Skip to content
2000
Volume 32, Issue 22
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Long non-coding RNA (LncRNA) is a type of non-coding RNA that plays an important role in the body and accounts for the majority of RNA, and this non-coding RNA can regulate disease onset and progression with its wide range of functions. LncRNA Xist, also known as the long non-coding RNA X inactive specific transcript, is a member of them. It can regulate the development of organismal diseases by acting downstream on specific target genes. In addition to this, it can also influence disease onset and progression by acting on apoptosis, migration, invasion, and other processes. It has been shown that XIST plays an important role in the development of inflammation.

Objective

To explore the role played by XIST in inflammation-related diseases and to explore its mechanism of action.

Methods

This paper summarizes and analyzes the role played by XIST in inflammation-related diseases by conducting a search in PubMed.

Conclusion

In this paper, we summarize the mechanism of action of XIST in different types of inflammation-related diseases and propose new protocols for the future clinical treatment of these diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673270188231122065649
2025-07-01
2025-09-03
Loading full text...

Full text loading...

References

  1. VanceK.W. PontingC.P. Transcriptional regulatory functions of nuclear long noncoding RNAs.Trends Genet.201430834835510.1016/j.tig.2014.06.00124974018
    [Google Scholar]
  2. DykesI.M. EmanueliC. Transcriptional and post-transcriptional gene regulation by long non-coding RNA.Genom. Proteom. Bioinform.201715317718610.1016/j.gpb.2016.12.00528529100
    [Google Scholar]
  3. ShiX. SunM. LiuH. YaoY. SongY. Long non-coding RNAs: A new frontier in the study of human diseases.Cancer Lett.2013339215916610.1016/j.canlet.2013.06.01323791884
    [Google Scholar]
  4. BrockdorffN. Localized accumulation of Xist RNA in X chromosome inactivation.Open Biol.201991219021310.1098/rsob.19021331795917
    [Google Scholar]
  5. BrownC.J. BallabioA. RupertJ.L. LafreniereR.G. GrompeM. TonlorenziR. WillardH.F. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome.Nature19913496304384410.1038/349038a01985261
    [Google Scholar]
  6. SadoT. BrockdorffN. Advances in understanding chromosome silencing by the long non-coding RNA Xist.Philos. Trans. R. Soc. Lond. B Biol. Sci.201336816092011032510.1098/rstb.2011.032523166390
    [Google Scholar]
  7. CeraseA. PintacudaG. TattermuschA. AvnerP. Xist localization and function: New insights from multiple levels.Genome Biol.201516116610.1186/s13059‑015‑0733‑y26282267
    [Google Scholar]
  8. LodaA. HeardE. Xist RNA in action: Past, present, and future.PLoS Genet.2019159e100833310.1371/journal.pgen.100833331537017
    [Google Scholar]
  9. ZhongX. MaX. ZhangL. LiY. LiY. HeR. MIAT promotes proliferation and hinders apoptosis by modulating miR-181b/STAT3 axis in ox-LDL-induced atherosclerosis cell models.Biomed. Pharmacother.2018971078108510.1016/j.biopha.2017.11.05229136944
    [Google Scholar]
  10. YangK. XueY. GaoX. LncRNA XIST promotes atherosclerosis by regulating miR-599/TLR4 axis.Inflammation202144396597310.1007/s10753‑020‑01391‑x33566259
    [Google Scholar]
  11. Monroig-BosqueP.C. ShahM.Y. FuX. Fuentes-MatteiE. LingH. IvanC. NouraeeN. HuangB. ChenL. PileczkiV. RedisR.S. JungE.J. ZhangX. LehrerM. NagvekarR. MafraA.C.P. Monroig-BosqueM.M. IrimieA. RiveraC. Dan DumitruC. Berindan-NeagoeI. NikonowiczE.P. ZhangS. CalinG.A. OncomiR-10b hijacks the small molecule inhibitor linifanib in human cancers.Sci. Rep.2018811310610.1038/s41598‑018‑30989‑330166612
    [Google Scholar]
  12. PengH. LuoY. YingY. lncRNA XIST attenuates hypoxia-induced H9c2 cardiomyocyte injury by targeting the miR-122-5p/FOXP2 axis.Mol. Cell. Probes20205010150010.1016/j.mcp.2019.10150031887421
    [Google Scholar]
  13. FanJ.L. ZhuT.T. XueZ.Y. RenW.Q. GuoJ.Q. ZhaoH.Y. ZhangS.L. lncRNA-XIST protects the hypoxia-induced cardiomyocyte injury through regulating the miR-125b-hexokianse 2 axis.In Vitro Cell. Dev. Biol. Anim.202056434935710.1007/s11626‑020‑00459‑032415544
    [Google Scholar]
  14. XieJ. Long noncoding RNA XIST regulates myocardial infarction via miR-486-5p/SIRT1 axis.Appl. Biochem. Biotechnol.2023195272573410.1007/s12010‑022‑04165‑336129595
    [Google Scholar]
  15. WangX. LiX.L. QinL.J. The lncRNA XIST/miR-150-5p/c-Fos axis regulates sepsis-induced myocardial injury via TXNIP-modulated pyroptosis.Lab. Invest.202110191118112910.1038/s41374‑021‑00607‑434045679
    [Google Scholar]
  16. HuangZ.Q. XuW. WuJ.L. LuX. ChenX.M. MicroRNA-374a protects against myocardial ischemia-reperfusion injury in mice by targeting the MAPK6 pathway.Life Sci.201923211661910.1016/j.lfs.2019.11661931265855
    [Google Scholar]
  17. BaiQ. LiY. SongK. HuangJ. QinL. Knockdown of XIST up-regulates 263294miR-340-5p to relieve myocardial ischaemia–reperfusion injury via inhibiting cyclin D1.ESC Heart Fail.2022921050106010.1002/ehf2.1376634970865
    [Google Scholar]
  18. MatthayM.A. ZemansR.L. ZimmermanG.A. ArabiY.M. BeitlerJ.R. MercatA. HerridgeM. RandolphA.G. CalfeeC.S. Acute respiratory distress syndrome.Nat. Rev. Dis. Primers2019511810.1038/s41572‑019‑0069‑030872586
    [Google Scholar]
  19. ParekhD. DancerR.C. ThickettD.R. Acute lung injury.Clin. Med.201111661561810.7861/clinmedicine.11‑6‑61522268322
    [Google Scholar]
  20. LiC. LiuJ.H. SuJ. LinW.J. ZhaoJ.Q. ZhangZ.H. WuQ. LncRNA XIST knockdown alleviates LPS-induced acute lung injury by inactivation of XIST/miR-132-3p/MAPK14 pathway.Mol. Cell. Biochem.2021476124217422910.1007/s11010‑021‑04234‑x34346000
    [Google Scholar]
  21. XuJ. LiH. LvY. ZhangC. ChenY. YuD. Silencing XIST mitigated lipopolysaccharide (LPS)-induced inflammatory injury in human lung fibroblast WI-38 cells through modulating miR-30b-5p/CCL16 axis and TLR4/NF-κB signaling pathway.Open Life Sci.202116110812710.1515/biol‑2021‑000533817304
    [Google Scholar]
  22. GaieskiD.F. EdwardsJ.M. KallanM.J. CarrB.G. Benchmarking the incidence and mortality of severe sepsis in the United States.Crit. Care Med.20134151167117410.1097/CCM.0b013e31827c09f823442987
    [Google Scholar]
  23. SunW. MaM. YuH. YuH. Inhibition of lncRNA X inactivate-specific transcript ameliorates inflammatory pain by suppressing satellite glial cell activation and inflammation by acting as a sponge of miR-146a to inhibit Na v 1.7.J. Cell. Biochem.2018119129888989810.1002/jcb.2731030129228
    [Google Scholar]
  24. ZhangY. ZhuY. GaoG. ZhouZ. Knockdown XIST alleviates LPS-induced WI-38 cell apoptosis and inflammation injury via targeting miR-370-3p/TLR4 in acute pneumonia.Cell Biochem. Funct.201937534835810.1002/cbf.339231066476
    [Google Scholar]
  25. LingL. LuH.T. WangH.F. ShenM.J. ZhangH.B. MicroRNA-203 acts as a potent suppressor in septic shock by alleviating lung injury via inhibition of VNN1.Kidney Blood Press. Res.201944456558210.1159/00050048431340209
    [Google Scholar]
  26. ZhangH. YangK. RenT. HuangY. TangX. GuoW. miR-16-5p inhibits chordoma cell proliferation, invasion and metastasis by targeting Smad3.Cell Death Dis.20189668010.1038/s41419‑018‑0738‑z29880900
    [Google Scholar]
  27. ZhaoJ. ShiW. WangY.L. ChenH. BringasP.Jr DattoM.B. FrederickJ.P. WangX.F. WarburtonD. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice.Am. J. Physiol. Lung Cell. Mol. Physiol.20022823L585L59310.1152/ajplung.00151.200111839555
    [Google Scholar]
  28. YangS.J. ChenH.M. HsiehC.H. HsuJ.T. YehC.N. YehT.S. HwangT.L. JanY.Y. ChenM.F. Akt pathway is required for oestrogen-mediated attenuation of lung injury in a rodent model of cerulein-induced acute pancreatitis.Injury201142763864210.1016/j.injury.2010.07.24220709317
    [Google Scholar]
  29. SongX. LiL. ZhaoY. SongY. Down-regulation of long non-coding RNA XIST aggravates sepsis-induced lung injury by regulating miR-16-5p.Hum. Cell20213451335134510.1007/s13577‑021‑00542‑y33978928
    [Google Scholar]
  30. SuzukiY. CantuE. ChristieJ. Primary graft dysfunction.Semin. Respir. Crit. Care Med.201334330531910.1055/s‑0033‑134847423821506
    [Google Scholar]
  31. PorteousM.K. LeeJ.C. Primary graft dysfunction after lung transplantation.Clin. Chest Med.201738464165410.1016/j.ccm.2017.07.00529128015
    [Google Scholar]
  32. RemijsenQ. BergheT.V. WirawanE. AsselberghB. ParthoensE. De RyckeR. NoppenS. DelforgeM. WillemsJ. VandenabeeleP. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation.Cell Res.201121229030410.1038/cr.2010.15021060338
    [Google Scholar]
  33. EmtiazjooA. ShillingR.A. Preventing the NET negative in primary graft dysfunction.Am. J. Respir. Crit. Care Med.2015191436836910.1164/rccm.201412‑2218ED25679102
    [Google Scholar]
  34. LiJ. WeiL. HanZ. ChenZ. ZhangQ. Long non-coding RNA X-inactive specific transcript silencing ameliorates primary graft dysfunction following lung transplantation through microRNA-21-dependent mechanism.EBioMedicine20205210260010.1016/j.ebiom.2019.10260031981974
    [Google Scholar]
  35. BellomoR. KellumJ.A. RoncoC. Acute kidney injury.Lancet2012380984375676610.1016/S0140‑6736(11)61454‑222617274
    [Google Scholar]
  36. DirkesS. Sepsis and inflammation: Impact on acute kidney injury.Nephrol. Nurs. J.201340212513223767336
    [Google Scholar]
  37. HannaM.H. AskenaziD.J. SelewskiD.T. Drug-induced acute kidney injury in neonates.Curr. Opin. Pediatr.201628218018710.1097/MOP.000000000000031126735892
    [Google Scholar]
  38. UchinoS. KellumJ.A. BellomoR. DoigG.S. MorimatsuH. MorgeraS. SchetzM. TanI. BoumanC. MacedoE. GibneyN. TolwaniA. RoncoC. Acute renal failure in critically ill patients: A multinational, multicenter study.JAMA2005294781381810.1001/jama.294.7.81316106006
    [Google Scholar]
  39. YinW. ShiL. MaoY. MiR-194 regulates nasopharyngeal carcinoma progression by modulating MAP 3K3 expression.FEBS Open Bio201991435210.1002/2211‑5463.1254530652073
    [Google Scholar]
  40. DongW. XieF. ChenX.Y. HuangW.L. ZhangY.Z. LuoW.B. ChenJ. XieM.T. PengX.P. Inhibition of Smurf2 translation by miR-322/503 protects from ischemia-reperfusion injury by modulating EZH2/Akt/GSK3β signaling.Am. J. Physiol. Cell Physiol.20193172C253C26110.1152/ajpcell.00375.201830649914
    [Google Scholar]
  41. WangL. CaoQ.M. Long non-coding RNA XIST alleviates sepsis-induced acute kidney injury through inhibiting inflammation and cell apoptosis via regulating miR -155-5p/ WWC1 axis.Kaohsiung J. Med. Sci.202238161710.1002/kjm2.1244234431595
    [Google Scholar]
  42. XuG. MoL. WuC. ShenX. DongH. YuL. PanP. PanK. The miR-15a-5p-XIST-CUL3 regulatory axis is important for sepsis-induced acute kidney injury.Ren. Fail.201941195596610.1080/0886022X.2019.166946031658856
    [Google Scholar]
  43. SaritasT. CuevasC.A. FerdausM.Z. KuppeC. KramannR. MoellerM.J. FloegeJ. SingerJ.D. McCormickJ.A. Disruption of CUL3-mediated ubiquitination causes proximal tubule injury and kidney fibrosis.Sci. Rep.201991459610.1038/s41598‑019‑40795‑030872636
    [Google Scholar]
  44. SakhujaA. KumarG. GuptaS. MittalT. TanejaA. NanchalR.S. Acute kidney injury requiring dialysis in severe sepsis.Am. J. Respir. Crit. Care Med.2015192895195710.1164/rccm.201502‑0329OC26120892
    [Google Scholar]
  45. ChengQ. WangL. LncRNA XIST serves as a ceRNA to regulate the expression of ASF1A, BRWD1M, and PFKFB2 in kidney transplant acute kidney injury via sponging hsa-miR-212-3p and hsa-miR-122-5p.Cell Cycle202019329029910.1080/15384101.2019.170745431914881
    [Google Scholar]
  46. NogueiraA. PiresM.J. OliveiraP.A. Pathophysiological mechanisms of renal fibrosis: A review of animal models and therapeutic strategies.In vivo201731112210.21873/invivo.1101928064215
    [Google Scholar]
  47. ZhouQ. ChungA.C.K. HuangX.R. DongY. YuX. LanH.Y. Identification of novel long noncoding RNAs associated with TGF-β/Smad3-mediated renal inflammation and fibrosis by RNA sequencing.Am. J. Pathol.2014184240941710.1016/j.ajpath.2013.10.00724262754
    [Google Scholar]
  48. YangJ. ShenY. YangX. LongY. ChenS. LinX. DongR. YuanJ. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A.Am. J. Physiol. Renal Physiol.20193175F1350F135810.1152/ajprenal.00254.201931545928
    [Google Scholar]
  49. XiaW.P. ChenX. RuF. HeY. LiuP.H. GanY. ZhangB. LiY. DaiG.Y. JiangZ.X. ChenZ. Knockdown of lncRNA XIST inhibited apoptosis and inflammation in renal fibrosis via microRNA-19b-mediated downregulation of SOX6.Mol. Immunol.2021139879610.1016/j.molimm.2021.07.01234461493
    [Google Scholar]
  50. CoeF.L. EvanA. WorcesterE. Kidney stone disease.J. Clin. Invest.2005115102598260810.1172/JCI2666216200192
    [Google Scholar]
  51. WangW. FanJ. HuangG. LiJ. ZhuX. TianY. SuL. Prevalence of kidney stones in mainland China: A systematic review.Sci. Rep.2017714163010.1038/srep4163028139722
    [Google Scholar]
  52. MulayS.R. EvanA. AndersH.J. Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease.Nephrol. Dial. Transplant.201429350751410.1093/ndt/gft24824163269
    [Google Scholar]
  53. EvanA.P. Physiopathology and etiology of stone formation in the kidney and the urinary tract.Pediatr. Nephrol.201025583184110.1007/s00467‑009‑1116‑y19198886
    [Google Scholar]
  54. FerrucciL. FabbriE. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty.Nat. Rev. Cardiol.201815950552210.1038/s41569‑018‑0064‑230065258
    [Google Scholar]
  55. ZhongZ. Sanchez-LopezE. KarinM. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases.Clin. Exp. Rheumatol.2016344121627586797
    [Google Scholar]
  56. EsserN. Legrand-PoelsS. PietteJ. ScheenA.J. PaquotN. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes.Diabetes Res. Clin. Pract.2014105214115010.1016/j.diabres.2014.04.00624798950
    [Google Scholar]
  57. LvP. LiuH. YeT. YangX. DuanC. YaoX. LiB. TangK. ChenZ. LiuJ. DengY. WangT. XingJ. LiangC. XuH. YeZ. XIST inhibition attenuates calcium oxalate nephrocalcinosis-induced renal inflammation and oxidative injury via the miR-223/NLRP3 pathway.Oxid. Med. Cell. Longev.2021202111510.1155/2021/167615234512861
    [Google Scholar]
  58. KhanN.U. LinJ. LiuX. LiH. LuW. ZhongZ. ZhangH. WaqasM. ShenL. Insights into predicting diabetic nephropathy using urinary biomarkers.Biochim. Biophys. Acta. Proteins Proteomics202018681014047510.1016/j.bbapap.2020.14047532574766
    [Google Scholar]
  59. TeschG.H. Diabetic nephropathy – is this an immune disorder?Clin. Sci.2017131162183219910.1042/CS2016063628760771
    [Google Scholar]
  60. XuJ. WangQ. SongY.F. XuX.H. ZhuH. ChenP.D. RenY.P. Long noncoding RNA X-inactive specific transcript regulates NLR family pyrin domain containing 3/caspase-1-mediated pyroptosis in diabetic nephropathy.World J. Diabetes202213435837510.4239/wjd.v13.i4.35835582664
    [Google Scholar]
  61. BarbarL. JainT. ZimmerM. KruglikovI. SadickJ.S. WangM. KalpanaK. RoseI.V.L. BursteinS.R. RusielewiczT. NijsureM. GuttenplanK.A. di DomenicoA. CroftG. ZhangB. NobutaH. HébertJ.M. LiddelowS.A. FossatiV. CD49f is a novel marker of functional and reactive human iPSC-derived astrocytes.Neuron2020107343645310.1016/j.neuron.2020.05.01432485136
    [Google Scholar]
  62. ZhangM. YangH. ChenZ. HuX. WuT. LiuW. Long noncoding RNA X-inactive-specific transcript promotes the secretion of inflammatory cytokines in LPS stimulated astrocyte cell via sponging miR-29c-3p and regulating nuclear factor of activated T cell 5 expression.Front. Endocrinol.20211257314310.3389/fendo.2021.57314333776905
    [Google Scholar]
  63. RuanL. WangB. ZhuGeQ. JinK. Coupling of neurogenesis and angiogenesis after ischemic stroke.Brain Res.2015162316617310.1016/j.brainres.2015.02.04225736182
    [Google Scholar]
  64. WangC. DongJ. SunJ. HuangS. WuF. ZhangX. PangD. FuY. LiL. Silencing of lncRNA XIST impairs angiogenesis and exacerbates cerebral vascular injury after ischemic stroke.Mol. Ther. Nucleic Acids20212614816010.1016/j.omtn.2021.06.02534513301
    [Google Scholar]
  65. HeldK.S. LaneT.E. Spinal cord injury, immunodepression, and antigenic challenge.Semin. Immunol.201426541542010.1016/j.smim.2014.03.00324747011
    [Google Scholar]
  66. MajdanM. PlancikovaD. NemcovskaE. KrajcovicovaL. BrazinovaA. RusnakM. Mortality due to traumatic spinal cord injuries in Europe: A cross-sectional and pooled analysis of population-wide data from 22 countries.Scand. J. Trauma Resusc. Emerg. Med.20172516410.1186/s13049‑017‑0410‑028673315
    [Google Scholar]
  67. AlizadehA. DyckS.M. Karimi-AbdolrezaeeS. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms.Front. Neurol.20191028210.3389/fneur.2019.0028230967837
    [Google Scholar]
  68. AhujaC.S. NoriS. TetreaultL. WilsonJ. KwonB. HarropJ. ChoiD. FehlingsM.G. Traumatic spinal cord injury-repair and regeneration.Neurosurgery2017803SS9S2210.1093/neuros/nyw08028350947
    [Google Scholar]
  69. EdgertonV.R. HarkemaS. Epidural stimulation of the spinal cord in spinal cord injury: Current status and future challenges.Expert Rev. Neurother.201111101351135310.1586/ern.11.12921955190
    [Google Scholar]
  70. ZhaoQ. LuF. SuQ. LiuZ. XiaX. YanZ. ZhouF. QinR. Knockdown of long noncoding RNA XIST mitigates the apoptosis and inflammatory injury of microglia cells after spinal cord injury through miR-27a/Smurf1 axis.Neurosci. Lett.202071513464910.1016/j.neulet.2019.13464931778769
    [Google Scholar]
  71. ZhongX. BaoY. WuQ. XiX. ZhuW. ChenS. LiaoJ. Long noncoding RNA XIST knockdown relieves the injury of microglia cells after spinal cord injury by sponging miR-219-5p.Open Med.20211611090110010.1515/med‑2021‑029234414282
    [Google Scholar]
  72. GuS. XieR. LiuX. ShouJ. GuW. CheX. Long coding RNA XIST contributes to neuronal apoptosis through the downregulation of AKT phosphorylation and is negatively regulated by miR-494 in rat spinal cord injury.Int. J. Mol. Sci.201718473210.3390/ijms1804073228368292
    [Google Scholar]
  73. MogilJ.S. Sex differences in pain and pain inhibition: Multiple explanations of a controversial phenomenon.Nat. Rev. Neurosci.2012131285986610.1038/nrn336023165262
    [Google Scholar]
  74. ShenodaB.B. AlexanderG.M. AjitS.K. Hsa-miR-34a mediated repression of corticotrophin releasing hormone receptor 1 regulates pro-opiomelanocortin expression in patients with complex regional pain syndrome.J. Transl. Med.20161416410.1186/s12967‑016‑0820‑126940669
    [Google Scholar]
  75. ShenodaB. TianY. AlexanderG. Aradillas-LopezE. SchwartzmanR. AjitS. miR-34a-mediated regulation of XIST in female cells under inflammation.J. Pain Res.20181193594510.2147/JPR.S15945829773953
    [Google Scholar]
  76. ShenodaB.B. RamanathanS. GuptaR. TianY. Jean-ToussaintR. AlexanderG.M. AddyaS. SomarowthuS. SacanA. AjitS.K. Xist attenuates acute inflammatory response by female cells.Cell. Mol. Life Sci.202178129931610.1007/s00018‑020‑03500‑332193609
    [Google Scholar]
  77. ZhangL. OuX. ZhuT. LvX. Beneficial effects of estrogens in obstructive sleep apnea hypopnea syndrome.Sleep Breath.202024171310.1007/s11325‑019‑01896‑231309463
    [Google Scholar]
  78. BurmanD. Sleep disorders: Sleep-related breathing disorders.FP Essent.2017460112128845957
    [Google Scholar]
  79. ChenX. LiJ.R. Glucocorticoid receptor expression in the tonsils of children with obstructive sleep apnea hypopnea syndrome.Genet. Mol. Res.201615110.4238/gmr.1501736127050997
    [Google Scholar]
  80. ZhouZ. NiH. LiY. JiangB. LncRNA XIST promotes inflammation by downregulating GRα expression in the adenoids of children with OSAHS.Exp. Ther. Med.202121550010.3892/etm.2021.993133791009
    [Google Scholar]
  81. PereiraD. RamosE. BrancoJ. Osteoarthritis.Acta Med. Port.20142819910610.20344/amp.547725817486
    [Google Scholar]
  82. LiuS.C. TsaiC.H. WangY.H. SuC.M. WuH.C. FongY.C. YangS.F. TangC.H. Melatonin abolished proinflammatory factor expression and antagonized osteoarthritis progression in vivo. Cell Death Dis.202213321510.1038/s41419‑022‑04656‑535256585
    [Google Scholar]
  83. WangY.H. TsaiC.H. LiuS.C. ChenH.T. ChangJ.W. KoC.Y. HsuC.J. ChangT.K. TangC.H. miR-150-5p and XIST interaction controls monocyte adherence: Implications for osteoarthritis therapy.Front. Immunol.202213100433410.3389/fimmu.2022.100433436203618
    [Google Scholar]
  84. LiuY. LiuK. TangC. ShiZ. JingK. ZhengJ. Long non-coding RNA XIST contributes to osteoarthritis progression via miR-149-5p/DNMT3A axis.Biomed. Pharmacother.202012811034910.1016/j.biopha.2020.11034932521454
    [Google Scholar]
  85. WangY. JiangF. ChenF. ZhangD. WangJ. LncRNA XIST engages in psoriasis via sponging miR-338-5p to regulate keratinocyte proliferation and inflammation.Skin Pharmacol. Physiol.202235419620510.1159/00052378135231918
    [Google Scholar]
  86. YauJ.W.Y. RogersS.L. KawasakiR. LamoureuxE.L. KowalskiJ.W. BekT. ChenS.J. DekkerJ.M. FletcherA. GrauslundJ. HaffnerS. HammanR.F. IkramM.K. KayamaT. KleinB.E.K. KleinR. KrishnaiahS. MayurasakornK. O’HareJ.P. OrchardT.J. PortaM. RemaM. RoyM.S. SharmaT. ShawJ. TaylorH. TielschJ.M. VarmaR. WangJ.J. WangN. WestS. XuL. YasudaM. ZhangX. MitchellP. WongT.Y. Global prevalence and major risk factors of diabetic retinopathy.Diabetes Care201235355656410.2337/dc11‑190922301125
    [Google Scholar]
  87. LeeR. WongT.Y. SabanayagamC. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss.Eye Vis.2015211710.1186/s40662‑015‑0026‑226605370
    [Google Scholar]
  88. DongY. WanG. PengG. YanP. QianC. LiF. Long non-coding RNA XIST regulates hyperglycemia-associated apoptosis and migration in human retinal pigment epithelial cells.Biomed. Pharmacother.202012510995910.1016/j.biopha.2020.10995932106367
    [Google Scholar]
  89. ZhangJ. ChenC. ZhangS. ChenJ. WuL. ChenZ. LncRNA XIST restrains the activation of Müller cells and inflammation in diabetic retinopathy via stabilizing SIRT1.Autoimmunity202154850451310.1080/08916934.2021.196955134498499
    [Google Scholar]
  90. CohenS.P. MaoJ. Neuropathic pain: Mechanisms and their clinical implications.BMJ2014348feb05 6f765610.1136/bmj.f765624500412
    [Google Scholar]
  91. LemaM.J. FoleyK.M. HausheerF.H. Types and epidemiology of cancer-related neuropathic pain: The intersection of cancer pain and neuropathic pain.Oncologist201015S23810.1634/theoncologist.2009‑S50520489190
    [Google Scholar]
  92. JinH. DuX.J. ZhaoY. XiaD.L. XIST/miR-544 axis induces neuropathic pain by activating STAT3 in a rat model.J. Cell. Physiol.201823385847585510.1002/jcp.2637629219175
    [Google Scholar]
  93. HeL. ChenY. HaoS. QianJ. Uncovering novel landscape of cardiovascular diseases and therapeutic targets for cardioprotection via long noncoding RNA–miRNA–mRNA axes.Epigenomics201810566167110.2217/epi‑2017‑017629692219
    [Google Scholar]
  94. CesanaM. CacchiarelliD. LegniniI. SantiniT. SthandierO. ChinappiM. TramontanoA. BozzoniI. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA.Cell2011147235836910.1016/j.cell.2011.09.02822000014
    [Google Scholar]
  95. MaM. PeiY. WangX. FengJ. ZhangY. GaoM.Q. LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF-κB/NLRP3 inflammasome pathway.Cell Prolif.2019521e1252510.1111/cpr.1252530362186
    [Google Scholar]
  96. YangC. ChapmanA.G. KelseyA.D. MinksJ. CottonA.M. BrownC.J. X-chromosome inactivation: Molecular mechanisms from the human perspective.Hum. Genet.2011130217518510.1007/s00439‑011‑0994‑921553122
    [Google Scholar]
  97. FrobergJ.E. YangL. LeeJ.T. Guided by RNAs: X-inactivation as a model for lncRNA function.J. Mol. Biol.2013425193698370610.1016/j.jmb.2013.06.03123816838
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673270188231122065649
Loading
/content/journals/cmc/10.2174/0109298673270188231122065649
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ceRNA; inflammation; Long non-coding RNA; mechanism; miRNA; XIST
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test