Skip to content
2000
Volume 32, Issue 13
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Natural polymers play a crucial role in a wide range of industries, allowing for extensive conjugation with a variety of materials and components to produce a vast multitude of products. Biomaterials have been extensively studied due to their application potential in pharmaceutical formulation development, tissue engineering, and biomedical fields. Despite this, many natural gums in their natural state have limitations in terms of microbial contamination, susceptibility, solubility, and stability. To surmount these limitations, chemical or physical modifications are made to the polymer to tailor its properties to particular applications. These polymer modifications integrate traditional elements of materials science, physics, biology, chemistry, medicine, and engineering. Microwave irradiation has become an established method for accelerating and facilitating chemical modification reactions over the past several decades. This method allows for the efficient execution of synthesis protocols by providing precise temperature and voltage control. In addition, microwave irradiation contributes to sustainable and environmentally friendly chemistry principles. This article highlights the importance of microwave-assisted natural gum modification in the production of novel dosage forms.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673283144231212055603
2024-01-08
2025-10-04
Loading full text...

Full text loading...

References

  1. LucafòM. De BiasiS. CurciD. NorbedoA. StoccoG. DecortiG. Extracellular vesicles as innovative tools for assessing adverse effects of immunosuppressant drugs.Curr. Med. Chem.202229203586360010.2174/092986732866621120811402234879795
    [Google Scholar]
  2. UllahA. UllahN. NawazT. AzizT. Molecular mechanisms of Sanguinarine in cancer prevention and treatmentAnticancer Agents Med. Chem202323765778
    [Google Scholar]
  3. AbtahiN.A. NaghibS.M. HaghiralsadatF. Akbari EdgahiM. Development of highly efficient niosomal systems for co-delivery of drugs and genes to treat breast cancer in vitro and in vivo.Cancer Nanotechnol.20221312810.1186/s12645‑022‑00135‑w
    [Google Scholar]
  4. SalehiS. NaghibS.M. GarshasbiH.R. GhorbanzadehS. ZhangW. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review.Front. Bioeng. Biotechnol.202311110412610.3389/fbioe.2023.110412636911200
    [Google Scholar]
  5. GarshasbiH. SalehiS. NaghibS.M. GhorbanzadehS. ZhangW. Stimuli-responsive injectable chitosan-based hydrogels for controlled drug delivery systems.Front. Bioeng. Biotechnol.202310112677410.3389/fbioe.2022.112677436698640
    [Google Scholar]
  6. CostanzoM. De GiglioM.A.R. RovielloG.N. Anti-coronavirus vaccines: Past investigations on SARS-CoV-1 and MERS-CoV, the approved vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under development against SARSCoV-2 infection.Curr. Med. Chem.202229141810.2174/1875533XMTE1eNzEw534355678
    [Google Scholar]
  7. Shams ul HassanS. AbbasS.Q. HassanM. Computational exploration of anti-cancer potential of guaiane dimers from Xylopia vielana by targeting B-RAF kinase using chemo-informatics, molecular docking, and MD simulation studies.Anti-cancer Agents Med. Chem.202222731746
    [Google Scholar]
  8. MerighiS. BoreaP.A. VaraniK. VincenziF. JacobsonK.A. GessiS. A2A adenosine receptor antagonists in neurodegenerative diseases.Curr. Med. Chem.202229244138415110.2174/092986732866621112912255034844537
    [Google Scholar]
  9. MehraryaM. MozafariM.R. GharehchelouB. KabarkouhiZ. AtaeiS. EsfahaniF.N. WintrasiriM.N. Functionalized nanostructured bioactive carriers: Nanoliposomes, quantum dots, tocosome, and theranostic approach.Curr. Drug Deliv.202219101001101110.2174/156720181966622032409293335331111
    [Google Scholar]
  10. PalS.K. GhoshR. MondalS. MukherjeeD. AdhikariA. BhattacharyyaM. Inorganic-organic synergy in nano-hybrids makes a new class of drug with targeted delivery: Glutamate functionalization of iron nanoparticles for potential bone marrow delivery and x-ray dynamic therapy.Curr. Drug Deliv.20221910991100010.2174/156720181966622032814262035346006
    [Google Scholar]
  11. ZielińskaA. EderP. RannierL. CardosoJ.C. SeverinoP. SilvaA.M. SoutoE.B. Hydrogels for modified-release drug delivery systems.Curr. Pharm. Des.202228860961810.2174/138161282866621123011475534967292
    [Google Scholar]
  12. CriscitielloC. Guerini-RoccoE. VialeG. FumagalliC. SajjadiE. VenetisK. PiciottiR. InvernizziM. MalapelleU. FuscoN. Immunotherapy in breast cancer patients: A focus on the use of the currently available biomarkers in oncology.Anti-cancer Agents Med. Chem.202222787800
    [Google Scholar]
  13. ParasharP. KanoujiaJ. KishoreA. Progress in polymeric micelles as viable wagons for brain targeting.Curr. Pharm. Des.202329211612510.2174/138161282966622122310175336567302
    [Google Scholar]
  14. SalatinS. FarhoudiM. Sadigh-EteghadS. FarjamiA. Nanoparticle and stem cell combination therapy for the management of stroke.Curr. Pharm. Des.2023291152910.2174/138161282966622121311311936515043
    [Google Scholar]
  15. ChamarthyS.P. PinalR. Plasticizer concentration and the performance of a diffusion-controlled polymeric drug delivery system.Colloids Surf. A Physicochem. Eng. Asp.20083311-2253010.1016/j.colsurfa.2008.05.047
    [Google Scholar]
  16. PandeyR. KhullerG. Polymer based drug delivery systems for mycobacterial infections.Curr. Drug Deliv.20041319520110.2174/156720104333466916305383
    [Google Scholar]
  17. TongX. PanW. SuT. ZhangM. DongW. QiX. Recent advances in natural polymer-based drug delivery systems.React. Funct. Polym.202014810450110.1016/j.reactfunctpolym.2020.104501
    [Google Scholar]
  18. SinnwellS. RitterH. Recent advances in microwave-assisted polymer synthesis.Aust. J. Chem.2007601072974310.1071/CH07219
    [Google Scholar]
  19. BhardwajT.R. KanwarM. LalR. GuptaA. Natural gums and modified natural gums as sustained-release carriers.Drug Dev. Ind. Pharm.200026101025103810.1081/DDC‑10010026611028217
    [Google Scholar]
  20. BhattacharyaA. MisraB.N. Grafting: A versatile means to modify polymers Techniques, factors and applications.Prog. Polym. Sci.200429876781410.1016/j.progpolymsci.2004.05.002
    [Google Scholar]
  21. BasavarajappaG.M. PriyankaK.M. GoudanavarP. NarasimhaL.G. NaveenN.R. GowthamiB. FattepurS. ShiroorkarP.N. NagarajaS. TelsangM. JasthiV.C. SreenivasaluP.K.P. A spotlight on application of microwave-assisted modifications of plant derived polymers in designing novel drug delivery systems.Des. Monomers Polym.202326110611610.1080/15685551.2023.219417637008384
    [Google Scholar]
  22. SoniaT.A. SharmaC.P. An overview of natural polymers for oral insulin delivery.Drug Discov. Today20121713-1478479210.1016/j.drudis.2012.03.01922521664
    [Google Scholar]
  23. MalafayaP.B. SilvaG.A. ReisR.L. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications.Adv. Drug Deliv. Rev.2007594-520723310.1016/j.addr.2007.03.01217482309
    [Google Scholar]
  24. DesbrièresJ. PetitC. ReynaudS. Microwave-assisted modifications of polysaccharides.Pure Appl. Chem.201486111695170610.1515/pac‑2014‑0711
    [Google Scholar]
  25. SinghV. SethiR. TewariA. SrivastavaV. SanghiR. Hydrolysis of plant seed gums by microwave irradiation.Carbohydr. Polym.200354452352510.1016/j.carbpol.2003.05.003
    [Google Scholar]
  26. KappeC.O. DallingerD. The impact of microwave synthesis on drug discovery.Nat. Rev. Drug Discov.200651516310.1038/nrd192616374514
    [Google Scholar]
  27. WeltB.A. TongC.H. RossenJ.L. LundD.B. Effect of microwave radiation on inactivation of Clostridium sporogenes (PA 3679) spores.Appl. Environ. Microbiol.199460248248810.1128/aem.60.2.482‑488.19948135512
    [Google Scholar]
  28. ThostensonE.T. ChouT.W. Microwave processing: fundamentals and applications.Compos., Part A Appl. Sci. Manuf.19993091055107110.1016/S1359‑835X(99)00020‑2
    [Google Scholar]
  29. SolankiH.K. PrajapatiV.D. JaniG.K. Microwave technology-a potential tool in pharmaceutical science.Int. J. Pharmtech Res.2010217541761
    [Google Scholar]
  30. McLoughlinC.M. McMinnW.A.M. MageeT.R.A. Physical and dielectric properties of pharmaceutical powders.Powder Technol.20031341-2405110.1016/S0032‑5910(03)00133‑5
    [Google Scholar]
  31. GalemaS.A. Microwave chemistry.Chem. Soc. Rev.199726323323810.1039/cs9972600233
    [Google Scholar]
  32. WongT.W. ChanL.W. KhoS.B. HengP.W.S. Aging and microwave effects on alginate/chitosan matrices.J. Control. Release2005104346147510.1016/j.jconrel.2005.03.00315911046
    [Google Scholar]
  33. WongT.W. ChanL.W. KhoS.B. Sia HengP.W. Design of controlled-release solid dosage forms of alginate and chitosan using microwave.J. Control. Release20028439911410.1016/S0168‑3659(02)00237‑712468214
    [Google Scholar]
  34. NurjayaS. WongT. Effects of microwave on drug release properties of matrices of pectin.Carbohydr. Polym.200562324525710.1016/j.carbpol.2005.07.029
    [Google Scholar]
  35. WongT.W. Use of microwave in processing of drug delivery systems.Curr. Drug Deliv.200852778410.2174/156720108783954842
    [Google Scholar]
  36. BondeM. SohaniA.C. DaudA. SapkalN. Microwave: An emerging trend in pharmaceutical processes and formulations.Int. J. Pharm. Technol.2011334993520
    [Google Scholar]
  37. DwivediS. DubeyR. DwivediA. KaulS. GuptaP. ChemInform abstract: Microwave synthesis: A recent advancement in the field of synthetic chemistry. Part 1. Principle.ChemInform20104122chin.20102221010.1002/chin.201022210
    [Google Scholar]
  38. LarhedM. HallbergA. LarhedM. HallbergA. Microwave-assisted high-speed chemistry: A new technique in drug discovery. Drug Disc. Today 6, 406-416.Drug Discov. Today2001640641610.1016/S1359‑6446(01)01735‑411301285
    [Google Scholar]
  39. WanZ. XiongZ. RenH. HuangY. LiuH. XiongH. WuY. HanJ. Graft copolymerization of methyl methacrylate onto bamboo cellulose under microwave irradiation.Carbohydr. Polym.201183126426910.1016/j.carbpol.2010.07.048
    [Google Scholar]
  40. KaithB.S. JindalR. JanaA. Maiti JanaM. Ferrous-persulphate induced graft copolymerization of monomer mixtures onto Saccharum spontaneum-L natural fibre.Iran. Polym. J20091810789800
    [Google Scholar]
  41. SenG. KumarR. GhoshS. PalS. A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch.Carbohydr. Polym.200977482283110.1016/j.carbpol.2009.03.007
    [Google Scholar]
  42. SinghV. TiwariA. TripathiD.N. MalviyaT. Microwave promoted methylation of plant polysaccharides.Tetrahedron Lett.200344397295729710.1016/S0040‑4039(03)01871‑9
    [Google Scholar]
  43. KabanovV.Y. KudryavtsevV.N. Modification of polymers by radiation graft polymerization (State of the Art and Trends).High Energy Chem.20033711510.1023/A:1021919224451
    [Google Scholar]
  44. TakkellapatiS. Microwave-assisted chemical transformations.Curr. Org. Chem.201317202305232210.2174/13852728113179990042
    [Google Scholar]
  45. AlcázarJ. DielsG. SchoentjesB. Microwave assisted medicinal chemistry.Mini Rev. Med. Chem.20077434536910.2174/13895570778036384617430222
    [Google Scholar]
  46. WangA. WangW. Gum-g-copolymers: Synthesis, properties, and applications.Polysaccharide Based Graft CopolymersSpringer201314920310.1007/978‑3‑642‑36566‑9_5
    [Google Scholar]
  47. NayakB.R. SinghR.P. Synthesis and characterization of grafted hydroxypropyl guar gum by ceric ion induced initiation.Eur. Polym. J.20013781655166610.1016/S0014‑3057(01)00035‑0
    [Google Scholar]
  48. ZampanoG. BertoldoM. BroncoS. Poly(ethyl acrylate) surface-initiated ATRP grafting from wood pulp cellulose fibers.Carbohydr. Polym.2009751223110.1016/j.carbpol.2008.06.005
    [Google Scholar]
  49. RobinsonJ. KingmanS. IrvineD. LicenceP. SmithA. DimitrakisG. ObermayerD. KappeC.O. Electromagnetic simulations of microwave heating experiments using reaction vessels made out of silicon carbide.Phys. Chem. Chem. Phys.20101236107931080010.1039/c0cp00080a20625593
    [Google Scholar]
  50. DallingerD. KappeC.O. Microwave-assisted synthesis in water as solvent.Chem. Rev.200710762563259110.1021/cr050941017451275
    [Google Scholar]
  51. LidströmP. TierneyJ. WatheyB. WestmanJ. Microwave assisted organic synthesis—a review.Tetrahedron200157459225928310.1016/S0040‑4020(01)00906‑1
    [Google Scholar]
  52. PrasadK. MehtaG. MeenaR. SiddhantaA.K. Hydrogel-forming agar-graft-PVP and κ-carrageenan-graft-PVP blends: Rapid synthesis and characterization.J. Appl. Polym. Sci.200610243654366310.1002/app.24145
    [Google Scholar]
  53. PolshettiwarV. VarmaR.S. Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery.Chem. Soc. Rev.20083781546155710.1039/b716534j18648680
    [Google Scholar]
  54. SinghV. TiwariA. PandeyS. SinghS.K. Microwave-accelerated synthesis and characterization of potato starch- g -poly(acrylamide).Stärke2006581053654310.1002/star.200600520
    [Google Scholar]
  55. SinghV. KumarP. SanghiR. Use of microwave irradiation in the grafting modification of the polysaccharides – A review.Prog. Polym. Sci.201237234036410.1016/j.progpolymsci.2011.07.005
    [Google Scholar]
  56. SinghV. TiwariA. TripathiD.N. SanghiR. Microwave assisted synthesis of Guar-g-polyacrylamide.Carbohydr. Polym.20045811610.1016/j.carbpol.2004.04.010
    [Google Scholar]
  57. MaitiS. RanjitS. SaB. Polysaccharide-based graft copolymers in controlled drug delivery.Int. J. Pharm. Tech. Res.2010213501358
    [Google Scholar]
  58. RanaV. RaiP. TiwaryA.K. SinghR.S. KennedyJ.F. KnillC.J. Modified gums: Approaches and applications in drug delivery.Carbohydr. Polym.20118331031104710.1016/j.carbpol.2010.09.010
    [Google Scholar]
  59. NepE.I. ConwayB.R. Physicochemical characterization of grewia polysaccharide gum: Effect of drying method.Carbohydr. Polym.201184144645310.1016/j.carbpol.2010.12.005
    [Google Scholar]
  60. GeorgeA. ShahP.A. ShrivastavP.S. Guar gum: Versatile natural polymer for drug delivery applications.Eur. Polym. J.201911272273510.1016/j.eurpolymj.2018.10.042
    [Google Scholar]
  61. PurohitP. BhattA. MittalR.K. AbdellattifM.H. FarghalyT.A. Polymer Grafting and its chemical reactions.Front. Bioeng. Biotechnol.202310104492710.3389/fbioe.2022.104492736714621
    [Google Scholar]
  62. ChandrakalaV. ArunaV. AngajalaG. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems.Emergent. Mater.2022561593161510.1007/s42247‑021‑00335‑x
    [Google Scholar]
  63. SahaA. TyagiS. GuptaR.K. TyagiY.K. Natural gums of plant origin as edible coatings for food industry applications.Crit. Rev. Biotechnol.201737895997310.1080/07388551.2017.128644928423942
    [Google Scholar]
  64. YangJ. HanS. ZhengH. DongH. LiuJ. Preparation and application of micro/nanoparticles based on natural polysaccharides.Carbohydr. Polym.2015123536610.1016/j.carbpol.2015.01.02925843834
    [Google Scholar]
  65. Al-TahamiK. SinghJ. Smart polymer based delivery systems for peptides and proteins.Recent Pat. Drug Deliv. Formul.200711657110.2174/18722110777981411319075875
    [Google Scholar]
  66. SahS. TiwariD.A. ShrivastavaB. BairwaR. BishnoiN. Natural gums emphasized grafting technique: Applications and perspectives in floating drug delivery system2016107283
    [Google Scholar]
  67. LeT.A. HuynhT.P. Current advances in the chemical functionalization and potential applications of guar gum and its derivatives.Eur. Polym. J.202318411185210.1016/j.eurpolymj.2023.111852
    [Google Scholar]
  68. PalS. Carboxymethyl guar: Its synthesis and macromolecular characterization.J. Appl. Polym. Sci.200911152630263610.1002/app.29338
    [Google Scholar]
  69. JaniG. ShahD. PrajapatiV. JainV. Gums and mucilages: Versatile excipients for pharmaceutical formulations.Asian J. Pharm. Sci200945309323
    [Google Scholar]
  70. ThombareN. JhaU. MishraS. SiddiquiM.Z. Guar gum as a promising starting material for diverse applications: A review.Int. J. Biol. Macromol.20168836137210.1016/j.ijbiomac.2016.04.00127044346
    [Google Scholar]
  71. NagatsuM. KralM. AnzawaE. NoguchiS. OginoA. Functionalization of polymers surfaces using microwave plasma chemical modification.J. Photopolym. Sci. Technol.200821225726110.2494/photopolymer.21.257
    [Google Scholar]
  72. HortalL. Pérez-FernándezC. de la FuenteJ.L. VallesP. Mateo-MartíE. Ruiz-BermejoM. A dual perspective on the microwave-assisted synthesis of HCN polymers towards the chemical evolution and design of functional materials.Sci. Rep.20201012235010.1038/s41598‑020‑79112‑533339853
    [Google Scholar]
  73. MattiR. OwaidK. Rheological modifications of the asphalt-polymer system using microwave technology.J. Educ. Sci.2020292264410.33899/edusj.2020.165302
    [Google Scholar]
  74. SharmaD.R. SharmaA. KaundalA. RaiP.K. Herbal gums and mucilage as excipients for Pharmaceutical Products.Res. J. Pharmacogn. Phytochem20168314510.5958/0975‑4385.2016.00026.1
    [Google Scholar]
  75. ShruthiS.B. BhatC. BhaskarS.P. PreethiG. SailajaR.R.N. Microwave assisted synthesis of guar gum grafted acrylic acid/nanoclay superabsorbent composites and its use in crystal violet dye absorption.Green and Sustainable Chemistry201661112510.4236/gsc.2016.61002
    [Google Scholar]
  76. ShahidM. BukhariS.A. GulY. MunirH. AnjumF. ZuberM. JamilT. ZiaK.M. Graft polymerization of guar gum with acryl amide irradiated by microwaves for colonic drug delivery.Int. J. Biol. Macromol.20136217217910.1016/j.ijbiomac.2013.08.01823973495
    [Google Scholar]
  77. MahtoA. MishraS. Design, development and validation of guar gum based pH sensitive drug delivery carrier via graft copolymerization reaction using microwave irradiations.Int. J. Biol. Macromol.201913827829110.1016/j.ijbiomac.2019.07.06331310787
    [Google Scholar]
  78. SenG. MishraS. JhaU. PalS. Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)—Characterizations and application as matrix for controlled release of 5-amino salicylic acid.Int. J. Biol. Macromol.201047216417010.1016/j.ijbiomac.2010.05.00420471416
    [Google Scholar]
  79. SwainS. BalT. Carrageenan-guar gum microwave irradiated micro-porous interpenetrating polymer network: A system for drug delivery.Int. J. Polym. Mater.201968525626510.1080/00914037.2018.1443931
    [Google Scholar]
  80. MollahM.Z.I. ZahidH.M. MahalZ. FaruqueM.R.I. KhandakerM.U. The usages and potential uses of alginate for healthcare applications.Front. Mol. Biosci.2021871997210.3389/fmolb.2021.71997234692769
    [Google Scholar]
  81. Ahmad RausR. Wan NawawiW.M.F. NasaruddinR.R. Alginate and alginate composites for biomedical applications.Asian J. Pharm. Sci202116328030610.1016/j.ajps.2020.10.00134276819
    [Google Scholar]
  82. HariyadiD.M. IslamN. Current status of alginate in drug delivery.Adv. Pharmacol. Pharm. Sci.2020202011610.1155/2020/888609532832902
    [Google Scholar]
  83. SunJ. TanH. Alginate-based biomaterials for regenerative medicine applications.Materials2013641285130910.3390/ma604128528809210
    [Google Scholar]
  84. CathellD.M. SzewczykC.J. SchauerL.C. Organic modification of the polysaccharide alginate.Mini Rev. Org. Chem.201076167
    [Google Scholar]
  85. MuhammadiN. AhmedN. Genetics of bacterial alginate: Alginate genes distribution, organization and biosynthesis in bacteria.Curr. Genomics20078319120210.2174/13892020778083381018645604
    [Google Scholar]
  86. JinS. LiuM. ChenS. GaoC. Synthesis, characterization and the rapid response property of the temperature responsive PVP-g-PNIPAM hydrogel.Eur. Polym. J.20084472162217010.1016/j.eurpolymj.2008.04.017
    [Google Scholar]
  87. YiğitoğluM. AydınG. IşıklanN. Microwave-assisted synthesis of alginate-g-polyvinylpyrrolidone copolymer and its application in controlled drug release.Polym. Bull.201471238541410.1007/s00289‑013‑1067‑0
    [Google Scholar]
  88. AkınA. IşıklanN. Microwave assisted synthesis and characterization of sodium alginate-graft-poly(N, N′-dimethylacrylamide).Int. J. Biol. Macromol.20168253054010.1016/j.ijbiomac.2015.10.05026549441
    [Google Scholar]
  89. MardziahR.E. WongT.W. Effects of microwave on drug-release responses of spray-dried alginate microspheres.Drug Dev. Ind. Pharm.201036101149116710.3109/0363904100369506320380595
    [Google Scholar]
  90. IşıklanN. KüçükbalcıG. Microwave-induced synthesis of alginate–graft-poly(N-isopropylacrylamide) and drug release properties of dual pH- and temperature-responsive beads.Eur. J. Pharm. Biopharm.201282231633110.1016/j.ejpb.2012.07.01522906708
    [Google Scholar]
  91. AquinoR.P. AuriemmaG. d’AmoreM. D’UrsiA.M. MencheriniT. Del GaudioP. Piroxicam loaded alginate beads obtained by prilling/microwave tandem technique: Morphology and drug release.Carbohydr. Polym.201289374074810.1016/j.carbpol.2012.04.00324750857
    [Google Scholar]
  92. KhushbuR. JindalR. Thermal stability and optimization of graphene oxide incorporated chitosan and sodium alginate based nanocomposite containing inclusion complexes of paracetamol and β-cyclodextrin for prolonged drug delivery systems.Polym. Bull.20238021751177210.1007/s00289‑022‑04157‑7
    [Google Scholar]
  93. KhushbuR. JindalR. RSM-CCD optimized microwave assisted synthesis of chitosan and sodium alginate based nanocomposite containing inclusion complexes of β-cyclodextrin and amlodipine besylate for sustained drug delivery systems.J. Drug Deliv. Sci. Technol.20216110232510.1016/j.jddst.2021.102325
    [Google Scholar]
  94. KhushbuR. JindalR. Comparative evaluation for controlled release of amoxicillin from RSM-CCD-optimized nanocomposites based on sodium alginate and chitosan-containing inclusion complexes.Mol. Pharm.202118103795381010.1021/acs.molpharmaceut.1c0034034482691
    [Google Scholar]
  95. KhushbuR. JindalR. Cyclodextrin mediated controlled release of edaravone from pH-responsive sodium alginate and chitosan based nanocomposites.Int. J. Biol. Macromol.2022202112510.1016/j.ijbiomac.2022.01.00135031316
    [Google Scholar]
  96. BoppanaR. Krishna MohanG. NayakU. MutalikS. SaB. KulkarniR.V. Novel pH-sensitive IPNs of polyacrylamide-g-gum ghatti and sodium alginate for gastro-protective drug delivery.Int. J. Biol. Macromol.20157513314310.1016/j.ijbiomac.2015.01.02925623023
    [Google Scholar]
  97. BadwaikH. GiriT. NakhateK. KashyapP. TripathiD. Xanthan gum and its derivatives as a potential bio-polymeric carrier for drug delivery system.Curr. Drug Deliv.201310558760010.2174/156720181131005001023607638
    [Google Scholar]
  98. García-OchoaF. SantosV.E. CasasJ.A. GómezE. Xanthan gum: Production, recovery, and properties.Biotechnol. Adv.200018754957910.1016/S0734‑9750(00)00050‑114538095
    [Google Scholar]
  99. AnjumF. BukhariS.A. SiddiqueM. ShahidM. PotgieterJ.H. JaafarH.Z.E. ErcisliS. Zia-Ul-HaqM. Microwave irradiated copolymerization of xanthan gum with acrylamide for colonic drug delivery.BioResources20151011434145110.15376/biores.10.1.1434‑1451
    [Google Scholar]
  100. SethiS. SaruchiB.S. KaithB.S. KaurM. SharmaN. KumarV. Cross-linked xanthan gum–starch hydrogels as promising materials for controlled drug delivery.Cellulose20202784565458910.1007/s10570‑020‑03082‑0
    [Google Scholar]
  101. AlleM. GB. KimT.H. ParkS.H. LeeS.H. KimJ.C. Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: Microwave synthesis, characterization, and anti-cancer activity.Carbohydr. Polym.202022911551110.1016/j.carbpol.2019.11551131826400
    [Google Scholar]
  102. SinghJ. KumarS. DhaliwalA.S. Controlled release of amoxicillin and antioxidant potential of gold nanoparticles-xanthan gum/poly (Acrylic acid) biodegradable nanocomposite.J. Drug Deliv. Sci. Technol.20205510138410.1016/j.jddst.2019.101384
    [Google Scholar]
  103. KumarA. SinghK. AhujaM. Xanthan-g-poly(acrylamide): Microwave-assisted synthesis, characterization and in vitro release behavior.Carbohydr. Polym.200976226126710.1016/j.carbpol.2008.10.014
    [Google Scholar]
  104. SinghB. KumarA. Development of dietary fibre moringa gum and polyvinylpyrrolidone based hydrogels for drug delivery application.Food Hydrocolloids for Health2021110000810.1016/j.fhfh.2021.100008
    [Google Scholar]
  105. IrfanM. MunirH. IsmailH. Moringa oleifera gum based silver and zinc oxide nanoparticles: Green synthesis, characterization and their antibacterial potential against MRSA.Biomater. Res.20212511710.1186/s40824‑021‑00219‑533964968
    [Google Scholar]
  106. BadwaikH.R. AlexanderA. SakureK. Understanding the significance of microwave radiation for the graft copolymerization of acrylamide on carboxymethyl xanthan gum.Curr. Microw. Chem.201961132210.2174/2213335606666190307162901
    [Google Scholar]
  107. BadwaikH.R. HoqueA.A. KumariL. SakureK. BaghelM. GiriT.K. Moringa gum and its modified form as a potential green polymer used in biomedical field.Carbohydr. Polym.202024911689310.1016/j.carbpol.2020.11689332933701
    [Google Scholar]
  108. SinghB. SharmaV. KumarR.A. Designing moringa gum-sterculia gum-polyacrylamide hydrogel wound dressings for drug delivery applications.Carbohydr. Polym.2021210006210.1016/j.carpta.2021.100062
    [Google Scholar]
  109. BhattacharyaS.B. DasA.K. BanerjiN. Chemical investigations on the gum exudate from sajna (Moringa oleifera).Carbohydr. Res.1982102125326210.1016/S0008‑6215(00)88067‑2
    [Google Scholar]
  110. HeT.B. HuangY.P. HuangY. WangX.J. HuJ.M. ShengJ. Structural elucidation and antioxidant activity of an arabinogalactan from the leaves of Moringa oleifera.Int. J. Biol. Macromol.201811212613310.1016/j.ijbiomac.2018.01.11029366898
    [Google Scholar]
  111. RajaW. BeraK. RayB. Polysaccharides from Moringa oleifera gum: Structural elements, interaction with β-lactoglobulin and antioxidative activity.RSC Advances2016679756997570610.1039/C6RA13279K
    [Google Scholar]
  112. GrewalP. MundliaJ. AhujaM. Thiol modified Moringa gum – A potential bioadhesive polymer.Carbohydr. Polym.201920940040810.1016/j.carbpol.2018.12.10030732824
    [Google Scholar]
  113. SinghB. KumarA. Network formation of Moringa oleifera gum by radiation induced crosslinking: Evaluation of drug delivery, network parameters and biomedical properties.Int. J. Biol. Macromol.201810847748810.1016/j.ijbiomac.2017.12.04129225178
    [Google Scholar]
  114. PandaD. SiS. SwainS. KanungoS.K. GuptaR. Preparation and evaluation of gels from gum of Moringa oleifera.Indian J. Pharm. Sci.200668677710.4103/0250‑474X.31014
    [Google Scholar]
  115. RoyD. BalT. SwainS. Fabrication and evaluation of pH-sensitive biocompatible microwave irradiated moringa barkgum-carrageenan (MOG-CRG-IPN) interpenetrating isotropic polymeric network for controlled delivery of pharmaceuticals.Sustain. Chem. Pharm.20201810032510.1016/j.scp.2020.100325
    [Google Scholar]
  116. RaiN. BalT. SwainS. in vitro evaluations of biodegradable polyacrylamide grafted moringa bark gum graft copolymer (MOG-g- PAAM) as biomedical and controlled drug delivery device synthesized by microwave accelerated free radical synthesis.Indian J. Pharm. Educ. Res.202054238539610.5530/ijper.54.2.44
    [Google Scholar]
  117. RahmanS. ParvinR. Therapeutic potential of Aegle marmelos (L.)-An overview.Asian Pac. J. Trop. Dis.201441717710.1016/S2222‑1808(14)60318‑2
    [Google Scholar]
  118. AtulN.P. NileshV.D. AkkataiA.R. KamlakarS.K. A review on Aegle marmelos: A potential medicinal tree.Int. Res. J. Pharm.201238691
    [Google Scholar]
  119. MohandasH. SivakumarG. KasiP. JaganathanS.K. SupriyantoE. Microwave-assisted surface modification of metallocene polyethylene for improving blood compatibility.Biomed Res. Int.2013201325347310.1155/2013/253473
    [Google Scholar]
  120. SetiaA. KumarR. Microwave assisted synthesis and optimization of Aegle marmelos-g-poly(acrylamide): Release kinetics studies.Int. J. Biol. Macromol.20146546247010.1016/j.ijbiomac.2014.02.00624530335
    [Google Scholar]
  121. BhatM.R. Microwave-generated bionanocomposites for solubility enhancement of nifedipine.Asian J. Pharm.201610410.22377/ajp.v10i04.918
    [Google Scholar]
  122. VilasA. PankajkumarS. BirendraS. SwaroopL. SantoshP. Butea monosperma gum as matrix former for oral sustained release matrix tablet.Asian J Pharm2016104S636S645
    [Google Scholar]
  123. SharmaN. GargV. Antidiabetic and antioxidant potential of ethanolic extract of Butea monosperma leaves in alloxan-induced diabetic mice.Indian J. Biochem. Biophys.20094619910519374261
    [Google Scholar]
  124. Krolikiewicz-RenimelI. MichelT. DestandauE. ReddyM. AndréP. ElfakirC. PichonC. Protective effect of a Butea monosperma (Lam.) Taub. flowers extract against skin inflammation: Antioxidant, anti-inflammatory and matrix metalloproteinases inhibitory activities.J. Ethnopharmacol.2013148253754310.1016/j.jep.2013.05.00123680157
    [Google Scholar]
  125. MankotiaP. SharmaK. SharmaV. MishraY.K. KumarV. Curcumin-loaded Butea monosperma gum-based hydrogel: A new excipient for controlled drug delivery and anti-bacterial applications.Int. J. Biol. Macromol.2023242Pt 112470310.1016/j.ijbiomac.2023.12470337141967
    [Google Scholar]
  126. VerbekenD. DierckxS. DewettinckK. Exudate gums: Occurrence, production, and applications.Appl. Microbiol. Biotechnol.2003631102110.1007/s00253‑003‑1354‑z12802529
    [Google Scholar]
  127. MbunaJ.J. MhinziG.S. Evaluation of gum exudates from three selected plant species from Tanzania for food and pharmaceutical applications.J. Sci. Food Agric.200383214214610.1002/jsfa.1279
    [Google Scholar]
  128. Luján MedinaG. VenturaJ. Lara CenicerosA. Ascacio-ValdésJ. Boone-VillaD. AguilarC. Karaya gum: General topics and applications, Macromol.An Indian J.20139111116
    [Google Scholar]
  129. KaurL. GuptaG.D. Gum karaya-g-poly (ACRYLAMIDE): Microwave assisted synthesis, optimisation and characterisation.Int. J. Appl. Pharm.202012514315210.22159/ijap.2020v12i5.37732
    [Google Scholar]
  130. VinodV.T.P. SashidharR.B. SureshK.I. Rama RaoB. Vijaya SaradhiU.V.R. Prabhakar RaoT. Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India.Food Hydrocoll.200822589991510.1016/j.foodhyd.2007.05.006
    [Google Scholar]
  131. JanakiB. SashidharR.B. Subchronic (90-day) toxicity study in rats fed gum kondagogu (Cochlospermum gossypium).Food Chem. Toxicol.200038652353410.1016/S0278‑6915(00)00037‑510828504
    [Google Scholar]
  132. MalikS. AhujaM. Gum kondagogu-g-poly (acrylamide): Microwave-assisted synthesis, characterisation and release behaviour.Carbohydr. Polym.201186117718410.1016/j.carbpol.2011.04.027
    [Google Scholar]
  133. HasnainM.S. RishishwarP. RishishwarS. AliS. NayakA.K. Extraction and characterization of cashew tree (Anacardium occidentale) gum; use in aceclofenac dental pastes.Int. J. Biol. Macromol.20181161074108110.1016/j.ijbiomac.2018.05.13329791876
    [Google Scholar]
  134. OliveiraW.Q. WurlitzerN.J. AraújoA.W.O. ComunianT.A. BastosM.S.R. OliveiraA.L. MagalhãesH.C.R. RibeiroH.L. FigueiredoR.W. SousaP.H.M. Complex coacervates of cashew gum and gelatin as carriers of green coffee oil: The effect of microcapsule application on the rheological and sensorial quality of a fruit juice.Food Res. Int.202013110904710.1016/j.foodres.2020.10904732247484
    [Google Scholar]
  135. OliveiraA.C.J. ChavesL.L. RibeiroF.O.S. de LimaL.R.M. OliveiraT.C. García-VillénF. ViserasC. de PaulaR.C.M. Rolim-NetoP.J. HallwassF. Silva-FilhoE.C. Alves da SilvaD. Soares-SobrinhoJ.L. SoaresM.F.L.R. Microwave-initiated rapid synthesis of phthalated cashew gum for drug delivery systems.Carbohydr. Polym.202125411722610.1016/j.carbpol.2020.117226
    [Google Scholar]
  136. MorkhadeD.M. Evaluation of gum mastic (Pistacia lentiscus) as a microencapsulating and matrix forming material for sustained drug release.Asian J. Pharm. Sci.201712542443210.1016/j.ajps.2017.05.00232104355
    [Google Scholar]
  137. MohitK. Surajpal Mastic-g-poly (ACRYLAMIDE): Microwave-assisted synthesis and characterisation.Int. J. Appl. Pharm.202122823410.22159/ijap.2021v13i2.40551
    [Google Scholar]
  138. NjintangN. BoudjekoT. LéopoldT.N. Nguema-OnaE. ScherJ. MbofungC. Compositional, spectroscopic and rheological analyses of mucilage isolated from taro (Colocasia esculenta L. Schott) corms.Food Sci. Technol. Res.20115190090710.1007/s13197‑011‑0580‑024803696
    [Google Scholar]
  139. SanfulR.E. Organoleptic and nutritional analysis of taro and wheat flour composite bread., World J. Dairy \&.Shipin Kexue20116175179
    [Google Scholar]
  140. LoveleenpreetL. GuptaG.D. Gum colocasia-g-polyacrylamide: Microwave-assisted synthesis and characterization.Int. J. Res. Pharm. Sci.20201146698670610.26452/ijrps.v11i4.3595
    [Google Scholar]
  141. YadavH. MaitiS. Research progress in galactomannan-based nanomaterials: Synthesis and application.Int. J. Biol. Macromol.20201632113212610.1016/j.ijbiomac.2020.09.06232950525
    [Google Scholar]
  142. AntoniouJ. LiuF. MajeedH. ZhongF. Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study.Food Hydrocoll.20154430931910.1016/j.foodhyd.2014.09.023
    [Google Scholar]
  143. PriyadarsiniM. BiswalT. Green synthesis, swelling behaviour and orthopaedic application of polysaccharide based hydrogel.Indian J. Chem. Technol.20202751552010.56042/ijct.v27i6.27763
    [Google Scholar]
  144. NayakA.K. PalD. Functionalization of tamarind gum for drug delivery BT - functional biopolymers.Springer International Publishing. ThakurV.K. ThakurM.K. Cham2018255610.1007/978‑3‑319‑66417‑0_2
    [Google Scholar]
  145. JhaS. MalviyaR. FuloriaS. SundramS. SubramaniyanV. SekarM. SharmaP.K. ChakravarthiS. WuY.S. MishraN. MeenakshiD.U. BhallaV. DjearamaneS. FuloriaN.K. Characterization of microwave-controlled polyacrylamide graft copolymer of tamarind seed polysaccharide.Polymers2022145103710.3390/polym1405103735267860
    [Google Scholar]
  146. MalviyaR. SharmaP. DubeyS. Kheri (Acacia chundra, family: Mimosaceae) gum: Characterization using analytical, mathematical and pharmaceutical approaches.Polim. Med.2018472657610.17219/pim/7651530009583
    [Google Scholar]
  147. MalviyaR. SharmaP.K. DubeyS.K. Microwave facilitated green synthesis and characterization of acrylamide grafted copolymer of kheri (Acacia chundra) gum polysaccharide.Nat. Prod. J.202010446748710.2174/2210315509666190515112704
    [Google Scholar]
  148. BarakS. MudgilD. Locust bean gum: Processing, properties and food applications—A review.Int. J. Biol. Macromol.201466748010.1016/j.ijbiomac.2014.02.01724548746
    [Google Scholar]
  149. GrenhaA. DionísioM. Locust bean gum: Exploring its potential for biopharmaceutical applications.J. Pharm. Bioallied Sci.20124317518510.4103/0975‑7406.9901322923958
    [Google Scholar]
  150. PrajapatiV.D. JaniG.K. MoradiyaN.G. RanderiaN.P. Pharmaceutical applications of various natural gums, mucilages and their modified forms.Carbohydr. Polym.20139221685169910.1016/j.carbpol.2012.11.02123399207
    [Google Scholar]
  151. KaityS. IsaacJ. KumarP.M. BoseA. WongT.W. GhoshA. Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery.Carbohydr. Polym.20139811083109410.1016/j.carbpol.2013.07.03723987450
    [Google Scholar]
  152. AspinallG.O. HirstE.L. WickstrømA. Gum ghatti (Indian gum). The composition of the gum and the structure of two aldobiouronic acids derived from it.J. Chem. Soc.1955001160116510.1039/JR9550001160
    [Google Scholar]
  153. KaurL. SinghJ. SinghH. Characterization of gum ghatti (Anogeissus latifolia): A structural and rheological approach.J. Food Sci.2009746E328E33210.1111/j.1750‑3841.2009.01244.x19723196
    [Google Scholar]
  154. RaniP. SenG. MishraS. JhaU. Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant.Carbohydr. Polym.201289127528110.1016/j.carbpol.2012.03.00924750634
    [Google Scholar]
  155. PalP. SinghS.K. MishraS. PandeyJ.P. SenG. Gum ghatti based hydrogel: Microwave synthesis, characterization, 5-Fluorouracil encapsulation and ‘in vitro’ drug release evaluation.Carbohydr. Polym.201922211497910.1016/j.carbpol.2019.11497931320049
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673283144231212055603
Loading
/content/journals/cmc/10.2174/0109298673283144231212055603
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test