Skip to content
2000
Volume 32, Issue 13
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

SARS-CoV-2 has swept the world in recent years, triggering a global COVID-19 with a tremendous impact on human health and public safety. Similar to other coronaviruses, the six-helix bundle(6-HB) is not only a core structure driving the fusion of the SARS-CoV-2 envelope with the host cell membrane, but also the target of fusion inhibitors. The sequences from the HR1 or HR2 regions composing 6-HB are thus the original primary structures for the development of peptide-based fusion inhibitors. This review summarized the structure-activity relationship of the SARS-CoV-2 6-HB, analyzed the design methods and functional characteristics of peptide-based fusion inhibitors that contain different regions of HRs, and provided an outlook on the cutting-edge approaches for optimal modification of lead compounds (pan-coronavirization, chemical modification, superhelical construction, ). We hope that this review will provide researchers with a comprehensive understanding of the state-of-art research progress on both 6-HB and peptide-based fusion inhibitors of SARS-CoV-2, and provide some new insights for the development of antiviral drugs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673265694231113061842
2023-11-24
2025-09-28
Loading full text...

Full text loading...

References

  1. SuS. WongG. ShiW. LiuJ. LaiA.C.K. ZhouJ. LiuW. BiY. GaoG.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses.Trends Microbiol.201624649050210.1016/j.tim.2016.03.00327012512
    [Google Scholar]
  2. MeiM. TanX. Current strategies of antiviral drug discovery for COVID-19.Front. Mol. Biosci.2021867126310.3389/fmolb.2021.67126334055887
    [Google Scholar]
  3. LaiC.C. ShihT.P. KoW.C. TangH.J. HsuehP.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.Int. J. Antimicrob. Agents202055310592410.1016/j.ijantimicag.2020.10592432081636
    [Google Scholar]
  4. SteinS.R. RamelliS.C. GrazioliA. ChungJ.Y. SinghM. YindaC.K. WinklerC.W. SunJ. DickeyJ.M. YlayaK. KoS.H. PlattA.P. BurbeloP.D. QuezadoM. PittalugaS. PurcellM. MunsterV.J. BelinkyF. Ramos-BenitezM.J. BoritzE.A. LachI.A. HerrD.L. RabinJ. SahariaK.K. MadathilR.J. TabatabaiA. SoherwardiS. McCurdyM.T. BabyakA.L. Perez ValenciaL.J. CurranS.J. RichertM.E. YoungW.J. YoungS.P. GasmiB. Sampaio De MeloM. DesarS. TadrosS. NasirN. JinX. RajanS. DikogluE. OzkayaN. SmithG. EmanuelE.R. KelsallB.L. OliveraJ.A. BlawasM. StarR.A. HaysN. SingireddyS. WuJ. RajaK. CurtoR. ChungJ.E. BorthA.J. BowersK.A. WeicholdA.M. MinorP.A. MoshrefM.A.N. KellyE.E. SajadiM.M. ScaleaT.M. TranD. DahiS. DeatrickK.B. KrauseE.M. HerroldJ.A. HochbergE.S. CornachioneC.R. LevineA.R. RichardsJ.E. ElderJ. BurkeA.P. MazzeffiM.A. ChristensonR.H. ChancerZ.A. AbdulmahdiM. SophaS. GoldbergT. SangwanY. SudanoK. BlumeD. RadinB. ArnoukM. EaganJ.W.Jr PalermoR. HarrisA.D. PohidaT. Garmendia-CedillosM. DoldG. SaglioE. PhamP. PetersonK.E. CohenJ.I. de WitE. VannellaK.M. HewittS.M. KleinerD.E. ChertowD.S. SARS-CoV-2 infection and persistence in the human body and brain at autopsy.Nature2022612794175876310.1038/s41586‑022‑05542‑y36517603
    [Google Scholar]
  5. MenniC. ValdesA.M. PolidoriL. AntonelliM. PenamakuriS. NogalA. LoucaP. MayA. FigueiredoJ.C. HuC. MolteniE. CanasL. ÖsterdahlM.F. ModatM. SudreC.H. FoxB. HammersA. WolfJ. CapdevilaJ. ChanA.T. DavidS.P. StevesC.J. OurselinS. SpectorT.D. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: A prospective observational study from the ZOE COVID.Study Lancet2022399103351618162410.1016/S0140‑6736(22)00327‑035397851
    [Google Scholar]
  6. MohapatraR.K. SarangiA.K. KandiV. AzamM. TiwariR. DhamaK. Omicron (B.1.1.529 variant of SARS-CoV-2); an emerging threat: Current global scenario.J. Med. Virol.20229451780178310.1002/jmv.2756134964506
    [Google Scholar]
  7. De ClercqE. LiG. Approved antiviral drugs over the past 50 years.Clin. Microbiol. Rev.201629369574710.1128/CMR.00102‑1527281742
    [Google Scholar]
  8. ZhouH. MøhlenbergM. ThakorJ.C. TuliH.S. WangP. AssarafY.G. DhamaK. JiangS. Sensitivity to vaccines, therapeutic antibodies, and viral entry inhibitors and advances to counter the SARS-CoV-2 Omicron Variant.Clin. Microbiol. Rev.2022353e00014-2210.1128/cmr.00014‑2235862736
    [Google Scholar]
  9. Seyed HosseiniE. Riahi KashaniN. NikzadH. AzadbakhtJ. Hassani BafraniH. Haddad KashaniH. The novel coronavirus Disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies.Virology20205511910.1016/j.virol.2020.08.01133010669
    [Google Scholar]
  10. FrediansyahA. TiwariR. SharunK. DhamaK. HarapanH. Antivirals for COVID-19: A critical review.Clin. Epidemiol. Glob. Health20219909810.1016/j.cegh.2020.07.00633521390
    [Google Scholar]
  11. PuJ. ZhouJ.T. LiuP. YuF. HeX. LuL. JiangS. Viral entry inhibitors targeting six-helical bundle core against highly pathogenic enveloped viruses with class i fusion proteins.Curr. Med. Chem.202229470071810.2174/092986732866621051101580833992055
    [Google Scholar]
  12. WangH. WangC. Peptide-Based Dual HIV and coronavirus entry inhibitors.Adv. Exp. Med. Biol.202213668710010.1007/978‑981‑16‑8702‑0_635412136
    [Google Scholar]
  13. NaH. LiangG. LaiW. Isopeptide bond bundling superhelix for designing antivirals against enveloped viruses with class i fusion proteins: A review.Curr. Pharm. Biotechnol.202324141774178310.2174/138920102466623033008364037005549
    [Google Scholar]
  14. SchützD. Ruiz-BlancoY.B. MünchJ. KirchhoffF. Sanchez-GarciaE. MüllerJ.A. Peptide and peptide-based inhibitors of SARS-CoV-2 entry.Adv. Drug Deliv. Rev.2020167476510.1016/j.addr.2020.11.00733189768
    [Google Scholar]
  15. PanchalD. KatariaJ. PatelK. CroweK. PaiV. AzizogliA.R. KadianN. SanyalS. RoyA. Dodd-oJ. Acevedo-JakeA.M. KumarV.A. Peptide-Based Inhibitors for SARS-CoV-2 and SARS-CoV.Adv. Ther.2021410210010410.1002/adtp.20210010434514085
    [Google Scholar]
  16. BarrettC.T. DutchR.E. Viral membrane fusion and the transmembrane domain.Viruses202012769310.3390/v1207069332604992
    [Google Scholar]
  17. HarrisonS.C. Viral membrane fusion.Nat. Struct. Mol. Biol.200815769069810.1038/nsmb.145618596815
    [Google Scholar]
  18. DimitrovD.S. Virus entry: Molecular mechanisms and biomedical applications.Nat. Rev. Microbiol.20042210912210.1038/nrmicro81715043007
    [Google Scholar]
  19. XiaS. LiuM. WangC. XuW. LanQ. FengS. QiF. BaoL. DuL. LiuS. QinC. SunF. ShiZ. ZhuY. JiangS. LuL. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion.Cell Res.202030434335510.1038/s41422‑020‑0305‑x32231345
    [Google Scholar]
  20. TangT. BidonM. JaimesJ.A. WhittakerG.R. DanielS. Coronavirus membrane fusion mechanism offers a potential target for antiviral development.Antiviral Res.202017810479210.1016/j.antiviral.2020.10479232272173
    [Google Scholar]
  21. HarrisonS.C. Mechanism of membrane fusion by viral envelope proteins.Adv. Virus Res.20056423126110.1016/S0065‑3527(05)64007‑916139596
    [Google Scholar]
  22. WhiteJ.M. WhittakerG.R. Fusion of enveloped viruses in endosomes.Traffic201617659361410.1111/tra.1238926935856
    [Google Scholar]
  23. LiuS. XiaoG. ChenY. HeY. NiuJ. EscalanteC.R. XiongH. FarmarJ. DebnathA.K. TienP. JiangS. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: Implications for virus fusogenic mechanism and identification of fusion inhibitors.Lancet2004363941393894710.1016/S0140‑6736(04)15788‑715043961
    [Google Scholar]
  24. YuD. ZhuY. JiaoT. WuT. XiaoX. QinB. ChongH. LeiX. RenL. CuiS. WangJ. HeY. Structure-based design and characterization of novel fusion-inhibitory lipopeptides against SARS-CoV-2 and emerging variants.Emerg. Microbes Infect.20211011227124010.1080/22221751.2021.193732934057039
    [Google Scholar]
  25. JanaI.D. BhattacharyaP. MayilsamyK. BanerjeeS. BhattacharjeG. DasS. AdityaS. GhoshA. McGillA.R. SrikrishnanS. DasA.K. BasakA. MohapatraS.S. ChandranB. BhimsariaD. MohapatraS. RoyA. MondalA. Targeting an evolutionarily conserved "E-L-L" motif in spike protein to identify a small molecule fusion inhibitor against SARS-CoV-2.PNAS Nexus202215pgac198
    [Google Scholar]
  26. YangK. WangC. WhiteK.I. PfuetznerR.A. EsquiviesL. BrungerA.T. Structural conservation among variants of the SARS-CoV-2 spike postfusion bundle.Proc. Natl. Acad. Sci. USA202211916e211946711910.1073/pnas.211946711935363556
    [Google Scholar]
  27. YangK. WangC. KreutzbergerA.J.B. WhiteK.I. PfuetznerR.A. EsquiviesL. KirchhausenT. BrungerA.T. Structure-based design of a SARS-CoV-2 Omicron-specific inhibitor.Proc. Natl. Acad. Sci. USA202312013e230036012010.1073/pnas.230036012036940324
    [Google Scholar]
  28. ChuL.H.M. ChanS.H. TsaiS.N. WangY. ChengC.H.K. WongK.B. WayeM.M.Y. NgaiS.M. Fusion core structure of the severe acute respiratory syndrome coronavirus (SARS-CoV): In search of potent SARS-CoV entry inhibitors.J. Cell. Biochem.200810462335234710.1002/jcb.2179018442051
    [Google Scholar]
  29. XuY. ZhuJ. LiuY. LouZ. YuanF. LiuY. ColeD.K. NiL. SuN. QinL. LiX. BaiZ. BellJ.I. PangH. TienP. GaoG.F. RaoZ. Characterization of the heptad repeat regions, HR1 and HR2, and design of a fusion core structure model of the spike protein from severe acute respiratory syndrome (SARS) coronavirus.Biochemistry20044344140641407110.1021/bi049101q15518555
    [Google Scholar]
  30. XiaS. ZhuY. LiuM. LanQ. XuW. WuY. YingT. LiuS. ShiZ. JiangS. LuL. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein.Cell. Mol. Immunol.202017776576710.1038/s41423‑020‑0374‑232047258
    [Google Scholar]
  31. ArmstrongR.T. KushnirA.S. WhiteJ.M. The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition.J. Cell Biol.2000151242543810.1083/jcb.151.2.42511038188
    [Google Scholar]
  32. GiannecchiniS. BonciF. PistelloM. MatteucciD. SichiO. RoveroP. BendinelliM. The membrane-proximal tryptophan-rich region in the transmembrane glycoprotein ectodomain of feline immunodeficiency virus is important for cell entry.Virology2004320115616610.1016/j.virol.2003.12.00115003871
    [Google Scholar]
  33. IvankinA. ApellánizB. GidalevitzD. NievaJ.L. Mechanism of membrane perturbation by the HIV-1 gp41 membrane-proximal external region and its modulation by cholesterol.Biochim. Biophys. Acta Biomembr.20121818112521252810.1016/j.bbamem.2012.06.00222692008
    [Google Scholar]
  34. LiaoY. ZhangS.M. NeoT.L. TamJ.P. Tryptophan-dependent membrane interaction and heteromerization with the internal fusion peptide by the membrane proximal external region of SARS-CoV spike protein.Biochemistry20155491819183010.1021/bi501352u25668103
    [Google Scholar]
  35. LazzarinA. Enfuvirtide: the first HIV fusion inhibitor.Expert Opin. Pharmacother.20056345346410.1517/14656566.6.3.45315794736
    [Google Scholar]
  36. LiuS. JingW. CheungB. LuH. SunJ. YanX. NiuJ. FarmarJ. WuS. JiangS. HIV gp41 C-terminal heptad repeat contains multifunctional domains. Relation to mechanisms of action of anti-HIV peptides.J. Biol. Chem.2007282139612962010.1074/jbc.M60914820017276993
    [Google Scholar]
  37. ZhouJ. XuW. LiuZ. WangC. XiaS. LanQ. CaiY. SuS. PuJ. XingL. XieY. LuL. JiangS. WangQ. A highly potent and stable pan-coronavirus fusion inhibitor as a candidate prophylactic and therapeutic for COVID-19 and other coronavirus diseases.Acta Pharm. Sin. B20221241652166110.1016/j.apsb.2021.07.02634367893
    [Google Scholar]
  38. LeeK.K. PessiA. GuiL. SantopreteA. TalekarA. MosconaA. PorottoM. Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus.J. Biol. Chem.201128649421414214910.1074/jbc.M111.25424321994935
    [Google Scholar]
  39. HeydariH. GolmohammadiR. MirnejadR. TebyanianH. Fasihi-RamandiM. Moosazadeh MoghaddamM. Antiviral peptides against Coronaviridae family: A review.Peptides202113917052610.1016/j.peptides.2021.17052633676968
    [Google Scholar]
  40. QiZ. ShiW. XueN. PanC. JingW. LiuK. JiangS. Rationally designed anti-HIV peptides containing multifunctional domains as molecule probes for studying the mechanisms of action of the first and second generation HIV fusion inhibitors.J. Biol. Chem.200828344303763038410.1074/jbc.M80467220018662985
    [Google Scholar]
  41. ShiW. CaiL. LuL. WangC. WangK. XuL. ZhangS. HanH. JiangX. ZhengB. JiangS. LiuK. Design of highly potent HIV fusion inhibitors based on artificial peptide sequences.Chem. Commun.20124894115791158110.1039/c2cc35973a23093045
    [Google Scholar]
  42. NegiG. SharmaA. DeyM. DhanawatG. ParveenN. Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: Resolving the mechanisms with biophysical methods.Biophys. Rev.20221451109114010.1007/s12551‑022‑00999‑736249860
    [Google Scholar]
  43. YangK. WangC. KreutzbergerA.J.B. OjhaR. KuivanenS. Couoh-CardelS. MuratciogluS. EisenT.J. WhiteK.I. HeldR.G. SubramanianS. MarcusK. PfuetznerR.A. EsquiviesL. DoyleC.A. KuriyanJ. VapalahtiO. BalistreriG. KirchhausenT. BrungerA.T. Nanomolar inhibition of SARS-CoV-2 infection by an unmodified peptide targeting the prehairpin intermediate of the spike protein.Proc. Natl. Acad. Sci. USA202211940e221099011910.1073/pnas.221099011936122200
    [Google Scholar]
  44. HuY. ZhuY. YuY. LiuN. JuX. DingQ. HeY. Design and characterization of novel SARS-CoV-2 fusion inhibitors with N-terminally extended HR2 peptides.Antiviral Res.202321210557110.1016/j.antiviral.2023.10557136868315
    [Google Scholar]
  45. LuL. LiuQ. ZhuY. ChanK.H. QinL. LiY. WangQ. ChanJ.F.W. DuL. YuF. MaC. YeS. YuenK.Y. ZhangR. JiangS. Structure-based discovery of middle east respiratory syndrome coronavirus fusion inhibitor.Nat. Commun.201451306710.1038/ncomms406724473083
    [Google Scholar]
  46. ChanD.C. FassD. BergerJ.M. KimP.S. Core structure of gp41 from the HIV envelope glycoprotein.Cell199789226327310.1016/S0092‑8674(00)80205‑69108481
    [Google Scholar]
  47. WangX. XiaS. WangQ. XuW. LiW. LuL. JiangS. Broad-spectrum coronavirus fusion inhibitors to combat COVID-19 and other emerging coronavirus diseases.Int. J. Mol. Sci.20202111384310.3390/ijms2111384332481690
    [Google Scholar]
  48. LuY. NeoT.L. LiuD.X. TamJ.P. Importance of SARS-CoV spike protein Trp-rich region in viral infectivity.Biochem. Biophys. Res. Commun.2008371335636010.1016/j.bbrc.2008.04.04418424264
    [Google Scholar]
  49. RegulaL.K. HarrisR. WangF. HigginsC.D. KoellhofferJ.F. ZhaoY. ChandranK. GaoJ. GirvinM.E. LaiJ.R. Conformational properties of peptides corresponding to the ebolavirus GP2 membrane-proximal external region in the presence of micelle-forming surfactants and lipids.Biochemistry201352203393340410.1021/bi400040v23650881
    [Google Scholar]
  50. SalzwedelK. WestJ.T. HunterE. A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity.J. Virol.19997332469248010.1128/JVI.73.3.2469‑2480.19999971832
    [Google Scholar]
  51. ChiliveriS.C. LouisJ.M. BaxA. Concentration-dependent structural transition of the hiv-1 gp41 mper peptide into α-helical trimers.Angew. Chem. Int. Ed.202160116617010.1002/anie.20200880432916024
    [Google Scholar]
  52. CannalireR. StefanelliI. CerchiaC. BeccariA.R. PellicciaS. SummaV. SARS-CoV-2 Entry Inhibitors: Small molecules and peptides targeting virus or host cells.Int. J. Mol. Sci.20202116570710.3390/ijms2116570732784899
    [Google Scholar]
  53. DüzgüneşN. Fernandez-FuentesN. KonopkaK. Inhibition of viral membrane fusion by peptides and approaches to peptide design.Pathogens20211012159910.3390/pathogens1012159934959554
    [Google Scholar]
  54. WangC. ZhaoL. XiaS. ZhangT. CaoR. LiangG. LiY. MengG. WangW. ShiW. ZhongW. JiangS. LiuK. De Novo design of α-helical lipopeptides targeting viral fusion proteins: A promising strategy for relatively broad-spectrum antiviral drug discovery.J. Med. Chem.201861198734874510.1021/acs.jmedchem.8b0089030192544
    [Google Scholar]
  55. WangX. XiaS. ZhuY. LuL. JiangS. Pan-coronavirus fusion inhibitors as the hope for today and tomorrow.Protein Cell2021122848810.1007/s13238‑020‑00806‑733420956
    [Google Scholar]
  56. WangC. XiaS. ZhangP. ZhangT. WangW. TianY. MengG. JiangS. LiuK. Discovery of hydrocarbon-stapled short α-helical peptides as promising middle east respiratory syndrome coronavirus (MERS-CoV) fusion inhibitors.J. Med. Chem.20186152018202610.1021/acs.jmedchem.7b0173229442512
    [Google Scholar]
  57. MengG. PuJ. LiY. HanA. TianY. XuW. ZhangT. LiX. LuL. WangC. JiangS. LiuK. Design and biological evaluation of m -xylene thioether-stapled short helical peptides targeting the hiv-1 gp41 hexameric coiled–coil fusion complex.J. Med. Chem.201962198773878310.1021/acs.jmedchem.9b0088231513410
    [Google Scholar]
  58. WangC. LuL. NaH. LiX. WangQ. JiangX. XuX. YuF. ZhangT. LiJ. ZhangZ. ZhengB. LiangG. CaiL. JiangS. LiuK. Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: A promising strategy for discovering new antiviral therapeutics.J. Med. Chem.201457177342735410.1021/jm500763m25156906
    [Google Scholar]
  59. LiangG. WangH. ChongH. ChengS. JiangX. HeY. WangC. LiuK. An effective conjugation strategy for designing short peptide-based HIV-1 fusion inhibitors.Org. Biomol. Chem.201614337875788210.1039/C6OB01334A27454320
    [Google Scholar]
  60. XuW. PuJ. SuS. HuaC. SuX. WangQ. JiangS. LuL. Revisiting the mechanism of enfuvirtide and designing an analog with improved fusion inhibitory activity by targeting triple sites in gp41.AIDS201933101545155510.1097/QAD.000000000000220830932963
    [Google Scholar]
  61. ZhuY. YuD. YanH. ChongH. HeY. Design of potent membrane fusion inhibitors against SARS-COV-2, an emerging coronavirus with high fusogenic activity.J. Virol.20209414e00635-2010.1128/JVI.00635‑2032376627
    [Google Scholar]
  62. YuD. ZhuY. YanH. WuT. ChongH. HeY. Pan-coronavirus fusion inhibitors possess potent inhibitory activity against HIV-1, HIV-2, and simian immunodeficiency virus.Emerg. Microbes Infect.202110181082110.1080/22221751.2021.191730933847245
    [Google Scholar]
  63. LanQ. WangL. JiaoF. LuL. XiaS. JiangS. Pan-coronavirus fusion inhibitors to combat COVID-19 and other emerging coronavirus infectious diseases.J. Med. Virol.2023951e2814310.1002/jmv.2814336098460
    [Google Scholar]
  64. XiaS. YanL. XuW. AgrawalA.S. AlgaissiA. TsengC.T.K. WangQ. DuL. TanW. WilsonI.A. JiangS. YangB. LuL. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike.Sci. Adv.201954eaav458010.1126/sciadv.aav458030989115
    [Google Scholar]
  65. XiaS. JiaoF. WangL. YuX. LuT. FuY. HuangZ. LiX. HuangJ. WangQ. ManQ. XiongL. JiangS. LuL. SARS-CoV-2 Omicron XBB subvariants exhibit enhanced fusogenicity and substantial immune evasion in elderly population, but high sensitivity to pan-coronavirus fusion inhibitors.J. Med. Virol.2023953e2864110.1002/jmv.2864136890632
    [Google Scholar]
  66. OutlawV.K. BovierF.T. MearsM.C. CajimatM.N. ZhuY. LinM.J. AddetiaA. LiebermanN.A.P. PedduV. XieX. ShiP.Y. GreningerA.L. GellmanS.H. BenteD.A. MosconaA. PorottoM. Inhibition of coronavirus entry in vitro and ex vivo by a lipid-conjugated peptide derived from the SARS-CoV-2 Spike Glycoprotein HRC Domain.MBio2020115e01935-2010.1128/mBio.01935‑2033082259
    [Google Scholar]
  67. LanQ. WangC. ZhouJ. WangL. JiaoF. ZhangY. CaiY. LuL. XiaS. JiangS. 25-Hydroxycholesterol-Conjugated EK1 peptide with potent and broad-spectrum inhibitory activity against SARS-CoV-2, its variants of concern, and other human coronaviruses.Int. J. Mol. Sci.202122211186910.3390/ijms22211186934769299
    [Google Scholar]
  68. ZhuY. YuD. HuY. WuT. ChongH. HeY. SARS-CoV-2-derived fusion inhibitor lipopeptides exhibit highly potent and broad-spectrum activity against divergent human coronaviruses.Signal Transduct. Target. Ther.20216129410.1038/s41392‑021‑00698‑x34344868
    [Google Scholar]
  69. LanQ. ChanJ.F.W. XuW. WangL. JiaoF. ZhangG. PuJ. ZhouJ. XiaS. LuL. YuenK.Y. JiangS. WangQ. A palmitic acid-conjugated, peptide-based pan-cov fusion inhibitor potently inhibits infection of SARS-CoV-2 omicron and other variants of concern.Viruses202214354910.3390/v1403054935336956
    [Google Scholar]
  70. SheF. TengP. Peguero-TejadaA. WangM. MaN. OdomT. ZhouM. GjonajE. WojtasL. van der VaartA. CaiJ. De novo left-handed synthetic peptidomimetic foldamers.Angew. Chem. Int. Ed.201857319916992010.1002/anie.20180518429889349
    [Google Scholar]
  71. SangP. ShiY. HigbeeP. WangM. AbdulkadirS. LuJ. DaughdrillG. ChenJ. CaiJ. Rational design and synthesis of right-handed d -Sulfono-γ-AApeptide helical foldamers as potent inhibitors of protein–protein interactions.J. Org. Chem.20208516105521056010.1021/acs.joc.0c0099632700908
    [Google Scholar]
  72. SangP. ShiY. HuangB. XueS. OdomT. CaiJ. Sulfono-γ-aapeptides as helical mimetics: Crystal structures and applications.Acc. Chem. Res.202053102425244210.1021/acs.accounts.0c0048232940995
    [Google Scholar]
  73. XueS. XuW. WangL. WangX. DuanQ. CalculL. WangS. LiuW. SunX. LuL. JiangS. CaiJ. An HR2-Mimicking sulfonyl-γ-aapeptide is a potent pan-coronavirus fusion inhibitor with strong blood–brain barrier permeability, long half-life, and promising oral bioavailability.ACS Cent. Sci.2023951046105810.1021/acscentsci.3c0031337252367
    [Google Scholar]
  74. WisskirchenK. LuciforaJ. MichlerT. ProtzerU. New pharmacological strategies to fight enveloped viruses.Trends Pharmacol. Sci.201435947047810.1016/j.tips.2014.06.00425108320
    [Google Scholar]
  75. JacksonC.B. FarzanM. ChenB. ChoeH. Mechanisms of SARS-CoV-2 entry into cells.Nat. Rev. Mol. Cell Biol.202223132010.1038/s41580‑021‑00418‑x34611326
    [Google Scholar]
  76. ZhengL. ZhangL. ZhengY. AnJ. WenG. JinH. TuoB. Digestive system infection by SARS-CoV-2: Entry mechanism, clinical symptoms and expression of major receptors (Review).Int. J. Mol. Med.20235131910.3892/ijmm.2023.522236660939
    [Google Scholar]
  77. MañesS. del RealG. Martínez-AC. Pathogens: raft hijackers.Nat. Rev. Immunol.20033755756810.1038/nri112912876558
    [Google Scholar]
  78. IngallinellaP. BianchiE. LadwaN.A. WangY.J. HrinR. VenezianoM. BonelliF. KetasT.J. MooreJ.P. MillerM.D. PessiA. Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency.Proc. Natl. Acad. Sci. USA2009106145801580610.1073/pnas.090100710619297617
    [Google Scholar]
  79. HollmannA. MatosP.M. AugustoM.T. CastanhoM.A.R.B. SantosN.C. Conjugation of cholesterol to HIV-1 fusion inhibitor C34 increases peptide-membrane interactions potentiating its action.PLoS One201384e6030210.1371/journal.pone.006030223565220
    [Google Scholar]
  80. DingX. ZhangX. ChongH. ZhuY. WeiH. WuX. HeJ. WangX. HeY. Enfuvirtide (T20)-Based lipopeptide is a potent HIV-1 Cell fusion inhibitor: Implications for viral entry and inhibition.J. Virol.20179118e00831-1710.1128/JVI.00831‑1728659478
    [Google Scholar]
  81. WangH. WangX. LiJ. LiQ. FengS. LuL. WangC. JiangS. Design of artificial α-helical peptides targeting both gp41 deep pocket and subpocket as potent HIV-1 fusion inhibitors.Eur. J. Med. Chem.202223611433610.1016/j.ejmech.2022.11433635395438
    [Google Scholar]
  82. de VriesR.D. SchmitzK.S. BovierF.T. PredellaC. KhaoJ. NoackD. HaagmansB.L. HerfstS. StearnsK.N. Drew-BearJ. BiswasS. RockxB. McGillG. DorrelloN.V. GellmanS.H. AlabiC.A. de SwartR.L. MosconaA. PorottoM. Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets.Science202137165361379138210.1126/science.abf489633597220
    [Google Scholar]
  83. ZhuY. DongX. LiuN. WuT. ChongH. LeiX. RenL. WangJ. HeY. SARS-CoV-2 fusion-inhibitory lipopeptides maintain high potency against divergent variants of concern including Omicron.Emerg. Microbes Infect.20221111819182710.1080/22221751.2022.209806035786417
    [Google Scholar]
  84. BirdG.H. MadaniN. PerryA.F. PrinciottoA.M. SupkoJ.G. HeX. GavathiotisE. SodroskiJ.G. WalenskyL.D. Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic.Proc. Natl. Acad. Sci. USA201010732140931409810.1073/pnas.100271310720660316
    [Google Scholar]
  85. HigginsC.D. KoellhofferJ.F. ChandranK. LaiJ.R. C-peptide inhibitors of Ebola virus glycoprotein-mediated cell entry: Effects of conjugation to cholesterol and side chain–side chain crosslinking.Bioorg. Med. Chem. Lett.201323195356536010.1016/j.bmcl.2013.07.05623962564
    [Google Scholar]
  86. BolarinwaO. ZhangM. MulryE. LuM. CaiJ. Sulfono-γ-AA modified peptides that inhibit HIV-1 fusion.Org. Biomol. Chem.201816427878788210.1039/C8OB02159G30306175
    [Google Scholar]
  87. ZhengM. CongW. PengH. QingJ. ShenH. TangY. GengC. ChenS. ZouY. ZhangW.D. HuH.G. LiX. Stapled peptides targeting SARS-CoV-2 Spike Protein HR1 inhibit the fusion of virus to its cell receptor.J. Med. Chem.20216423174861749510.1021/acs.jmedchem.1c0168134818014
    [Google Scholar]
  88. TsujiK. Baffour-Awuah OwusuK. MiuraY. IshiiT. ShinoharaK. KobayakawaT. EmiA. NakanoT. SuzukiY. TamamuraH. Dimerized fusion inhibitor peptides targeting the HR1–HR2 interaction of SARS-CoV-2.RSC Advances202313138779879310.1039/D2RA07356K36950081
    [Google Scholar]
  89. KobayakawaT. EbiharaK. HondaY. FujinoM. NomuraW. YamamotoN. MurakamiT. TamamuraH. Dimeric C34 Derivatives linked through disulfide bridges as New HIV-1 fusion inhibitors.ChemBioChem201920162101210810.1002/cbic.20190018731012222
    [Google Scholar]
  90. ApostolovicB. DanialM. KlokH.A. Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials.Chem. Soc. Rev.20103993541357510.1039/b914339b20676430
    [Google Scholar]
  91. RootM.J. KayM.S. KimP.S. Protein design of an HIV-1 entry inhibitor.Science2001291550588488810.1126/science.105745311229405
    [Google Scholar]
  92. WangC. LaiW. YuF. ZhangT. LuL. JiangX. ZhangZ. XuX. BaiY. JiangS. LiuK. De novo design of isopeptide bond-tethered triple-stranded coiled coils with exceptional resistance to unfolding and proteolysis: implication for developing antiviral therapeutics.Chem. Sci.20156116505650910.1039/C5SC02220G30090269
    [Google Scholar]
  93. LaiW. WangC. YuF. LuL. WangQ. JiangX. XuX. ZhangT. WuS. ZhengX. ZhangZ. DongF. JiangS. LiuK. An effective strategy for recapitulating N-terminal heptad repeat trimers in enveloped virus surface glycoproteins for therapeutic applications.Chem. Sci. (Camb.)2016732145215010.1039/C5SC04046A29899942
    [Google Scholar]
  94. WangC. LiX. YuF. LuL. JiangX. XuX. WangH. LaiW. ZhangT. ZhangZ. YeL. JiangS. LiuK. Site-specific isopeptide bridge tethering of chimeric gp41 N-terminal heptad repeat helical trimers for the treatment of HIV-1 Infection.Sci. Rep.2016613216110.1038/srep3216127562370
    [Google Scholar]
  95. HarrisonJ.S. HigginsC.D. ChandranK. LaiJ.R. Designed protein mimics of the Ebola virus glycoprotein GP2 α-helical bundle: Stability and pH effects.Protein Sci.20112091587159610.1002/pro.68821739501
    [Google Scholar]
  96. ClintonT.R. WeinstockM.T. JacobsenM.T. Szabo-FresnaisN. PandyaM.J. WhitbyF.G. HerbertA.S. PrugarL.I. McKinnonR. HillC.P. WelchB.D. DyeJ.M. EckertD.M. KayM.S. Design and characterization of ebolavirus GP prehairpin intermediate mimics as drug targets.Protein Sci.201524444646310.1002/pro.257825287718
    [Google Scholar]
  97. SunY. ZhangH. ShiJ. ZhangZ. GongR. Identification of a novel inhibitor against middle east respiratory syndrome coronavirus.Viruses20179925510.3390/v909025528906430
    [Google Scholar]
  98. WangC. XiaS. WangX. LiY. WangH. XiangR. JiangQ. LanQ. LiangR. LiQ. HuoS. LuL. WangQ. YuF. LiuK. JiangS. Supercoiling structure-based design of a trimeric coiled-coil peptide with high potency against HIV-1 and human β-coronavirus infection.J. Med. Chem.20226542809281910.1021/acs.jmedchem.1c0025833929200
    [Google Scholar]
  99. XingL. XuX. XuW. LiuZ. ShenX. ZhouJ. XuL. PuJ. YangC. HuangY. LuL. JiangS. LiuS. A Five-Helix-Based SARS-CoV-2 fusion inhibitor targeting heptad repeat 2 domain against SARS-CoV-2 and its variants of concern.Viruses202214359710.3390/v1403059735337003
    [Google Scholar]
  100. PuJ. WangQ. JiangS. Peptide-Based HIV entry inhibitors.Adv. Exp. Med. Biol.20221366152610.1007/978‑981‑16‑8702‑0_235412132
    [Google Scholar]
  101. YuD. DingX. LiuZ. WuX. ZhuY. WeiH. ChongH. CuiS. HeY. Molecular mechanism of HIV-1 resistance to sifuvirtide, a clinical trial–approved membrane fusion inhibitor.J. Biol. Chem.201829333127031271810.1074/jbc.RA118.00353829929981
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673265694231113061842
Loading
/content/journals/cmc/10.2174/0109298673265694231113061842
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test