Skip to content
2000
Volume 32, Issue 22
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Previous studies described that asthma patients who received corticosteroid therapy have been constrained by the corticosteroid resistance subsequently fostered to severe refractory asthma. In this review, we discussed the implications of TSLP, RXR, the role of STAT5-activating cytokines, and IL-33/NH-cell signaling pathways, and recent clinical evidence on TSLP blockers in steroid-resistant asthma. We have searched several public databases such as Pubmed, Scopus, and Relemed and obtained information pertinent to the TSLP, RXR, TSLP blockers, the STAT5-activating cytokines, and IL-33. We discussed the multiple cell signaling mechanisms underlying steroid resistance. Blocking the TSLP and other key signaling molecules like STAT5 can retrieve the sensitivity of natural helper-cells to corticosteroids. RXR derivatives treatment can modulate the activity of TSLP, which further modulates steroid resistance in severe asthmatic patients and in patients with refractory asthma. We discussed the steroid-resistance mediated by the Th2 cells and Th2-driven eosinophilia upon corticosteroid intake. Thus, this review will be beneficial for clinicians and molecular biologists to explore the inflammatory pathways associated with refractory asthma conditions and develop novel therapies against corticosteroid-resistant asthma.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673268237231124064413
2025-07-01
2025-10-25
Loading full text...

Full text loading...

References

  1. GopalanS. KulanthaiK. SadashivamG. PachiappanP. RajamaniS. ParamasivamD. Extraction, isolation, characterization, semi-synthesis and antiplasmodial activity of Justicia adathoda leaves.Bangladesh J. Pharmacol.201611487888510.3329/bjp.v11i4.28569
    [Google Scholar]
  2. WuS. YangR. WangG. Anti-asthmatic effect of pitavastatin through aerosol inhalation is associated with CD4+ CD25+ Foxp3+ T cells in an asthma mouse model.Sci. Rep.201771608410.1038/s41598‑017‑06476‑628729731
    [Google Scholar]
  3. WangJ LiF-s PangN-n TianG JiangM ZhangH-p DingJ-b Inhibition of asthma in OVA sensitized mice model by a traditional uygur herb nepeta bracteata benth.Evidence-based Complementary and Alternative Medicine201610.1155/2016/5769897
    [Google Scholar]
  4. SorknessR.L. RemusJ.L. RosenthalL.A. Systemic and pulmonary effects of fluticasone administered through a metered-dose inhaler in rats.J. Allergy Clin. Immunol.200411451027103210.1016/j.jaci.2004.07.01515536405
    [Google Scholar]
  5. PartridgeM.R. van der MolenT. MyrsethS.E. BusseW.W. Attitudes and actions of asthma patients on regular maintenance therapy: The INSPIRE study.BMC Pulm. Med.2006611310.1186/1471‑2466‑6‑1316772035
    [Google Scholar]
  6. NishiyoriT TsuchiyaH InagakiN NagaiH KodaA Effect of Saiboku-to, a blended Chinese traditional medicine, on Type I hypersensitivity reactions, particularly on experimentally-caused asthma.Japan Pharmacology Magazine Foia Pha r Mako False Fruit Japonica1985851716
    [Google Scholar]
  7. GuptaI. GuptaV. PariharA. GuptaS. LüdtkeR. SafayhiH. AmmonH.P. Effects of Boswellia serrata gum resin in patients with bronchial asthma: Results of a double-blind, placebo-controlled, 6-week clinical study.Eur. J. Med. Res.19983115115149810030
    [Google Scholar]
  8. MateraM.G. RoglianiP. CalzettaL. CazzolaM. TSLP inhibitors for asthma: Current status and future prospects.Drugs202080544945810.1007/s40265‑020‑01273‑432078149
    [Google Scholar]
  9. MitchellP.D. O’ByrneP.M. Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma.Pharmacol. Ther.201716910411210.1016/j.pharmthera.2016.06.00927365223
    [Google Scholar]
  10. VerstraeteK. PeelmanF. BraunH. LopezJ. Van RompaeyD. DansercoerA. VandenbergheI. PauwelsK. TavernierJ. LambrechtB.N. HammadH. De WinterH. BeyaertR. LippensG. SavvidesS.N. Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma.Nat. Commun.2017811493710.1038/ncomms1493728368013
    [Google Scholar]
  11. SemlaliA. JacquesE. KoussihL. GounniA.S. ChakirJ. Thymic stromal lymphopoietin–induced human asthmatic airway epithelial cell proliferation through an IL-13–dependent pathway.J. Allergy Clin. Immunol.2010125484485010.1016/j.jaci.2010.01.04420236697
    [Google Scholar]
  12. ZieglerS.F. Thymic stromal lymphopoietin and allergic disease.J. Allergy Clin. Immunol.2012130484585210.1016/j.jaci.2012.07.01022939755
    [Google Scholar]
  13. ComeauM.R. ZieglerS.F. The influence of TSLP on the allergic response.Mucosal Immunol.20103213814710.1038/mi.2009.13420016474
    [Google Scholar]
  14. TsilingiriK. FornasaG. RescignoM. Thymic stromal lymphopoietin: To cut a long story short.Cell. Mol. Gastroenterol. Hepatol.20173217418210.1016/j.jcmgh.2017.01.00528275684
    [Google Scholar]
  15. ParkJ.H. JeongD.Y. Peyrin-BirouletL. EisenhutM. ShinJ.I. Insight into the role of TSLP in inflammatory bowel diseases.Autoimmun. Rev.2017161556310.1016/j.autrev.2016.09.01427697608
    [Google Scholar]
  16. XieY. TakaiT. ChenX. OkumuraK. OgawaH. Long TSLP transcript expression and release of TSLP induced by TLR ligands and cytokines in human keratinocytes.J. Dermatol. Sci.201266323323710.1016/j.jdermsci.2012.03.00722520928
    [Google Scholar]
  17. DongH. HuY. LiuL. ZouM. HuangC. LuoL. YuC. WanX. ZhaoH. ChenJ. XieZ. LeY. ZouF. CaiS. Distinct roles of short and long thymic stromal lymphopoietin isoforms in house dust mite-induced asthmatic airway epithelial barrier disruption.Sci. Rep.2016613955910.1038/srep3955927996052
    [Google Scholar]
  18. PolczM.E. BarbulA. The role of vitamin A in wound healing.Nutr. Clin. Pract.201934569570010.1002/ncp.1037631389093
    [Google Scholar]
  19. JanesickA. WuS.C. BlumbergB. Retinoic acid signaling and neuronal differentiation.Cell. Mol. Life Sci.20157281559157610.1007/s00018‑014‑1815‑925558812
    [Google Scholar]
  20. SiddikuzzamanC.G. GuruvayoorappanC. Berlin GraceV.M. All trans retinoic acid and cancer.Immunopharmacol. Immunotoxicol.201133224124910.3109/08923973.2010.52150720929432
    [Google Scholar]
  21. ConservaM.R. AnelliL. ZagariaA. SpecchiaG. AlbanoF. The pleiotropic role of retinoic acid/retinoic acid receptors signaling: From vitamin a metabolism to gene rearrangements in acute promyelocytic leukemia.Int. J. Mol. Sci.20192012292110.3390/ijms2012292131207999
    [Google Scholar]
  22. ScheffelF. HeineG. HenzB.M. WormM. Retinoic acid inhibits CD40 plus IL-4 mediated IgE production through alterations of sCD23, sCD54 and IL-6 production.Inflamm. Res.200554311311810.1007/s00011‑004‑1331‑815883744
    [Google Scholar]
  23. LeberB.F. DenburgJ.A. Retinoic acid modulation of induced basophil differentiation.Allergy199752121201120610.1111/j.1398‑9995.1997.tb02524.x9450139
    [Google Scholar]
  24. FujiiU. MiyaharaN. TaniguchiA. OdaN. MorichikaD. MurakamiE. NakayamaH. WasedaK. KataokaM. KakutaH. TanimotoM. KanehiroA. Effect of a retinoid X receptor partial agonist on airway inflammation and hyperresponsiveness in a murine model of asthma.Respir. Res.20171812310.1186/s12931‑017‑0507‑z28114934
    [Google Scholar]
  25. TiwariD. GuptaP. Nuclear receptors in asthma: Empowering classical molecules against a contemporary ailment.Front. Immunol.20211159443310.3389/fimmu.2020.59443333574813
    [Google Scholar]
  26. NúñezV. AlamedaD. RicoD. MotaR. GonzaloP. CedenillaM. FischerT. BoscáL. GlassC.K. ArroyoA.G. RicoteM. Retinoid X receptor α controls innate inflammatory responses through the up-regulation of chemokine expression.Proc. Natl. Acad. Sci. USA201010723106261063110.1073/pnas.091354510720498053
    [Google Scholar]
  27. ShankaranarayananP. RossinA. KhanwalkarH. AlvarezS. AlvarezR. JacobsonA. NebbiosoA. de LeraA.R. AltucciL. GronemeyerH. Growth factor-antagonized rexinoid apoptosis involves permissive PPARgamma/RXR heterodimers to activate the intrinsic death pathway by NO.Cancer Cell200916322023110.1016/j.ccr.2009.07.02919732722
    [Google Scholar]
  28. GrenninglohR. GhoA. di LuciaP. KlausM. BollagW. HoI.C. SinigagliaF. Panina-BordignonP. Cutting Edge: Inhibition of the retinoid X receptor (RXR) blocks T helper 2 differentiation and prevents allergic lung inflammation.J. Immunol.200617695161516610.4049/jimmunol.176.9.516116621979
    [Google Scholar]
  29. CaoX. LiuW. LinF. LiH. KolluriS.K. LinB. HanY.H. DawsonM.I. ZhangX.K. Retinoid X receptor regulates Nur77/TR3-dependent apoptosis [corrected] by modulating its nuclear export and mitochondrial targeting.Mol. Cell. Biol.200424229705972510.1128/MCB.24.22.9705‑9725.200415509776
    [Google Scholar]
  30. ZimmermanT.L. ThevanantherS. GhoseR. BurnsA.R. KarpenS.J. Nuclear export of retinoid X receptor α in response to interleukin-1β-mediated cell signaling: roles for JNK and SER260.J. Biol. Chem.200628122154341544010.1074/jbc.M50827720016551633
    [Google Scholar]
  31. HendersonW.R.Jr LewisD.B. AlbertR.K. ZhangY. LammW.J. ChiangG.K. JonesF. EriksenP. TienY.T. JonasM. ChiE.Y. The importance of leukotrienes in airway inflammation in a mouse model of asthma.J. Exp. Med.199618441483149410.1084/jem.184.4.14838879219
    [Google Scholar]
  32. DecherfS. SeugnetI. BeckerN. DemeneixB.A. Clerget-FroidevauxM.S. Retinoic X receptor subtypes exert differential effects on the regulation of Trh transcription.Mol. Cell. Endocrinol.20133811-211512310.1016/j.mce.2013.07.01623896434
    [Google Scholar]
  33. YasuiY. NakamuraM. OndaT. UeharaT. MurataS. MatsuiN. FukuishiN. AkagiR. SuematsuM. AkagiM. Heme oxygenase-1 inhibits cytokine production by activated mast cells.Biochem. Biophys. Res. Commun.2007354248549010.1016/j.bbrc.2006.12.22817234154
    [Google Scholar]
  34. WadhwaR. DuaK. AdcockI.M. HorvatJ.C. KimR.Y. HansbroP.M. Cellular mechanisms underlying steroid-resistant asthma.Eur. Respir. Rev.20192815319009610.1183/16000617.0096‑201931636089
    [Google Scholar]
  35. López-CervantesJ.P. LønnebotnM. JogiN.O. CalcianoL. KuiperI.N. DarbyM.G. DharmageS.C. Gómez-RealF. HammerB. BertelsenR.J. JohannessenA. WürtzA.M.L. Mørkve KnudsenT. KoplinJ. PapeK. SkulstadS.M. TimmS. TjalvinG. Krauss-EtschmannS. AccordiniS. SchlünssenV. KirkeleitJ. SvanesC. The exposome approach in allergies and lung diseases: is it time to define a preconception exposome?Int. J. Environ. Res. Public Health202118231268410.3390/ijerph18231268434886409
    [Google Scholar]
  36. RoanF. BellB.D. StoklasekT.A. KitajimaM. HanH. ZieglerS.F. The multiple facets of thymic stromal lymphopoietin (TSLP) during allergic inflammation and beyond.J. Leukoc. Biol.201291687788610.1189/jlb.121162222442496
    [Google Scholar]
  37. RochmanY. LeonardW.J. The role of thymic stromal lymphopoietin in CD8+ T cell homeostasis.J. Immunol.2008181117699770510.4049/jimmunol.181.11.769919017958
    [Google Scholar]
  38. RedhuN.S. GounniA.S. Function and mechanisms of TSLP / TSLPR complex in asthma and COPD.Clin. Exp. Allergy2012427994100510.1111/j.1365‑2222.2011.03919.x22168549
    [Google Scholar]
  39. KashyapM. RochmanY. SpolskiR. SamselL. LeonardW.J. Thymic stromal lymphopoietin is produced by dendritic cells.J. Immunol.201118731207121110.4049/jimmunol.110035521690322
    [Google Scholar]
  40. RochmanY. KashyapM. RobinsonG.W. SakamotoK. Gomez-RodriguezJ. WagnerK.U. LeonardW.J. Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7–induced signaling.Proc. Natl. Acad. Sci. USA201010745194551946010.1073/pnas.100827110720974963
    [Google Scholar]
  41. LuN. WangY.H. WangY.H. ArimaK. HanabuchiS. LiuY.J. TSLP and IL-7 use two different mechanisms to regulate human CD4+ T cell homeostasis.J. Exp. Med.2009206102111211910.1084/jem.2009015319770269
    [Google Scholar]
  42. WestE.E. KashyapM. LeonardW.J. TSLP: A key regulator of asthma pathogenesis.Drug Discov. Today Dis. Mech.201293-4e83e8810.1016/j.ddmec.2012.09.00324348685
    [Google Scholar]
  43. ZhouB. ComeauM.R. SmedtT.D. LiggittH.D. DahlM.E. LewisD.B. GyarmatiD. AyeT. CampbellD.J. ZieglerS.F. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice.Nat. Immunol.20056101047105310.1038/ni124716142237
    [Google Scholar]
  44. YingS. O’ConnorB. RatoffJ. MengQ. MallettK. CousinsD. RobinsonD. ZhangG. ZhaoJ. LeeT.H. CorriganC. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity.J. Immunol.2005174128183819010.4049/jimmunol.174.12.818315944327
    [Google Scholar]
  45. LeeH.C. ZieglerS.F. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFκB.Proc. Natl. Acad. Sci. USA2007104391491910.1073/pnas.060730510417213320
    [Google Scholar]
  46. MangelsdorfD.J. ThummelC. BeatoM. HerrlichP. SchützG. UmesonoK. BlumbergB. KastnerP. MarkM. ChambonP. EvansR.M. The nuclear receptor superfamily: The second decade.Cell199583683583910.1016/0092‑8674(95)90199‑X8521507
    [Google Scholar]
  47. SzantoA. NarkarV. ShenQ. UrayI.P. DaviesP.J.A. NagyL. Retinoid X receptors: X-ploring their (patho)physiological functions.Cell Death Differ.200411S2Suppl. 2S126S14310.1038/sj.cdd.440153315608692
    [Google Scholar]
  48. FrancisG.A. FayardE. PicardF. AuwerxJ. Nuclear receptors and the control of metabolism.Annu. Rev. Physiol.200365126131110.1146/annurev.physiol.65.092101.14252812518001
    [Google Scholar]
  49. HeymanR.A. MangelsdorfD.J. DyckJ.A. SteinR.B. EicheleG. EvansR.M. ThallerC. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor.Cell199268239740610.1016/0092‑8674(92)90479‑V1310260
    [Google Scholar]
  50. KrezelW. DupéV. MarkM. DierichA. KastnerP. ChambonP. RXR gamma null mice are apparently normal and compound RXR alpha +/-/RXR beta -/-/RXR gamma -/- mutant mice are viable.Proc. Natl. Acad. Sci. USA199693179010901410.1073/pnas.93.17.90108799145
    [Google Scholar]
  51. KastnerP. MarkM. LeidM. GansmullerA. ChinW. GrondonaJ.M. DécimoD. KrezelW. DierichA. ChambonP. Abnormal spermatogenesis in RXR beta mutant mice.Genes Dev.1996101809210.1101/gad.10.1.808557197
    [Google Scholar]
  52. MascrezB MarkM KrezelW DupéV LeMeurM GhyselinckNB ChambonP Differential contributions of AF-1 and AF-2 activities to the developmental functions of RXRαDevelopment.20011281120496210.1242/dev.128.11.2049
    [Google Scholar]
  53. LiM. ChibaH. WarotX. MessaddeqN. GérardC. ChambonP. MetzgerD. RXRα ablation in skin keratinocytes results in alopecia and epidermal alterations.Development2001128567568810.1242/dev.128.5.67511171393
    [Google Scholar]
  54. LiM. MessaddeqN. TeletinM. PasqualiJ.L. MetzgerD. ChambonP. Retinoid X receptor ablation in adult mouse keratinocytes generates an atopic dermatitis triggered by thymic stromal lymphopoietin.Proc. Natl. Acad. Sci. USA200510241147951480010.1073/pnas.050738510216199515
    [Google Scholar]
  55. LeeH.C. HeadleyM.B. IsekiM. IkutaK. ZieglerS.F. Cutting edge: Inhibition of NF-kappaB-mediated TSLP expression by retinoid X receptor.J. Immunol.200818185189519310.4049/jimmunol.181.8.518918832669
    [Google Scholar]
  56. KatoA. FavoretoS.Jr AvilaP.C. SchleimerR.P. TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells.J. Immunol.200717921080108710.4049/jimmunol.179.2.108017617600
    [Google Scholar]
  57. LiM. HenerP. ZhangZ. KatoS. MetzgerD. ChambonP. Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis.Proc. Natl. Acad. Sci. USA200610331117361174110.1073/pnas.060457510316880407
    [Google Scholar]
  58. XiaoJ.H. FengX. DiW. PengZ-H. LiL.A. ChambonP. VoorheesJ.J. Identification of heparin-binding EGF-like growth factor as a target in intercellular regulation of epidermal basal cell growth by suprabasal retinoic acid receptors.EMBO J.19991861539154810.1093/emboj/18.6.153910075925
    [Google Scholar]
  59. ImakadoS. BickenbachJ.R. BundmanD.S. RothnagelJ.A. AttarP.S. WangX.J. WalczakV.R. WisniewskiS. PoteJ. GordonJ.S. Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function.Genes Dev.19959331732910.1101/gad.9.3.3177867929
    [Google Scholar]
  60. FisherGJ VoorheesJJ Molecular mechanisms of retinoid actions in skin.FASEB J.199610910021310.1096/fasebj.10.9.8801161
    [Google Scholar]
  61. SoumelisV. RecheP.A. KanzlerH. YuanW. EdwardG. HomeyB. GillietM. HoS. AntonenkoS. LauermaA. SmithK. GormanD. ZurawskiS. AbramsJ. MenonS. McClanahanT. Waal-MalefytR. BazanF. KasteleinR.A. LiuY.J. Human epithelial cells trigger dendritic cell–mediated allergic inflammation by producing TSLP.Nat. Immunol.20023767368010.1038/ni80512055625
    [Google Scholar]
  62. BarnesP.J. Inhaled corticosteroids.Pharmaceuticals20103351454010.3390/ph303051427713266
    [Google Scholar]
  63. BarnesP.J. How corticosteroids control inflammation: Quintiles Prize Lecture 2005.Br. J. Pharmacol.2006148324525410.1038/sj.bjp.070673616604091
    [Google Scholar]
  64. RhenT. CidlowskiJ.A. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs.N. Engl. J. Med.2005353161711172310.1056/NEJMra05054116236742
    [Google Scholar]
  65. LaneS.J. ArmJ.P. StaynovD.Z. LeeT.H. Chemical mutational analysis of the human glucocorticoid receptor cDNA in glucocorticoid-resistant bronchial asthma.Am. J. Respir. Cell Mol. Biol.1994111424810.1165/ajrcmb.11.1.80183378018337
    [Google Scholar]
  66. AdcockIM LaneSJ BrownCR PetersMJ LeeTH BarnesPJ Differences in binding of glucocorticoid receptor to DNA in steroid-resistant asthma.J. Immunol.199515473500350510.4049/jimmunol.154.7.3500
    [Google Scholar]
  67. SherE.R. LeungD.Y. SursW. KamJ.C. ZiegG. KamadaA.K. SzeflerS.J. Steroid-resistant asthma. Cellular mechanisms contributing to inadequate response to glucocorticoid therapy.J. Clin. Invest.1994931333910.1172/JCI1169638282803
    [Google Scholar]
  68. IrusenE. MatthewsJ.G. TakahashiA. BarnesP.J. ChungK.F. AdcockI.M. p38 Mitogen-activated protein kinase–induced glucocorticoid receptor phosphorylation reduces its activity: Role in steroid-insensitive asthma.J. Allergy Clin. Immunol.2002109464965710.1067/mai.2002.12246511941315
    [Google Scholar]
  69. NelsonH.S. LeungD.Y.M. BloomJ.W. Update on glucocorticoid action and resistance.J. Allergy Clin. Immunol.2003111132210.1067/mai.2003.9712532089
    [Google Scholar]
  70. MatthewsJ. ItoK. BarnesP. AdcockI. Corticosteroid-resistant and corticosteroid-dependent asthma: two clinical phenotypes can be associated with the same in vitro defects in nuclear translocation and acetylation of histone 4.Am. J. Respir. Crit. Care Med.2000161A189
    [Google Scholar]
  71. BarnesP.J. Corticosteroid resistance in airway disease.Proc. Am. Thorac. Soc.20041326426810.1513/pats.200402‑014MS16113444
    [Google Scholar]
  72. RogatskyI. LoganS.K. GarabedianM.J. Antagonism of glucocorticoid receptor transcriptional activation by the c-Jun N-terminal kinase.Proc. Natl. Acad. Sci. USA19989552050205510.1073/pnas.95.5.20509482836
    [Google Scholar]
  73. SavoryJ.G.A. HsuB. LaquianI.R. GiffinW. ReichT. HachéR.J.G. LefebvreY.A. Discrimination between NL1- and NL2-mediated nuclear localization of the glucocorticoid receptor.Mol. Cell. Biol.19991921025103710.1128/MCB.19.2.10259891038
    [Google Scholar]
  74. AdcockI.M. LaneS.J. BrownC.R. LeeT.H. BarnesP.J. Abnormal glucocorticoid receptor-activator protein 1 interaction in steroid-resistant asthma.J. Exp. Med.199518261951195810.1084/jem.182.6.19517500041
    [Google Scholar]
  75. LaneS.J. AdcockI.M. RichardsD. HawrylowiczC. BarnesP.J. LeeT.H. Corticosteroid-resistant bronchial asthma is associated with increased c-fos expression in monocytes and T lymphocytes.J. Clin. Invest.1998102122156216410.1172/JCI26809854051
    [Google Scholar]
  76. ShaulianE. KarinM. AP-1 as a regulator of cell life and death.Nat. Cell Biol.200245E131E13610.1038/ncb0502‑e13111988758
    [Google Scholar]
  77. SousaA.R. LaneS.J. SohC. LeeT.H. In vivo resistance to corticosteroids in bronchial asthma is associated with enhanced phosyphorylation of JUN N-terminal kinase and failure of prednisolone to inhibit JUN N-terminal kinase phosphorylation.J. Allergy Clin. Immunol.1999104356557410.1016/S0091‑6749(99)70325‑810482829
    [Google Scholar]
  78. WangC-Y. BassukA.G. BoiseL.H. ThompsonC.B. BravoR. LeidenJ.M. Activation of the granulocyte-macrophage colony-stimulating factor promoter in T cells requires cooperative binding of Elf-1 and AP-1 transcription factors.Mol. Cell. Biol.1994142115311598289796
    [Google Scholar]
  79. de GrootR.P. van DijkT.B. CaldenhovenE. CofferP.J. RaaijmakersJ.M. LammersJ.W.J. KoendermanL. Activation of 12-O-tetradecanoylphorbol-13-acetate response element- and dyad symmetry element-dependent transcription by interleukin-5 is mediated by Jun N-terminal kinase/stress-activated protein kinase kinases.J. Biol. Chem.199727242319232510.1074/jbc.272.4.23198999940
    [Google Scholar]
  80. KabataH. MoroK. FukunagaK. SuzukiY. MiyataJ. MasakiK. BetsuyakuT. KoyasuS. AsanoK. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation.Nat. Commun.201341267510.1038/ncomms367524157859
    [Google Scholar]
  81. ShikotraA ChoyDF OhriCM DoranE ButlerC HargadonB ShelleyM AbbasAR AustinCD JackmanJ Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma.J. Allergy Clin. Immunol.2012129110411110.1016/j.jaci.2011.08.031
    [Google Scholar]
  82. FerreiraD.S. AnnoniR. SilvaL.F.F. ButtignolM. SantosA.B.G. MedeirosM.C.R. AndradeL.N.S. YickC.Y. SterkP.J. SampaioJ.L.M. DolhnikoffM. WenzelS.E. MauadT. Toll-like receptors 2, 3 and 4 and thymic stromal lymphopoietin expression in fatal asthma.Clin. Exp. Allergy201242101459147110.1111/j.1365‑2222.2012.04047.x22994343
    [Google Scholar]
  83. TakaiT. TSLP expression: Cellular sources, triggers, and regulatory mechanisms.Allergol. Int.201261131710.2332/allergolint.11‑RAI‑039522270071
    [Google Scholar]
  84. RochmanY. SpolskiR. LeonardW.J. New insights into the regulation of T cells by γc family cytokines.Nat. Rev. Immunol.20099748049010.1038/nri258019543225
    [Google Scholar]
  85. PandeyA. OzakiK. BaumannH. LevinS.D. PuelA. FarrA.G. ZieglerS.F. LeonardW.J. LodishH.F. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin.Nat. Immunol.200011596410.1038/7692310881176
    [Google Scholar]
  86. FurusawaJ. MoroK. MotomuraY. OkamotoK. ZhuJ. TakayanagiH. KuboM. KoyasuS. Critical role of p38 and GATA3 in natural helper cell function.J. Immunol.201319141818182610.4049/jimmunol.130037923851685
    [Google Scholar]
  87. BraidoF Failure in asthma control: Reasons and consequences.Scientifica.2013201354925210.1155/2013/549252
    [Google Scholar]
  88. ChenY.L. ChiangB.L. Targeting TSLP with shRNA alleviates airway inflammation and decreases epithelial CCL17 in a murine model of asthma.Mol. Ther. Nucleic Acids201655e31610.1038/mtna.2016.2927138176
    [Google Scholar]
  89. WilsonS.R. ThéL. BatiaL.M. BeattieK. KatibahG.E. McClainS.P. PellegrinoM. EstandianD.M. BautistaD.M. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch.Cell2013155228529510.1016/j.cell.2013.08.05724094650
    [Google Scholar]
  90. WangH. LiuK. GengM. GaoP. WuX. HaiY. LiY. LiY. LuoL. HayesJ.D. WangX.J. TangX. RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2.Cancer Res.201373103097310810.1158/0008‑5472.CAN‑12‑338623612120
    [Google Scholar]
  91. LiuS VermaM MichalecL LiuW SripadaA RollinsD GoodJ ItoY ChuH GorskaMM Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin.J. Allergy Clin. Immunol.2018141125726810.1016/j.jaci.2017.03.032
    [Google Scholar]
  92. PelaiaC. PelaiaG. CrimiC. MaglioA. GallelliL. TerraccianoR. VatrellaA. Tezepelumab: A potential new biological therapy for severe refractory asthma.Int. J. Mol. Sci.2021229436910.3390/ijms2209436933922072
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673268237231124064413
Loading
/content/journals/cmc/10.2174/0109298673268237231124064413
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test