Skip to content
2000
Volume 32, Issue 12
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

The bindings of several ribonucleoside triphosphate (NTP) inhibitors to the RNA-dependent RNA polymerase (RdRp) of the Zika virus (ZIKV) are studied herein to identify potential drug-like candidates that can inhibit the replication of the viral genome by RdRp.

Methods

In this study, a guanosine triphosphate (GTP) bound to RdRp structure is generated to model the replication initiation state of RdRp. Subsequently, the bindings of 30 NTP inhibitors to the GTP binding site of RdRp are studied in detail by using the molecular docking method. Based on the docking scores, four NTP inhibitors, such as 2'-C-methyl-adenosine-5′-triphosphate (mATP), 7-deaza-2'-C-methyladenosine-TP (daza-mATP), 1-N6-Ethenoadenosine-5′-triphosphate (eATP), and Remdesivir-5′-triphosphate (RTP) are shortlisted for further analysis by employing molecular dynamics simulations and binding free-energy methods.

Results

These inhibitors are found to bind to RdRp quite strongly, as evident from their relative binding free energies that lie between -31.54 ± 4.54 to -89.46 ± 4.58 kcal/mol. Among these drugs, the binding of RTP to the GTP site of RdRp would generate the most stable complex, which would be about 45 kcal/mol more stable than the binding of GTP to RdRp.

Conclusion

Due to the highest stability of the RTP-RdRp complex, it is likely that RTP would inhibit the RdRp activities efficiently. However, due to the strong binding of other NTPs to RdRp, they may also inhibit RdRp activities. Nevertheless, experimental evaluations of the potency of these drugs against the ZIKV RdRp are required before their clinical use.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673259914231213052438
2024-02-12
2025-09-04
Loading full text...

Full text loading...

References

  1. SharmaV. SharmaM. DhullD. SharmaY. KaushikS. KaushikS. Zika virus: An emerging challenge to public health worldwide.Can. J. Microbiol.2020662879810.1139/cjm‑2019‑033131682478
    [Google Scholar]
  2. AgumaduV.C. RamphulK. Zika Virus: A review of literature.Cureus2018107e302530254814
    [Google Scholar]
  3. ParraB. LizarazoJ. Jiménez-ArangoJ.A. Zea-VeraA.F. González-ManriqueG. VargasJ. AngaritaJ.A. ZuñigaG. Lopez-GonzalezR. BeltranC.L. RizcalaK.H. MoralesM.T. PachecoO. OspinaM.L. KumarA. CornblathD.R. MuñozL.S. OsorioL. BarrerasP. PardoC.A. Guillain–Barré syndrome associated with Zika virus infection in Colombia.N. Engl. J. Med.2016375161513152310.1056/NEJMoa160556427705091
    [Google Scholar]
  4. MécharlesS. HerrmannC. PoullainP. TranT.H. DeschampsN. MathonG. LandaisA. BreurecS. LannuzelA. Acute myelitis due to Zika virus infection.Lancet201638710026148110.1016/S0140‑6736(16)00644‑926946926
    [Google Scholar]
  5. BesnardM. Eyrolle-GuignotD. Guillemette-ArturP. LastereS. Bost-BezeaudF. MarcelisL. AbadieV. GarelC. MoutardM. L. JouannicJ. M. RozenbergF. Leparc-GoffartI. MalletH. P. Congenital cerebral malformations and dysfunction in fetuses and newborns following the 2013 to 2014 Zika virus epidemic in French Polynesia.Eurosurveillance2016211330181
    [Google Scholar]
  6. AntoniouE. OrovouE. SarellaA. IliadouM. RigasN. PalaskaE. IatrakisG. DaglaM. Zika virus and the risk of developing microcephaly in infants: A systematic review.Int. J. Environ. Res. Public Health20201711380610.3390/ijerph1711380632471131
    [Google Scholar]
  7. ChibuezeE.C. TiradoV. LopesK.S. BalogunO.O. TakemotoY. SwaT. DagvadorjA. NagataC. MorisakiN. MenendezC. OtaE. MoriR. OladapoO.T. Zika virus infection in pregnancy: A systematic review of disease course and complications.Reprod. Health20171412810.1186/s12978‑017‑0285‑628241773
    [Google Scholar]
  8. WenZ. SongH. MingG. How does Zika virus cause microcephaly?Genes Dev.201731984986110.1101/gad.298216.11728566536
    [Google Scholar]
  9. ChenQ. GouillyJ. FerratY.J. EspinoA. GlaziouQ. CartronG. El CostaH. Al-DaccakR. Jabrane-FerratN. Metabolic reprogramming by Zika virus provokes inflammation in human placenta.Nat. Commun.2020111296710.1038/s41467‑020‑16754‑z32528049
    [Google Scholar]
  10. GullandA. Zika virus is a global public health emergency, declares WHO.BMJ2016352i65710.1136/bmj.i65726839247
    [Google Scholar]
  11. BernatchezJ.A. TranL.T. LiJ. LuanY. Siqueira-NetoJ.L. LiR. Drugs for the treatment of Zika virus infection.J. Med. Chem.202063247048910.1021/acs.jmedchem.9b0077531549836
    [Google Scholar]
  12. MorabitoK.M. GrahamB.S. Zika virus vaccine development.J. Infect. Dis.2017216Suppl. 10S957S96310.1093/infdis/jix46429267918
    [Google Scholar]
  13. ValenteA.P. MoraesA.H. Zika virus proteins at an atomic scale: how does structural biology help us to understand and develop vaccines and drugs against Zika virus infection?J. Venom. Anim. Toxins Incl. Trop. Dis.201925e2019001310.1590/1678‑9199‑jvatitd‑2019‑001331523227
    [Google Scholar]
  14. WangB. ThurmondS. HaiR. SongJ. Structure and function of Zika virus NS5 protein: Perspectives for drug design.Cell. Mol. Life Sci.20187517231736
    [Google Scholar]
  15. ZhouY. RayD. ZhaoY. DongH. RenS. LiZ. GuoY. BernardK.A. ShiP.Y. LiH. Structure and function of flavivirus NS5 methyltransferase.J. Virol.20078183891390310.1128/JVI.02704‑0617267492
    [Google Scholar]
  16. CoutardB. BarralK. LichièreJ. SeliskoB. MartinB. AouadiW. LombardiaM.O. DebartF. VasseurJ.J. GuillemotJ.C. CanardB. DecrolyE. Zika virus methyltransferase: Structure and functions for drug design perspectives.J. Virol.2017915e02202-1610.1128/JVI.02202‑1628031359
    [Google Scholar]
  17. ZhangC. FengT. ChengJ. LiY. YinX. ZengW. JinX. LiY. GuoF. JinT. Structure of the NS5 methyltransferase from Zika virus and implications in inhibitor design.Biochem. Biophys. Res. Commun.2017492462463010.1016/j.bbrc.2016.11.09827866982
    [Google Scholar]
  18. NascimentoI.J.S. Santos-JúniorP.F.S. AquinoT.M. Araújo-JúniorJ.X. Silva-JúniorE.F. Insights on dengue and zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors.Eur. J. Med. Chem.202122411369810.1016/j.ejmech.2021.11369834274831
    [Google Scholar]
  19. KumarR. MishraS. Shreya MauryaS.K. Recent advances in the discovery of potent RNA-dependent RNA-polymerase (RdRp) inhibitors targeting viruses.RSC Med. Chem.202112330632010.1039/D0MD00318B34046618
    [Google Scholar]
  20. GrantA. PoniaS.S. TripathiS. BalasubramaniamV. MiorinL. SourisseauM. SchwarzM.C. Sánchez-SecoM.P. EvansM.J. BestS.M. García-SastreA. Zika virus targets human STAT2 to inhibit type I interferon signaling.Cell Host Microbe201619688289010.1016/j.chom.2016.05.00927212660
    [Google Scholar]
  21. KumarA. HouS. AiroA.M. LimontaD. MancinelliV. BrantonW. PowerC. HobmanT.C. Zika virus inhibits type-I interferon production and downstream signaling.EMBO Rep.201617121766177510.15252/embr.20164262727797853
    [Google Scholar]
  22. DuanW. SongH. WangH. ChaiY. SuC. QiJ. ShiY. GaoG.F. The crystal structure of Zika virus NS 5 reveals conserved drug targets.EMBO J.201736791993310.15252/embj.20169624128254839
    [Google Scholar]
  23. Ranjith-KumarC.T. GutshallL. KimM.J. SariskyR.T. KaoC.C. Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases.J. Virol.20027624125261253610.1128/JVI.76.24.12526‑12536.200212438578
    [Google Scholar]
  24. LiX. WangL. WangX. ChenW. YangT. SongJ. LiuH. ChengL. Structure of RdRps within a transcribing dsRNA virus provides insights into the mechanisms of RNA synthesis.J. Mol. Biol.2020432235836610.1016/j.jmb.2019.09.01531629769
    [Google Scholar]
  25. SeliskoB. DutartreH. GuillemotJ.C. DebarnotC. BenarrochD. KhromykhA. DesprèsP. EgloffM.P. CanardB. Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases.Virology2006351114515810.1016/j.virol.2006.03.02616631221
    [Google Scholar]
  26. JenaN.R. Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19.Phys. Chem. Chem. Phys.20202248281152812210.1039/D0CP05297C33290476
    [Google Scholar]
  27. JenaN.R. Drug targets, mechanisms of drug action, and therapeutics against SARS-CoV-2.Chem. Phys. Impact2021210001110.1016/j.chphi.2021.100011
    [Google Scholar]
  28. BravoJ.P.K. DangerfieldT.L. TaylorD.W. JohnsonK.A. Remdesivir is a delayed translocation inhibitor of SARS-CoV-2 replication.Mol. Cell202181715481552.e410.1016/j.molcel.2021.01.03533631104
    [Google Scholar]
  29. ChenY.L. YokokawaF. ShiP.Y. The search for nucleoside/nucleotide analog inhibitors of dengue virus.Antiviral Res.2015122121910.1016/j.antiviral.2015.07.01026241002
    [Google Scholar]
  30. LeeJ.C. TsengC.K. WuY.H. Kaushik-BasuN. LinC.K. ChenW.C. WuH.N. Characterization of the activity of 2′-C-methylcytidine against dengue virus replication.Antiviral Res.20151161910.1016/j.antiviral.2015.01.00225614455
    [Google Scholar]
  31. WangG. LimS.P. ChenY.L. HunzikerJ. RaoR. GuF. SehC.C. GhafarN.A. XuH. ChanK. LinX. SaundersO.L. FenauxM. ZhongW. ShiP.Y. YokokawaF. Structure-activity relationship of uridine-based nucleoside phosphoramidate prodrugs for inhibition of dengue virus RNA-dependent RNA polymerase.Bioorg. Med. Chem. Lett.201828132324232710.1016/j.bmcl.2018.04.06929801997
    [Google Scholar]
  32. OkanoY. Saito-TarashimaN. KurosawaM. IwabuA. OtaM. WatanabeT. KatoF. HishikiT. FujimuroM. MinakawaN. Synthesis and biological evaluation of novel imidazole nucleosides as potential anti-dengue virus agents.Bioorg. Med. Chem.201927112181218610.1016/j.bmc.2019.04.01531003866
    [Google Scholar]
  33. KonkolovaE. DejmekM. HřebabeckýH. ŠálaM. BöserleJ. NenckaR. BouraE. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses.Antiviral Res.202018210489910.1016/j.antiviral.2020.10489932763313
    [Google Scholar]
  34. ThamesJ.E. WatersC.D.III ValleC. BassettoM. AouadiW. MartinB. SeliskoB. FalatA. CoutardB. BrancaleA. CanardB. DecrolyE. Seley-RadtkeK.L. Synthesis and biological evaluation of novel flexible nucleoside analogues that inhibit flavivirus replication in vitro.Bioorg. Med. Chem.2020282211571310.1016/j.bmc.2020.11571333128910
    [Google Scholar]
  35. MilisavljevicN. KonkolováE. KozákJ. HodekJ. VeselovskáL. SýkorováV. ČížekK. PohlR. EyerL. SvobodaP. RůžekD. WeberJ. NenckaR. BouřaE. HocekM. Antiviral activity of 7-substituted 7-deazapurine ribonucleosides, monophosphate prodrugs, and triphoshates against emerging RNA viruses.ACS Infect. Dis.20217247147810.1021/acsinfecdis.0c0082933395259
    [Google Scholar]
  36. ZandiK. BassitL. AmblardF. CoxB.D. HassandarvishP. MoghaddamE. YuehA. Libanio RodriguesG.O. PassosI. CostaV.V. AbuBakarS. ZhouL. KohlerJ. TeixeiraM.M. SchinaziR.F. Nucleoside analogs with selective antiviral activity against dengue fever and Japanese encephalitis viruses.Antimicrob. Agents Chemother.2019637e00397-1910.1128/AAC.00397‑1931061163
    [Google Scholar]
  37. TichýM. PohlR. XuH.Y. ChenY.L. YokokawaF. ShiP.Y. HocekM. Synthesis and antiviral activity of 4,6-disubstituted pyrimido[4,5-b]indole ribonucleosides.Bioorg. Med. Chem.201220206123613310.1016/j.bmc.2012.08.02122985963
    [Google Scholar]
  38. Veel PilayK.P. JasamaiM. ThayanR. SanthanamJ. Syed HassanS. YapW.B. Nucleoside analogs as potential antiviral agents for dengue virus infections.Med. Chem. Res.20172671382138710.1007/s00044‑017‑1863‑4
    [Google Scholar]
  39. YinZ. ChenY.L. SchulW. WangQ.Y. GuF. DuraiswamyJ. KondreddiR.R. NiyomrattanakitP. LakshminarayanaS.B. GohA. XuH.Y. LiuW. LiuB. LimJ.Y.H. NgC.Y. QingM. LimC.C. YipA. WangG. ChanW.L. TanH.P. LinK. ZhangB. ZouG. BernardK.A. GarrettC. BeltzK. DongM. WeaverM. HeH. PichotaA. DartoisV. KellerT.H. ShiP.Y. An adenosine nucleoside inhibitor of dengue virus.Proc. Natl. Acad. Sci. USA200910648204352043910.1073/pnas.090701010619918064
    [Google Scholar]
  40. EyerL. FojtíkováM. NenckaR. RudolfI. HubálekZ. RuzekD. RNA-dependent RNA polymerase inhibitor 7-deaza-2′-C-methyladenosine prevents death in a mouse model of West Nile Virus infection.Antimicrob. Agents Chemother.2019633e02093-1810.1128/AAC.02093‑1830642926
    [Google Scholar]
  41. HercíkK. KozakJ. ŠálaM. DejmekM. HřebabeckýH. ZborníkováE. SmolaM. RuzekD. NenckaR. BouraE. Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase.Antiviral Res.201713713113310.1016/j.antiviral.2016.11.02027902932
    [Google Scholar]
  42. PotisoponS. FerronF. FattoriniV. SeliskoB. CanardB. Substrate selectivity of Dengue and Zika virus NS5 polymerase towards 2′-modified nucleotide analogues.Antiviral Res.2017140253610.1016/j.antiviral.2016.12.02128041959
    [Google Scholar]
  43. FerreiraA.C. Zaverucha-do-ValleC. ReisP.A. Barbosa-LimaG. VieiraY.R. MattosM. SilvaP.P. SacramentoC. de Castro Faria NetoH.C. CampanatiL. TanuriA. BrüningK. BozzaF.A. BozzaP.T. SouzaT.M.L. Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae.Sci. Rep.201771940910.1038/s41598‑017‑09797‑828842610
    [Google Scholar]
  44. KapteinS.J.F. NeytsJ. Towards antiviral therapies for treating dengue virus infections.Curr. Opin. Pharmacol.2016301710.1016/j.coph.2016.06.00227367615
    [Google Scholar]
  45. LiuP. SharonA. ChuC.K. Fluorinated nucleosides: Synthesis and biological implication.J. Fluor. Chem.2008129974376610.1016/j.jfluchem.2008.06.00719727318
    [Google Scholar]
  46. AmblardF. LeCherJ.C. DeR. GohS.L. LiC. KasthuriM. BiteauN. ZhouL. TberZ. Downs-BowenJ. ZandiK. SchinaziR.F. Synthesis of novel N 4-hydrocytidine analogs as potential anti-SARS-CoV-2 agents.Pharmaceuticals2022159114410.3390/ph1509114436145365
    [Google Scholar]
  47. UdwadiaZ.F. SinghP. BarkateH. PatilS. RangwalaS. PendseA. KadamJ. WuW. CaractaC.F. TandonM. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial.Int. J. Infect. Dis.2021103627110.1016/j.ijid.2020.11.14233212256
    [Google Scholar]
  48. Gharbi-AyachiA. SanthanakrishnanS. WongY.H. ChanK.W.K. TanS.T. BatesR.W. VasudevanS.G. El SahiliA. LescarJ. Non-nucleoside inhibitors of Zika virus RNA-dependent RNA polymerase.J. Virol.20209421e00794-2010.1128/JVI.00794‑2032796069
    [Google Scholar]
  49. SuranaP. SatchidanandamV. NairD.T. RNA-dependent RNA polymerase of Japanese encephalitis virus binds the initiator nucleotide GTP to form a mechanistically important pre-initiation state.Nucleic Acids Res.20144242758277310.1093/nar/gkt110624293643
    [Google Scholar]
  50. JonesG. WillettP. GlenR.C. LeachA.R. TaylorR. Development and validation of a genetic algorithm for flexible docking 1 Edited by F. E. Cohen.J. Mol. Biol.1997267372774810.1006/jmbi.1996.08979126849
    [Google Scholar]
  51. VerdonkM.L. ColeJ.C. HartshornM.J. MurrayC.W. TaylorR.D. Improved protein-ligand docking using GOLD.Proteins200352460962310.1002/prot.1046512910460
    [Google Scholar]
  52. Scalable algorithms for molecular dynamics simulations on commodity clusters.SC '06: Proceedings of the 2006 ACM/IEEE Conference on SupercomputingTampa, FL, USA, 2006, pp. 43-43.
    [Google Scholar]
  53. Schrödinger Release 2021-4: Desmond molecular dynamics system,Maestro-Desmond Interoperability ToolsResearch, New York, NY, 2021, Schrödinger.
    [Google Scholar]
  54. LuC. WuC. GhoreishiD. ChenW. WangL. DammW. RossG.A. DahlgrenM.K. RussellE. Von BargenC.D. AbelR. FriesnerR.A. HarderE.D. OPLS4: Improving force field accuracy on challenging regimes of chemical space.J. Chem. Theory Comput.20211774291430010.1021/acs.jctc.1c0030234096718
    [Google Scholar]
  55. ZielkiewiczJ. Structural properties of water: Comparison of the SPC, SPCE, TIP4P, and TIP5P models of water.J. Chem. Phys.20051231010450110.1063/1.201863716178604
    [Google Scholar]
  56. SaputroD.R.S. WidyaningsihP. Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method for the parameter estimation on geographically weighted ordinal logistic regression model (GWOLR).AIP Conf. Proc.2017186804000910.1063/1.4995124
    [Google Scholar]
  57. PoschH.A. HooverW.G. VeselyF.J. Canonical dynamics of the Nosé oscillator: Stability, order, and chaos.Phys. Rev. A Gen. Phys.19863364253426510.1103/PhysRevA.33.42539897167
    [Google Scholar]
  58. MartynaG.J. TobiasD.J. KleinM.L. Constant pressure molecular dynamics algorithms.J. Chem. Phys.199410154177418910.1063/1.467468
    [Google Scholar]
  59. PetersenH.G. Accuracy and efficiency of the particle mesh Ewald method.J. Chem. Phys.199510393668367910.1063/1.470043
    [Google Scholar]
  60. JenaN.R. PantS. SrivastavaH.K. Artificially expanded genetic information systems (AEGISs) as potent inhibitors of the RNA-dependent RNA polymerase of the SARS- CoV-2.J. Biomol. Struct. Dyn.202240146381639710.1080/07391102.2021.188311233565387
    [Google Scholar]
  61. PantS. JenaN.R. Jena, N.R. Inhibition of the RNA-dependent RNA polymerase of the SARS-CoV-2 by short peptide inhibitors.Eur. J. Pharm. Sci.202116710601210.1016/j.ejps.2021.10601234543728
    [Google Scholar]
  62. PantS. JenaN.R. C-terminal extended hexapeptides as potent inhibitors of the NS2B-NS3 protease of the Zika virus.Front. Med.2022992106010.3389/fmed.2022.92106035872792
    [Google Scholar]
  63. YapT.L. XuT. ChenY.L. MaletH. EgloffM.P. CanardB. VasudevanS.G. LescarJ. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution.J. Virol.20078194753476510.1128/JVI.02283‑0617301146
    [Google Scholar]
  64. MigliaccioG. TomassiniJ.E. CarrollS.S. TomeiL. AltamuraS. BhatB. BartholomewL. BossermanM.R. CeccacciA. ColwellL.F. CorteseR. De FrancescoR. EldrupA.B. GettyK.L. HouX.S. LaFeminaR.L. LudmererS.W. MacCossM. McMastersD.R. StahlhutM.W. OlsenD.B. HazudaD.J. FloresO.A. Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro.J. Biol. Chem.200327849491644917010.1074/jbc.M30504120012966103
    [Google Scholar]
  65. ZhangL. ZhouR. Structural basis of the potential binding mechanism of Remdesivir to SARS-CoV-2 RNA-dependent RNA polymerase.J. Phys. Chem. B2020124326955696210.1021/acs.jpcb.0c0419832521159
    [Google Scholar]
  66. GodoyA.S. LimaG.M.A. OliveiraK.I.Z. TorresN.U. MalufF.V. GuidoR.V.C. OlivaG. Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase.Nat. Commun.2017811476410.1038/ncomms1476428345596
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673259914231213052438
Loading
/content/journals/cmc/10.2174/0109298673259914231213052438
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test