HalleA. PetzoldG.C. TownT. MorganD. ShinoharaM.L. PerryV.H. HolmesC. BazanN.G. BrooksD.J. HunotS. JosephB. DeigendeschN. GaraschukO. BoddekeE. DinarelloC.A. BreitnerJ.C. ColeG.M. GolenbockD.T. KummerM.P. Neuroinflammation in Alzheimer’s disease.Lancet Neurol.201514438840510.1016/S1474‑4422(15)70016‑525792098
    [Google Scholar]
  89. LengF. EdisonP. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here?Nat. Rev. Neurol.202117315717210.1038/s41582‑020‑00435‑y33318676
    [Google Scholar]
  90. StewartC.R. StuartL.M. WilkinsonK. van GilsJ.M. DengJ. HalleA. RaynerK.J. BoyerL. ZhongR. FrazierW.A. Lacy-HulbertA. KhouryJ.E. GolenbockD.T. MooreK.J. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer.Nat. Immunol.201011215516110.1038/ni.183620037584
    [Google Scholar]
  91. CoraciI.S. HusemannJ. BermanJ.W. HuletteC. DufourJ.H. CampanellaG.K. LusterA.D. SilversteinS.C. El KhouryJ.B. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils.Am. J. Pathol.2002160110111210.1016/S0002‑9440(10)64354‑411786404
    [Google Scholar]
  92. MooreK.J. El KhouryJ. MedeirosL.A. TeradaK. GeulaC. LusterA.D. FreemanM.W. A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid.J. Biol. Chem.200227749473734737910.1074/jbc.M20878820012239221
    [Google Scholar]
  93. TangZ. JiangL. PengJ. RenZ. WeiD. WuC. PanL. JiangZ. LiuL. PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-κB activation in THP-1-derived macrophages.Int. J. Mol. Med.201230493193810.3892/ijmm.2012.107222825241
    [Google Scholar]
  94. ApaijaiN. MoisescuD.M. PaleeS. McSweeneyC.M. SaiyasitN. ManeechoteC. BoonnagC. ChattipakornN. ChattipakornS.C. Pretreatment With PCSK9 inhibitor protects the brain against cardiac ischemia/reperfusion injury through a reduction of neuronal inflammation and amyloid beta aggregation.J. Am. Heart Assoc.201982e01083810.1161/JAHA.118.01083830636486
    [Google Scholar]
  95. DingZ. LiuS. WangX. TheusS. DengX. FanY. ZhouS. MehtaJ.L. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages.Cardiovasc. Res.201811481145115310.1093/cvr/cvy07929617722
    [Google Scholar]
  96. ZhangT. XiaY. HuL. ChenD. GanC.L. WangL. MeiY. LanG. ShuiX. TianY. LiR. ZhangM. LeeT.H. Death-associated protein kinase 1 mediates Aβ42 aggregation-induced neuronal apoptosis and tau dysregulation in Alzheimer’s disease.Int. J. Biol. Sci.202218269370610.7150/ijbs.6676035002518
    [Google Scholar]
  97. KyseniusK. MuggallaP. MätlikK. ArumäeU. HuttunenH.J. PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling.Cell. Mol. Life Sci.201269111903191610.1007/s00018‑012‑0977‑622481440
    [Google Scholar]
  98. BeffertU. Nematollah FarsianF. MasiulisI. HammerR.E. YoonS.O. GiehlK.M. HerzJ. ApoE. ApoE receptor 2 controls neuronal survival in the adult brain.Curr. Biol.200616242446245210.1016/j.cub.2006.10.02917174920
    [Google Scholar]
  99. ChiangL.W. GrenierJ.M. EttwillerL. JenkinsL.P. FicenecD. MartinJ. JinF. DiStefanoP.S. WoodA. An orchestrated gene expression component of neuronal programmed cell death revealed by cDNA array analysis.Proc. Natl. Acad. Sci. USA20019852814281910.1073/pnas.05163059811226323
    [Google Scholar]
  100. McJ. C, C.; L, P. PCSK9 Is required for the disposal of non-acetylated intermediates of the nascent membrane protein BACE1.EMBO Rep.200899
    [Google Scholar]
  101. KoM.H. PuglielliL. Two endoplasmic reticulum (ER)/ER Golgi intermediate compartment-based lysine acetyltransferases post-translationally regulate BACE1 levels.J. Biol. Chem.200928442482249210.1074/jbc.M80490120019011241
    [Google Scholar]
  102. LiuM. WuG. BaysarowichJ. KavanaM. AddonaG.H. BieriloK.K. MudgettJ.S. PavlovicG. SitlaniA. RengerJ.J. HubbardB.K. FisherT.S. ZerbinattiC.V. PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain.J. Lipid Res.20105192611261810.1194/jlr.M00663520453200
    [Google Scholar]
  103. La RosaF. SaresellaM. MarventanoI. PianconeF. RipamontiE. Al-DaghriN. BazziniC. ZoiaC.P. ContiE. FerrareseC. ClericiM. Stavudine reduces NLRP3 inflammasome activation and modulates amyloid-β Autophagy.J. Alzheimers Dis.201972240141210.3233/JAD‑18125931594217
    [Google Scholar]
  104. BaiY. LiuD. ZhangH. WangY. WangD. CaiH. WenH. YuanG. AnH. WangY. ShiT. WangZ. N-salicyloyl tryptamine derivatives as potential therapeutic agents for Alzheimer’s disease with neuroprotective effects.Bioorg. Chem.202111510525510.1016/j.bioorg.2021.10525534435574
    [Google Scholar]
  105. BaoW.D. PangP. ZhouX.T. HuF. XiongW. ChenK. WangJ. WangF. XieD. HuY.Z. HanZ.T. ZhangH.H. WangW.X. NelsonP.T. ChenJ.G. LuY. ManH.Y. LiuD. ZhuL.Q. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease.Cell Death Differ.20212851548156210.1038/s41418‑020‑00685‑933398092
    [Google Scholar]
  106. TellingN.D. EverettJ. CollingwoodJ.F. DobsonJ. van der LaanG. GallagherJ.J. WangJ. HitchcockA.P. Iron biochemistry is correlated with amyloid plaque morphology in an established mouse model of alzheimer’s disease.Cell Chem. Biol.2017241012051215.e310.1016/j.chembiol.2017.07.01428890316
    [Google Scholar]
  107. EverettJ. BrooksJ. LermyteF. O’ConnorP.B. SadlerP.J. DobsonJ. CollingwoodJ.F. TellingN.D. Iron stored in ferritin is chemically reduced in the presence of aggregating Aβ(1-42).Sci. Rep.20201011033210.1038/s41598‑020‑67117‑z32587293
    [Google Scholar]
  108. AngelovaP.R. AbramovA.Y. Interaction of neurons and astrocytes underlies the mechanism of Aβ-induced neurotoxicity.Biochem. Soc. Trans.20144251286129010.1042/BST2014015325233405
    [Google Scholar]
  109. HuangL. McClatchyD.B. MaherP. LiangZ. DiedrichJ.K. Soriano-CastellD. GoldbergJ. ShokhirevM. YatesJ.R.III SchubertD. CurraisA. Intracellular amyloid toxicity induces oxytosis/ferroptosis regulated cell death.Cell Death Dis.2020111082810.1038/s41419‑020‑03020‑933024077
    [Google Scholar]
  110. ZengJ. TaoJ. XiL. WangZ. LiuL. PCSK9 mediates the oxidative low-density lipoprotein-induced pyroptosis of vascular endothelial cells via the UQCRC1/ROS pathway.Int. J. Mol. Med.20214745310.3892/ijmm.2021.488633576442
    [Google Scholar]
  111. AlannanM. FatrouniH. TrézéguetV. Dittrich-DomergueF. MoreauP. SiegfriedG. LietB. KhatibA.M. GrossetC.F. BadranB. Fayyad-KazanH. MerchedA.J. Targeting PCSK9 in liver cancer cells triggers metabolic exhaustion and cell death by ferroptosis.Cells20221216210.3390/cells1201006236611859
    [Google Scholar]
  112. StoekenbroekR.M. LambertG. CariouB. HovinghG.K. Inhibiting PCSK9 - biology beyond LDL control.Nat. Rev. Endocrinol.2019151526210.1038/s41574‑018‑0110‑530367179
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673269288231123095215
Loading
/content/journals/cmc/10.2174/0109298673269288231123095215
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test