Skip to content
2000
Volume 32, Issue 22
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Depression is a common mental illness that damages the life and health of patients and causes economic burden, and HPA (hypothalamic-pituitary-adrenal) axis dysfunction is considered to be one of the important factors leading to depression. In this case, it is essential to explore possible treatment methods by using natural compounds with HPA axis regulating and antidepressant effects. However, no one has reviewed it so far. Therefore, the purpose of this review is to systematically sort out the related natural products that play an antidepressant role by regulating the function of the HPA axis. Natural products are divided into flavonoids, polyphenols, terpenoids, saponins, polysaccharides and so on according to their chemical structures, which play a variety of biological activities such as regulating the HPA axis, anti-inflammation and neuroprotection. These effects may provide a useful reference for the potential treatment of depression so as to develop new antidepressants.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673297253240316101649
2025-07-01
2025-09-03
Loading full text...

Full text loading...

References

  1. McCarronR. M. ShapiroB. RawlesJ. LuoJ. Depression.Ann. Intern. Med.20211745ITC65ITC8010.7326/AITC202105180
    [Google Scholar]
  2. MonroeS.M. HarknessK.L. Major depression and its recurrences: Life course matters.Annu. Rev. Clin. Psychol202218329357
    [Google Scholar]
  3. DubovskyS.L. GhoshB.M. SerotteJ.C. CranwellV. Psychotic depression: Diagnosis, differential diagnosis, and treatment.Psychother. Psychosom.202190316017710.1159/000511348
    [Google Scholar]
  4. BrometE. AndradeL.H. HwangI. SampsonN.A. AlonsoJ. de GirolamoG. de GraafR. DemyttenaereK. HuC. IwataN. KaramA.N. KaurJ. KostyuchenkoS. LépineJ.P. LevinsonD. MatschingerH. MoraM.E.M. BrowneM.O. VillaP.J. VianaM.C. WilliamsD.R. KesslerR.C. Cross-national epidemiology of DSM-IV major depressive episode.BMC Med.2011919010.1186/1741‑7015‑9‑9021791035
    [Google Scholar]
  5. ChisholmD. SweenyK. SheehanP. RasmussenB. SmitF. CuijpersP. SaxenaS. Scaling-up treatment of depression and anxiety: A global return on investment analysis.Lancet Psychiatry20163541542410.1016/S2215‑0366(16)30024‑427083119
    [Google Scholar]
  6. BeurelE. ToupsM. NemeroffC.B. The bidirectional relationship of depression and inflammation: Double trouble.Neuron2020107223425610.1016/j.neuron.2020.06.00232553197
    [Google Scholar]
  7. LiuL. WangH. ChenX. ZhangY. ZhangH. XieP. Gut microbiota and its metabolites in depression: From pathogenesis to treatment.EBioMedicine20239010452710.1016/j.ebiom.2023.10452736963238
    [Google Scholar]
  8. TarttA.N. MarianiM.B. HenR. MannJ.J. BoldriniM. Dysregulation of adult hippocampal neuroplasticity in major depression: Pathogenesis and therapeutic implications.Mol. Psychiatry20222762689269910.1038/s41380‑022‑01520‑y35354926
    [Google Scholar]
  9. MalhiG.S. MannJ.J. Depression.Lancet2018392101612299231210.1016/S0140‑6736(18)31948‑230396512
    [Google Scholar]
  10. MoretC. IsaacM. BrileyM. Review: Problems associated with long-term treatment with selective serotonin reuptake inhibitors.J. Psychopharmacol.200923896797410.1177/026988110809358218635702
    [Google Scholar]
  11. ThaseM.E. NierenbergA.A. VrijlandP. van OersH.J.J. SchutteA.J. SimmonsJ.H. Remission with mirtazapine and selective serotonin reuptake inhibitors: A meta-analysis of individual patient data from 15 controlled trials of acute phase treatment of major depression.Int. Clin. Psychopharmacol.201025418919810.1097/YIC.0b013e328330adb220531012
    [Google Scholar]
  12. ThomsonF. CraigheadM. Innovative approaches for the treatment of depression: Targeting the HPA axis.Neurochem. Res.200833469170710.1007/s11064‑007‑9518‑317960478
    [Google Scholar]
  13. MenkeA. Is the HPA axis as target for depression outdated, or is there a new hope?Front. Psychiatry20191010110.3389/fpsyt.2019.0010130890970
    [Google Scholar]
  14. DaiW. FengK. SunX. XuL. WuS. RahmandK. JiaD. HanT. Natural products for the treatment of stress-induced depression: Pharmacology, mechanism and traditional use.J. Ethnopharmacol.202228511469210.1016/j.jep.2021.11469234742864
    [Google Scholar]
  15. DeMorrowS. Role of the hypothalamic-pituitary-adrenal axis in health and disease.Int. J. Mol. Sci.201819498610.3390/ijms1904098629587417
    [Google Scholar]
  16. SpencerR.L. DeakT. A users guide to HPA axis research.Physiol. Behav.2017178436510.1016/j.physbeh.2016.11.01427871862
    [Google Scholar]
  17. HermanJ.P. Regulation of the hypothalamic-pituitary-adrenocortical stress response.Comprehensive Physiology.Wiley201660362110.1002/cphy.c150015
    [Google Scholar]
  18. MaharI. BambicoF.R. MechawarN. NobregaJ.N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects.Neurosci. Biobehav. Rev.20143817319210.1016/j.neubiorev.2013.11.00924300695
    [Google Scholar]
  19. MikulskaJ. JuszczykG. GrzywaczG.M. HerbetM. HPA axis in the pathomechanism of depression and schizophrenia: New therapeutic strategies based on its participation.Brain Sci.20211110129810.3390/brainsci1110129834679364
    [Google Scholar]
  20. DeanJ. KeshavanM. The neurobiology of depression: An integrated view.Asian J. Psychiatr.20172710111110.1016/j.ajp.2017.01.02528558878
    [Google Scholar]
  21. BraquehaisM.D. PicoutoM.D. CasasM. SherL. Hypothalamic-pituitary-adrenal axis dysfunction as a neurobiological correlate of emotion dysregulation in adolescent suicide.World J. Pediatr.20128319720610.1007/s12519‑012‑0358‑022886191
    [Google Scholar]
  22. Belvederi MurriM. ParianteC. MondelliV. MasottiM. AttiA.R. MellacquaZ. AntonioliM. GhioL. MenchettiM. ZanetidouS. InnamoratiM. AmoreM. HPA axis and aging in depression: Systematic review and meta-analysis.Psychoneuroendocrinology201441466210.1016/j.psyneuen.2013.12.00424495607
    [Google Scholar]
  23. ParianteC.M. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation.Eur. Neuropsychopharmacol.201727655455910.1016/j.euroneuro.2017.04.00128479211
    [Google Scholar]
  24. BlochM. DalyR.C. RubinowD.R. Endocrine factors in the etiology of postpartum depression.Compr. Psychiatry200344323424610.1016/S0010‑440X(03)00034‑812764712
    [Google Scholar]
  25. YimI.S. GlynnL.M. SchetterD.C. HobelC.J. DeMetC.A. SandmanC.A. Risk of postpartum depressive symptoms with elevated corticotropin-releasing hormone in human pregnancy.Arch. Gen. Psychiatry200966216216910.1001/archgenpsychiatry.2008.53319188538
    [Google Scholar]
  26. GuerryJ.D. HastingsP.D. In search of HPA axis dysregulation in child and adolescent depression.Clin. Child Fam. Psychol. Rev.201114213516010.1007/s10567‑011‑0084‑521290178
    [Google Scholar]
  27. LightmanS.L. BirnieM.T. CampbellC.B.L. Dynamics of ACTH and cortisol secretion and implications for disease.Endocr. Rev.2020413bnaa00210.1210/endrev/bnaa00232060528
    [Google Scholar]
  28. StetlerC. MillerG.E. Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research.Psychosom. Med.201173211412610.1097/PSY.0b013e31820ad12b21257974
    [Google Scholar]
  29. AnackerC. ZunszainP.A. CarvalhoL.A. ParianteC.M. The glucocorticoid receptor: Pivot of depression and of antidepressant treatment?Psychoneuroendocrinology201136341542510.1016/j.psyneuen.2010.03.00720399565
    [Google Scholar]
  30. SharpT. CowenP.J. 5-HT and depression: Is the glass half-full?Curr. Opin. Pharmacol.2011111455110.1016/j.coph.2011.02.00321377932
    [Google Scholar]
  31. Dell’OssoL. CarmassiC. MucciF. MarazzitiD. Depression, serotonin and tryptophan.Curr. Pharm. Des.201622894995410.2174/138161282266615121410482626654774
    [Google Scholar]
  32. GoelN. InnalaL. ViauV. Sex differences in serotonin (5-HT) 1A receptor regulation of HPA axis and dorsal raphe responses to acute restraint.Psychoneuroendocrinology20144023224110.1016/j.psyneuen.2013.11.02024485495
    [Google Scholar]
  33. SteinbergL.J. FalconeR.H. GalfalvyH.C. KaufmanJ. MillerJ.M. SubletteM.E. CooperT.B. MinE. KeilpJ.G. StanleyB.H. OquendoM.A. OgdenR.T. MannJ.J. Cortisol stress response and in vivo PET imaging of human brain serotonin 1A receptor binding.Int. J. Neuropsychopharmacol.201922532933810.1093/ijnp/pyz00930927011
    [Google Scholar]
  34. LópezJ.F. VázquezD.M. ChalmersD.T. WatsonS.J. Regulation of 5-HT receptors and the hypothalamic-pituitary-adrenal axis.Ann. N. Y. Acad. Sci.1997836110613410.1111/j.1749‑6632.1997.tb52357.x
    [Google Scholar]
  35. StamperC.E. HassellJ.E.Jr KapitzA.J. RennerK.J. OrchinikM. LowryC.A. Activation of 5-HT 1A receptors in the rat dorsomedial hypothalamus inhibits stress-induced activation of the hypothalamic–pituitary–adrenal axis.Stress201720222323010.1080/10253890.2017.130142628345385
    [Google Scholar]
  36. DuX. PangT.Y. Is dysregulation of the HPA-axis a core pathophysiology mediating co-morbid depression in neurodegenerative diseases?Front. Psychiatry201563210.3389/fpsyt.2015.0003225806005
    [Google Scholar]
  37. MisiakB. ŁoniewskiI. MarliczW. FrydeckaD. SzulcA. RudzkiL. SamochowiecJ. The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota?Prog. Neuropsychopharmacol. Biol. Psychiatry202010210995110.1016/j.pnpbp.2020.10995132335265
    [Google Scholar]
  38. PereiraC.G. PitonE. dos SantosM.B. RamanziniL.G. CamargoM.L.F. da SilvaM.R. BochiG.V. Microglia and HPA axis in depression: An overview of participation and relationship.World J. Biol. Psychiatry202223316518210.1080/15622975.2021.193915434100334
    [Google Scholar]
  39. DobrekL. GłowackaK. Depression and its phytopharmacotherapy-A narrative review.Int. J. Mol. Sci.2023245477210.3390/ijms2405477236902200
    [Google Scholar]
  40. NgQ.X. VenkatanarayananN. HoC.Y.X. Clinical use of Hypericum perforatum (St John’s wort) in depression: A meta-analysis.J. Affect. Disord.201721021122110.1016/j.jad.2016.12.04828064110
    [Google Scholar]
  41. ZhangY. LongY. YuS. LiD. YangM. GuanY. ZhangD. WanJ. LiuS. ShiA. LiN. PengW. Natural volatile oils derived from herbal medicines: A promising therapy way for treating depressive disorder.Pharmacol. Res.202116410537610.1016/j.phrs.2020.10537633316383
    [Google Scholar]
  42. KouY. LiZ. YangT. ShenX. WangX. LiH. ZhouK. LiL. XiaZ. ZhengX. ZhaoY. Therapeutic potential of plant iridoids in depression: A review.Pharm. Biol.20226012167218110.1080/13880209.2022.213620636300881
    [Google Scholar]
  43. Winiarska-MieczanA. KwiecieńM. Jachimowicz-RogowskaK. DonaldsonJ. TomaszewskaE. WójcikB.E. Anti-inflammatory, antioxidant, and neuroprotective effects of polyphenols-polyphenols as an element of diet therapy in depressive disorders.Int. J. Mol. Sci.2023243225810.3390/ijms2403225836768580
    [Google Scholar]
  44. PannuA. SharmaP.C. ThakurV.K. GoyalR.K. Emerging role of flavonoids as the treatment of depression.Biomolecules20211112182510.3390/biom1112182534944471
    [Google Scholar]
  45. GuoY. ChenX. GongP. LiZ. WuY. ZhangJ. WangJ. YaoW. YangW. ChenF. Advances in the mechanisms of polysaccharides in alleviating depression and its complications.Phytomedicine202310915456610.1016/j.phymed.2022.15456636610126
    [Google Scholar]
  46. BergmanM.E. DavisB. PhillipsM.A. Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action.Molecules20192421396110.3390/molecules2421396131683764
    [Google Scholar]
  47. WangL. ChenS. LiuS. BiuA.M. HanY. JinX. LiangC. LiuY. LiJ. FangS. ChangY. A comprehensive review of ethnopharmacology, chemical constituents, pharmacological effects, pharmacokinetics, toxicology, and quality control of gardeniae fructus.J. Ethnopharmacol.202432011739710.1016/j.jep.2023.11739737956915
    [Google Scholar]
  48. ZhangW. ZhangF. HuQ. XiaoX. OuL. ChenY. LuoS. ChengY. JiangY. MaX. ZhaoY. The emerging possibility of the use of geniposide in the treatment of cerebral diseases: A review.Chin. Med.20211618610.1186/s13020‑021‑00486‑334454545
    [Google Scholar]
  49. CaiL. LiR. TangW. MengG. HuX. WuT. Antidepressant-like effect of geniposide on chronic unpredictable mild stress-induced depressive rats by regulating the hypothalamus–pituitary–adrenal axis.Eur. Neuropsychopharmacol.20152581332134110.1016/j.euroneuro.2015.04.00925914157
    [Google Scholar]
  50. WuS. NingY. ZhaoY. SunW. ThorimbertS. DechouxL. SollogoubM. ZhangY. Research progress of natural product gentiopicroside - A secoiridoid compound.Mini Rev. Med. Chem.2016171627710.2174/138955751666616062412412727342232
    [Google Scholar]
  51. LiuB. PangF. BiH. GuoD. Regulatory mechanisms of Gentiopicroside on human diseases: A brief review.Naunyn Schmiedebergs Arch. Pharmacol.2024397272575010.1007/s00210‑023‑02672‑637632552
    [Google Scholar]
  52. YaoT. CuiQ. LiuZ. WangC. ZhangQ. WangG. Metabolomic evidence for the therapeutic effect of gentiopicroside in a corticosterone-induced model of depression.Biomed. Pharmacother.201912010954910.1016/j.biopha.2019.10954931655313
    [Google Scholar]
  53. WangJ.M. YangL.H. ZhangY.Y. NiuC.L. CuiY. FengW.S. WangG.F. BDNF and COX-2 participate in anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress.Physiol. Behav.201515136036810.1016/j.physbeh.2015.08.00826255123
    [Google Scholar]
  54. SongX. TanL. WangM. RenC. GuoC. YangB. RenY. CaoZ. LiY. PeiJ. Myricetin: A review of the most recent research.Biomed. Pharmacother.202113411101710.1016/j.biopha.2020.11101733338751
    [Google Scholar]
  55. SurB. LeeB. Myricetin inhibited fear and anxiety-like behaviors by HPA axis regulation and activation of the BDNF-ERK signaling pathway in posttraumatic stress disorder rats.Evid. Based Complement. Alternat. Med.2022202211110.1155/2022/832025635722162
    [Google Scholar]
  56. SalehiB. VendittiA. RadS.M. KręgielD. RadS.J. DurazzoA. LucariniM. SantiniA. SoutoE. NovellinoE. AntolakH. AzziniE. SetzerW. MartinsN. The therapeutic potential of apigenin.Int. J. Mol. Sci.2019206130510.3390/ijms2006130530875872
    [Google Scholar]
  57. YiL.T. LiJ.M. LiY.C. PanY. XuQ. KongL.D. Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin.Life Sci.20088213-1474175110.1016/j.lfs.2008.01.00718308340
    [Google Scholar]
  58. ChenS. TangY. GaoY. NieK. WangH. SuH. WangZ. LuF. HuangW. DongH. Antidepressant potential of quercetin and its Glycoside derivatives: A comprehensive review and update.Front. Pharmacol.20221386537610.3389/fphar.2022.86537635462940
    [Google Scholar]
  59. KawabataK. KawaiY. TeraoJ. Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats.J. Nutr. Biochem.201021537438010.1016/j.jnutbio.2009.01.00819423323
    [Google Scholar]
  60. ZhangK. HeM. WangF. ZhangH. LiY. YangJ. WuC. Revealing antidepressant mechanisms of baicalin in hypothalamus through systems approaches in corticosterone- induced depressed mice.Front. Neurosci.20191383410.3389/fnins.2019.0083431440134
    [Google Scholar]
  61. SurB. LeeB. Luteolin reduces fear, anxiety, and depression in rats with post-traumatic stress disorder.Anim. Cells Syst.202226417418210.1080/19768354.2022.210492536046028
    [Google Scholar]
  62. SuredaA. TejadaS. Polyphenols and depression: From chemistry to medicine.Curr. Pharm. Biotechnol.201516325926410.2174/138920101666615011813331325601603
    [Google Scholar]
  63. GaliniakS. AebisherD. AebisherB.D. Health benefits of resveratrol administration.Acta Biochim. Pol.2019661132110.18388/abp.2018_274930816367
    [Google Scholar]
  64. AliS.H. MadhanaR.M. K vA. KasalaE.R. BodduluruL.N. PittaS. MahareddyJ.R. LahkarM. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice.Steroids2015101374210.1016/j.steroids.2015.05.01026048446
    [Google Scholar]
  65. RaufA. OlatundeA. ImranM. AlhumaydhiF.A. AljohaniA.S.M. KhanS.A. UddinM.S. MitraS. EmranT.B. KhayrullinM. RebezovM. KamalM.A. ShariatiM.A. Honokiol: A review of its pharmacological potential and therapeutic insights.Phytomedicine20219015364710.1016/j.phymed.2021.15364734362632
    [Google Scholar]
  66. WangC. GanD. WuJ. LiaoM. LiaoX. AiW. Honokiol exerts antidepressant effects in rats exposed to chronic unpredictable mild stress by regulating brain derived neurotrophic factor level and hypothalamus–pituitary–adrenal axis activity.Neurochem. Res.20184381519152810.1007/s11064‑018‑2566‑z29855846
    [Google Scholar]
  67. KondoS. El OmriA. HanJ. IsodaH. Antidepressant-like effects of rosmarinic acid through mitogen-activated protein kinase phosphatase-1 and brain-derived neurotrophic factor modulation.J. Funct. Foods20151475876610.1016/j.jff.2015.03.001
    [Google Scholar]
  68. LeeB. SurB. KwonS. YeomM. ShimI. LeeH. HahmD.H. Chronic administration of catechin decreases depression and anxiety-like behaviors in a rat model using chronic corticosterone injections.Biomol. Ther.201321431332210.4062/biomolther.2013.00424244817
    [Google Scholar]
  69. HuangZ. ZhongX.M. LiZ.Y. FengC.R. PanA.J. MaoQ.Q. Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats.Neurosci. Lett.2011493314514810.1016/j.neulet.2011.02.03021334417
    [Google Scholar]
  70. ZhangY. GeJ.F. WangF.F. LiuF. ShiC. LiN. Crassifoside H improve the depressive-like behavior of rats under chronic unpredictable mild stress: Possible involved mechanisms.Brain Res. Bull.2017135778410.1016/j.brainresbull.2017.09.01528970041
    [Google Scholar]
  71. ÜstündağG.Ö. MazzaG. Saponins: Properties, applications and processing.Crit. Rev. Food Sci. Nutr.200747323125810.1080/1040839060069819717453922
    [Google Scholar]
  72. XuX.H. LiT. FongC. ChenX. ChenX.J. WangY.T. HuangM.Q. LuJ.J. Saponins from Chinese medicines as anticancer agents.Molecules20162110132610.3390/molecules2110132627782048
    [Google Scholar]
  73. SunA. XuX. LinJ. CuiX. XuR. Neuroprotection by saponins.Phytother. Res.201529218720010.1002/ptr.524625408503
    [Google Scholar]
  74. LiH.Y. ZhaoY.H. ZengM.J. FangF. LiM. QinT.T. YeL.Y. LiH.W. QuR. MaS.P. Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: Involvement of HPA axis and hippocampal neurogenesis.Psychopharmacology2017234223385339410.1007/s00213‑017‑4720‑828875366
    [Google Scholar]
  75. GuoW. YaoX. CuiR. YangW. WangL. Mechanisms of paeoniaceae action as an antidepressant.Front. Pharmacol.20231393419910.3389/fphar.2022.93419936844911
    [Google Scholar]
  76. LiY.C. ZhengX.X. XiaS.Z. LiY. DengH.H. WangX. ChenY.W. YueY.S. HeJ. CaoY.J. Paeoniflorin ameliorates depressive-like behavior in prenatally stressed offspring by restoring the HPA axis- and glucocorticoid receptor- associated dysfunction.J Affect Disord202027447148110.1016/j.jad.2020.05.078
    [Google Scholar]
  77. ParkS.H. ChungS. ChungM.Y. ChoiH.K. HwangJ.T. ParkJ.H. Effects of Panax ginseng on hyperglycemia, hypertension, and hyperlipidemia: A systematic review and meta-analysis.J. Ginseng Res.202246218820510.1016/j.jgr.2021.10.00235509826
    [Google Scholar]
  78. ImD.S. Pro-resolving effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng. Biomolecules202010344410.3390/biom1003044432183094
    [Google Scholar]
  79. JinY. CuiR. ZhaoL. FanJ. LiB. Mechanisms of Panax ginseng action as an antidepressant.Cell Prolif.2019526e1269610.1111/cpr.1269631599060
    [Google Scholar]
  80. MouZ. HuangQ. ChuS. ZhangM.J. HuJ.F. ChenN. ZhangJ. Antidepressive effects of ginsenoside Rg1 via regulation of HPA and HPG axis.Biomed. Pharmacother.20179296297110.1016/j.biopha.2017.05.11928618657
    [Google Scholar]
  81. SurB. LeeB. Ginsenoside Rg3 modulates spatial memory and fear memory extinction by the HPA axis and BDNF-TrkB pathway in a rat post-traumatic stress disorder.J. Nat. Med.202276482183110.1007/s11418‑022‑01636‑z35982366
    [Google Scholar]
  82. YangS.J. YuH.Y. KangD.Y. MaZ.Q. QuR. FuQ. MaS.P. Antidepressant-like effects of salidroside on olfactory bulbectomy-induced pro-inflammatory cytokine production and hyperactivity of HPA axis in rats.Pharmacol. Biochem. Behav.201412445145710.1016/j.pbb.2014.07.01525101546
    [Google Scholar]
  83. GuoY. ChenX. GongP. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus.Int. J. Biol. Macromol.20211831753177310.1016/j.ijbiomac.2021.05.13934048833
    [Google Scholar]
  84. SongY. ZengK. JiangY. TuP. Cistanches Herba, from an endangered species to a big brand of Chinese medicine.Med. Res. Rev.20214131539157710.1002/med.2176833521978
    [Google Scholar]
  85. MorikawaT. XieH. PanY. NinomiyaK. YuanD. JiaX. YoshikawaM. NakamuraS. MatsudaH. MuraokaO. A review of biologically active natural products from a desert plant Cistanche tubulosa.Chem. Pharm. Bull.201967767568910.1248/cpb.c19‑0000831257323
    [Google Scholar]
  86. FanL. PengY. WangJ. MaP. ZhaoL. LiX. Total glycosides from stems of Cistanche tubulosa alleviate depression-like behaviors: Bidirectional interaction of the phytochemicals and gut microbiota.Phytomedicine20218315347110.1016/j.phymed.2021.15347133636477
    [Google Scholar]
  87. CuiX. WangS. CaoH. GuoH. LiY. XuF. ZhengM. XiX. HanC. A review: The bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides.Molecules2018235117010.3390/molecules2305117029757991
    [Google Scholar]
  88. ShenF. SongZ. XieP. LiL. WangB. PengD. ZhuG. Polygonatum sibiricum Polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage.J. Ethnopharmacol.202127511416410.1016/j.jep.2021.11416433932516
    [Google Scholar]
  89. XuX. ZhangC. WangN. XuY. TangG. XuL. FengY. Bioactivities and mechanism of actions of Dendrobium officinale: A comprehensive review.Oxid. Med. Cell. Longev.2022202212110.1155/2022/629335536160715
    [Google Scholar]
  90. HeY. LiL. ChangH. CaiB. GaoH. ChenG. HouW. JapparZ. YanY. Research progress on extraction, purification, structure and biological activity of Dendrobium officinale polysaccharides.Front. Nutr.2022996507310.3389/fnut.2022.96507335923195
    [Google Scholar]
  91. ZhangQ.P. ChengJ. LiuQ. XuG.H. LiC.F. YiL.T. Dendrobium officinale polysaccharides alleviate depression-like symptoms via regulating gut microbiota-neuroinflammation in perimenopausal mice.J. Funct. Foods20228810491210.1016/j.jff.2021.104912
    [Google Scholar]
  92. SemwalR.B. SemwalD.K. CombrinckS. ViljoenA. Emodin - A natural anthraquinone derivative with diverse pharmacological activities.Phytochemistry202119011285410.1016/j.phytochem.2021.11285434311280
    [Google Scholar]
  93. DongX. FuJ. YinX. CaoS. LiX. LinL. NiJ. Emodin: A review of its pharmacology, toxicity and pharmacokinetics.Phytother. Res.20163081207121810.1002/ptr.563127188216
    [Google Scholar]
  94. LiM. FuQ. LiY. LiS. XueJ. MaS. Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor.Fitoterapia20149811010.1016/j.fitote.2014.06.00724932776
    [Google Scholar]
  95. SunX. ZhangT. ZhaoY. CaiE. ZhuH. LiuS. Panaxynol attenuates CUMS-induced anxiety and depressive-like behaviors via regulating neurotransmitters, synapses and the HPA axis in mice.Food Funct.20201121235124410.1039/C9FO03104A32048672
    [Google Scholar]
  96. ZhangL.L. TianK. TangZ.H. ChenX.J. BianZ.X. WangY.T. LuJ.J. Phytochemistry and pharmacology of Carthamus tinctorius L.Am. J. Chin. Med.201644219722610.1142/S0192415X1650013027080938
    [Google Scholar]
  97. LiuZ. ZouY. HeM. YangP. QuX. XuL. Hydroxysafflor other A can improve depressive behavior by inhibiting hippocampal inflammation and oxidative stress through regulating HPA axis.J. Biosci.2022471710.1007/s12038‑021‑00246‑335092409
    [Google Scholar]
  98. GondaX. DomeP. NeillJ.C. TaraziF.I. Novel antidepressant drugs: Beyond monoamine targets.CNS Spectr.202328161510.1017/S109285292100079134588093
    [Google Scholar]
  99. ZhouP. ShiW. HeX.Y. DuQ.Y. WangF. GuoJ. Saikosaponin D: Review on the antitumour effects, toxicity and pharmacokinetics.Pharm. Biol.20215911478148710.1080/13880209.2021.199244834714209
    [Google Scholar]
  100. LiJ. W.H. VederasJ. C. Drug discovery and natural products: End of an era or an endless frontier?Science2009325593716116510.1126/science.1168243
    [Google Scholar]
  101. KatzL. BaltzR.H. Natural product discovery: Past, present, and future.J. Ind. Microbiol. Biotechnol.2016432-315517610.1007/s10295‑015‑1723‑526739136
    [Google Scholar]
  102. MaN. ZhangZ. LiaoF. JiangT. TuY. The birth of artemisinin.Pharmacol. Ther.202021610765810.1016/j.pharmthera.2020.10765832777330
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673297253240316101649
Loading
/content/journals/cmc/10.2174/0109298673297253240316101649
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test