Skip to content
2000
Volume 32, Issue 13
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Antioxidant research has recently become a popular topic. Medicinal plants are important sources of novel active compounds. Diarylheptanoids, a typical family of secondary plant metabolites, are of great interest owing to their extensive spectrum of biological activities. They possess a unique 1,7-diphenylmethane structural skeleton. Thus, this review summarizes the natural linear or macrocyclic diarylheptanoids with antioxidant activity in the last two decades. In addition, the relationships between the structural characteristics of natural diarylheptanoids and their antioxidant capacity were also discussed. All the available data highlight the potential of natural diarylheptanoids as novel antioxidants.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673282309231226111037
2024-02-12
2025-08-18
Loading full text...

Full text loading...

References

  1. LiH. DingF. XiaoL. ShiR. WangH. HanW. HuangZ. Food-derived antioxidant polysaccharides and their pharmacological potential in neurodegenerative diseases.Nutrients20179777810.3390/nu9070778 28753972
    [Google Scholar]
  2. Gulcinİ. Antioxidants and antioxidant methods: An updated overview.Arch. Toxicol.202094365171510.1007/s00204‑020‑02689‑3 32180036
    [Google Scholar]
  3. BaysalE. GulsenS. AytacI. CelenkF. EnsariN. TaysiS. BiniciH. DurucuC. MumbucS. KanlikamaM. Oxidative stress in otosclerosis.Redox Rep.201722523523910.1080/13510002.2016.1207920 27387094
    [Google Scholar]
  4. ZhongQ. WeiB. WangS. KeS. ChenJ. ZhangH. WangH. The antioxidant activity of polysaccharides derived from marine organisms: An overview.Mar. Drugs2019171267410.3390/md17120674 31795427
    [Google Scholar]
  5. BlackH.S. A synopsis of the associations of oxidative stress, ros, and antioxidants with diabetes mellitus.Antioxidants20221110200310.3390/antiox11102003 36290725
    [Google Scholar]
  6. BattyM. BennettM.R. YuE. The role of oxidative stress in atherosclerosis.Cells20221123384310.3390/cells11233843 36497101
    [Google Scholar]
  7. RottkampC.A. NunomuraA. RainaA.K. SayreL.M. PerryG. SmithM.A. Oxidative stress, antioxidants, and Alzheimer disease.Alzheimer Dis. Assoc. Disord.200014Suppl.S62S6610.1097/00002093‑200000001‑00010 10850732
    [Google Scholar]
  8. UtkualpN. OzdemirA. Oxidative stress and chronic diseases.Oxid. Commun.201538416901696
    [Google Scholar]
  9. RepettoM.G. BoverisA. Systemic oxidative stress in patients with neurodegenerative diseases. Biochemistry of Oxidative Stress.Springer201610.1007/978‑3‑319‑45865‑6_22
    [Google Scholar]
  10. LeyaneT.S. JereS.W. HoureldN.N. Oxidative stress in ageing and chronic degenerative pathologies: Molecular mechanisms involved in counteracting oxidative stress and chronic inflammation.Int. J. Mol. Sci.20222313727310.3390/ijms23137273 35806275
    [Google Scholar]
  11. Amponsah-OffehM. Diaba-NuhohoP. SpeierS. MorawietzH. Oxidative stress, antioxidants and hypertension.Antioxidants202312228110.3390/antiox12020281 36829839
    [Google Scholar]
  12. SalmanzadehR. EskandaniM. MokhtarzadehA. VandghanooniS. IlghamiR. MalekiH. SaeeidiN. OmidiY. Propyl gallate (PG) and tert-butylhydroquinone (TBHQ) may alter the potential anti-cancer behavior of probiotics.Food Biosci.201824374510.1016/j.fbio.2018.05.005
    [Google Scholar]
  13. AbeyrathneE.D.N.S. NamK. HuangX. AhnD.U. Plant- and animal-based antioxidants’ structure, efficacy, mechanisms, and applications: A review.Antioxidants2022115102510.3390/antiox11051025 35624889
    [Google Scholar]
  14. Gülçinİ. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa.Amino Acids200732343143810.1007/s00726‑006‑0379‑x 16932840
    [Google Scholar]
  15. İlhami Gülçin MshvildadzeV. GepdiremenA. EliasR. The antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(β-D-gluco-pyranosyl)‐hederagenin.Phytother. Res.200620213013410.1002/ptr.1821 16444666
    [Google Scholar]
  16. AsmaU. MorozovaK. FerrentinoG. ScampicchioM. Apples and apple by-products: Antioxidant properties and food applications.Antioxidants2023127145610.3390/antiox12071456 37507993
    [Google Scholar]
  17. BudhathokiR. TimilsinaA.P. RegmiB.P. SharmaK.R. AryalN. ParajuliN. Metabolome mining of curcuma longa l. Using hplc-ms/ms and molecular networking.Metabolites202313889810.3390/metabo13080898 37623841
    [Google Scholar]
  18. AkT. Gülçinİ. Antioxidant and radical scavenging properties of curcumin.Chem. Biol. Interact.20081741273710.1016/j.cbi.2008.05.003 18547552
    [Google Scholar]
  19. HatwalneM. Free radical scavengers in anaesthesiology and critical care.Indian J. Anaesth.201256322723310.4103/0019‑5049.98760 22923819
    [Google Scholar]
  20. ZebA. Concept, mechanism, and applications of phenolic antioxidants in foods.J. Food Biochem.2020449e1339410.1111/jfbc.13394 32691460
    [Google Scholar]
  21. MuS. YangW. HuangG. Antioxidant activities and mechanisms of polysaccharides.Chem. Biol. Drug Des.202197362863210.1111/cbdd.13798 32946177
    [Google Scholar]
  22. AsouriM. AtaeeR. AhmadiA.A. AminiA. MoshaeiM.R. Antioxidant and free radical scavenging activities of curcumin.Asian J. Chem.201325137593759510.14233/ajchem.2013.15308
    [Google Scholar]
  23. GiangP.M. SonP.T. MatsunamiK. OtsukaH. New diarylheptanoids from Amomum muricarpum ELMER.Chem. Pharm. Bull.200654113914010.1248/cpb.54.139 16394570
    [Google Scholar]
  24. WangH.S. HwangY.J. YinJ. LeeM.W. Inhibitory effects on no production and dpph radicals and nbt superoxide activities of diarylheptanoid isolated from enzymatically hydrolyzed ehthanolic extract of Alnus sibirica.Molecules20192410193810.3390/molecules24101938 31137531
    [Google Scholar]
  25. Gulcinİ. AlwaselS.H. Metal ions, metal chelators and metal chelating assay as antioxidant method.Processes202210113210.3390/pr10010132
    [Google Scholar]
  26. GuoY.L. LiX.Z. KuangC.T. Antioxidant pathways and chemical mechanism of curcumin.International Conference on Chemical Engineering and Advanced MaterialsChangshaMay 28-30, 2011Vol. 236-2382311231410.4028/www.scientific.net/AMR.236‑238.2311
    [Google Scholar]
  27. BarikA. MishraB. ShenL. MohanH. KadamR.M. DuttaS. ZhangH.Y. PriyadarsiniK.I. Evaluation of a new copper(II)–curcumin complex as superoxide dismutase mimic and its free radical reactions.Free Radic. Biol. Med.200539681182210.1016/j.freeradbiomed.2005.05.005 16109310
    [Google Scholar]
  28. MaryC.P.V. VijayakumarS. ShankarR. Metal chelating ability and antioxidant properties of Curcumin-metal complexes – A DFT approach.J. Mol. Graph. Model.20187911410.1016/j.jmgm.2017.10.022 29127853
    [Google Scholar]
  29. GorgannezhadL. DehghanG. EbrahimipourS.Y. NaseriA. Nazhad DolatabadiJ.E. Complex of manganese (II) with curcumin: Spectroscopic characterization, DFT study, model-based analysis and antiradical activity.J. Mol. Struct.2016110913914510.1016/j.molstruc.2015.12.051
    [Google Scholar]
  30. ShenL. JiH.F. Theoretical study on physicochemical properties of curcumin.Spectrochim Acta A Mol. Biomol. Spectrosc.2007673-46192310.1016/j.saa.2006.08.01816979936
    [Google Scholar]
  31. VidyarthiN. MazumdarA. Oxidative stress and antioxidant enzymes.Pharmacophore201456889894 https://pharmacophorejournal.com/storage/models/article/iqU5Fo3U3azBthQs9yaNFgd6LRrz8QvYCZyfx8cdDFBMHOKkGZmvQAt1zrLk/oxidative-stress-and-antioxidant-enzymes.pdf
    [Google Scholar]
  32. BobrovskikhA. ZubairovaU. KolodkinA. DoroshkovA. Subcellular compartmentalization of the plant antioxidant system: an integrated overview.PeerJ20208e945110.7717/peerj.9451 32742779
    [Google Scholar]
  33. WanX. LiuC. ChenY.B. GuM. CaiZ.K. ChenQ. WangZ. Sulforaphane treatment of stress urinary incontinence via the nrf2-are pathway in a rat model.Cell. Physiol. Biochem.20174451912192210.1159/000485880 29224018
    [Google Scholar]
  34. LuM.C. JiJ.A. JiangZ.Y. YouQ.D. The keap1-nrf2-are pathway as a potential preventive and therapeutic target: An update.Med. Res. Rev.201636592496310.1002/med.21396 27192495
    [Google Scholar]
  35. GalloriniM. CarradoriS. PanieriE. SovaM. SasoL. Modulation of NRF2: Biological dualism in cancer, targets and possible therapeutic applications.Antioxid Redox Signal.20244010-126366210.1089/ars.2022.021337470218
    [Google Scholar]
  36. KeumY.S. Regulation of nrf2-mediated phase ii detoxification and anti-oxidant genes.Biomol. Ther.201220214415110.4062/biomolther.2012.20.2.14424116287
    [Google Scholar]
  37. El-BahrS.M. Effect of curcumin on hepatic antioxidant enzymes activities and gene expressions in rats intoxicated with aflatoxin B1.Phytother. Res.201529113414010.1002/ptr.523925639897
    [Google Scholar]
  38. LuoD.D. ChenJ.F. LiuJ.J. XieJ.H. ZhangZ.B. GuJ.Y. ZhuoJ.Y. HuangS. SuZ.R. SunZ.H. Tetrahydrocurcumin and octahydrocurcumin, the primary and final hydrogenated metabolites of curcumin, possess superior hepatic-protective effect against acetaminophen-induced liver injury: Role of CYP2E1 and Keap1-Nrf2 pathway.Food Chem. Toxicol.201912334936210.1016/j.fct.2018.11.01230423402
    [Google Scholar]
  39. RachekL.I. GrishkoV.I. LeDouxS.P. WilsonG.L. Role of nitric oxide-induced mtDNA damage in mitochondrial dysfunction and apoptosis.Free Radic. Biol. Med.200640575476210.1016/j.freeradbiomed.2005.09.02816520228
    [Google Scholar]
  40. KurozumiR. KojimaS. Low-level nitric oxide blunts oxidant injury via up-regulating glutathione synthesis.J. Health Sci.200248214014710.1248/jhs.48.140
    [Google Scholar]
  41. HabibS. AliA. Biochemistry of nitric oxide.Indian J. Clin. Biochem.201126131710.1007/s12291‑011‑0108‑422211007
    [Google Scholar]
  42. LeeM.W. KimN.Y. ParkM.S. AhnK.H. TohS.H. HahnD.R. KimY.C. ChungH.T. Diarylheptanoids with in vitro inducible nitric oxide synthesis inhibitory activity from Alnus hirsuta.Planta Med.200066655155310.1055/s‑2000‑860610985083
    [Google Scholar]
  43. KarchesyJ.J. LaverM.L. BarofskyD.F. BarofskyE. Structure of oregonin, a natural diarylheptanoid xyloside.J. Chem. Soc. Chem. Commun.19741664965010.1039/c39740000649
    [Google Scholar]
  44. UnnikrishnanM.K. RaoM.N.A. Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin.Mol. Cell. Biochem.19951461353710.1007/BF009268787651374
    [Google Scholar]
  45. JohnstonB.D. DeMasterE.G. Suppression of nitric oxide oxidation to nitrite by curcumin is due to the sequestration of the reaction intermediate nitrogen dioxide, not nitric oxide.Nitric Oxide20038423123410.1016/S1089‑8603(03)00030‑212895432
    [Google Scholar]
  46. J.D.M.P. Reactive centers of curcumin and the possible role of metal complexes of curcumin as antioxidants.Univ. J. Phys. Appl.201591616
    [Google Scholar]
  47. CaligiuriR. Di MaioG. GodbertN. ScarpelliF. CandrevaA. RimoldiI. FacchettiG. LupoM.G. SiciliaE. MazzoneG. PonteF. RomeoI. La DedaM. CrispiniA. De RoseR. AielloI. Curcumin-based ionic Pt( ii ) complexes: antioxidant and antimicrobial activity.Dalton Trans.20225143165451655610.1039/D2DT01653B36254967
    [Google Scholar]
  48. BarikA. MishraB. KunwarA. KadamR.M. ShenL. DuttaS. PadhyeS. SatpatiA.K. ZhangH.Y. Indira PriyadarsiniK. Comparative study of copper(II)–curcumin complexes as superoxide dismutase mimics and free radical scavengers.Eur. J. Med. Chem.200742443143910.1016/j.ejmech.2006.11.01217240482
    [Google Scholar]
  49. IshiharaM. SakagamiH. Re-evaluation of cytotoxicity and iron chelation activity of three beta-diketones by semiempirical molecular orbital method. in vivo 200519111912315796163
    [Google Scholar]
  50. KhalilM.I. Al-ZahemA.M. Al-QunaibitM.H. Synthesis, characterization, mossbauer parameters, and antitumor activity of fe(iii) curcumin complex.Bioinorg. Chem. Appl.201320131982423
    [Google Scholar]
  51. MessnerD.J. SurragoC. FiordalisiC. ChungW.Y. KowdleyK.V. Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids.Biometals201730569970810.1007/s10534‑017‑0038‑628801864
    [Google Scholar]
  52. FarombiE.O. ShrotriyaS. NaH.K. KimS.H. SurhY.J. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1.Food Chem. Toxicol.20084641279128710.1016/j.fct.2007.09.09518006204
    [Google Scholar]
  53. MotterliniR. ForestiR. BassiR. GreenC.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress.Free Radic. Biol. Med.20002881303131210.1016/S0891‑5849(00)00294‑X10889462
    [Google Scholar]
  54. BalogunE. HoqueM. GongP. KilleenE. GreenC.J. ForestiR. AlamJ. MotterliniR. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element.Biochem. J.2003371388789510.1042/bj2002161912570874
    [Google Scholar]
  55. SahinK. OrhanC. TuzcuZ. TuzcuM. SahinN. Curcumin ameloriates heat stress via inhibition of oxidative stress and modulation of Nrf2/HO-1 pathway in quail.Food Chem. Toxicol.201250114035404110.1016/j.fct.2012.08.02922939939
    [Google Scholar]
  56. JiangJ. WuX.Y. ZhouX.Q. FengL. LiuY. JiangW.D. WuP. ZhaoY. Effects of dietary curcumin supplementation on growth performance, intestinal digestive enzyme activities and antioxidant capacity of crucian carp Carassius auratus.Aquaculture201646317418010.1016/j.aquaculture.2016.05.040
    [Google Scholar]
  57. ZhengS. YumeiF. ChenA. De novo synthesis of glutathione is a prerequisite for curcumin to inhibit hepatic stellate cell (HSC) activation.Free Radic. Biol. Med.200743344445310.1016/j.freeradbiomed.2007.04.01617602960
    [Google Scholar]
  58. SomparnP. PhisalaphongC. NakornchaiS. UnchernS. MoralesN.P. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives.Biol. Pharm. Bull.2007301747810.1248/bpb.30.7417202663
    [Google Scholar]
  59. JayaprakashaG.K. Jaganmohan RaoL. SakariahK.K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin.Food Chem.200698472072410.1016/j.foodchem.2005.06.037
    [Google Scholar]
  60. OstrowskiW. SniecikowskaL. HoffmannM. FranskiR. Demethoxycurcumin-metal complexes: Fragmentation and comparison with curcumin-metal complexes, as studied by esi-ms/ms.J. Spectros.201320131749641
    [Google Scholar]
  61. PugazhenthiS. AkhovL. SelvarajG. WangM. AlamJ. Regulation of heme oxygenase-1 expression by demethoxy curcuminoids through Nrf2 by a PI3-kinase/Akt-mediated pathway in mouse β-cells.Am. J. Physiol. Endocrinol. Metab.20072933E645E65510.1152/ajpendo.00111.200717535857
    [Google Scholar]
  62. PanM.H. HuangT.M. LinJ.K. Biotransformation of curcumin through reduction and glucuronidation in mice.Drug Metab. Dispos.199927448649410101144
    [Google Scholar]
  63. PandeyA. ChaturvediM. MishraS. KumarP. SomvanshiP. ChaturvediR. Reductive metabolites of curcumin and their therapeutic effects.Heliyon2020611e0546910.1016/j.heliyon.2020.e0546933241148
    [Google Scholar]
  64. MuruganP. PariL. Antioxidant effect of tetrahydrocurcumin in streptozotocin–nicotinamide induced diabetic rats.Life Sci.200679181720172810.1016/j.lfs.2006.06.00116806281
    [Google Scholar]
  65. PariL. MuruganP. Influence of tetrahydrocurcumin on tail tendon collagen contents and its properties in rats with streptozotocin–nicotinamide‐induced type 2 diabetes.Fundam. Clin. Pharmacol.200721666567110.1111/j.1472‑8206.2007.00542.x18034669
    [Google Scholar]
  66. PhaniendraA. JestadiD.B. PeriyasamyL. Free radicals: Properties, sources, targets, and their implication in various diseases.Indian J. Clin. Biochem.2015301112610.1007/s12291‑014‑0446‑025646037
    [Google Scholar]
  67. ZattaP. TognonG. CarampinP. Melatonin prevents free radical formation due to the interaction between β ‐amyloid peptides and metal ions [Al(III), Zn(II), Cu(II), Mn(II), Fe(II)].J. Pineal Res.20033529810310.1034/j.1600‑079X.2003.00058.x12887652
    [Google Scholar]
  68. ShenL. ZhangH.Y. JiH.F. A theoretical study on Cu(II)-chelating properties of curcumin and its implications for curcumin as a multipotent agent to combat Alzheimer’s disease.J. Mol. Struct. Theochem20057571-319920210.1016/j.theochem.2005.05.016
    [Google Scholar]
  69. SohnS.I. PriyaA. BalasubramaniamB. MuthuramalingamP. SivasankarC. SelvarajA. ValliammaiA. JothiR. PandianS. Biomedical applications and bioavailability of curcumin-an updated overview.Pharmaceutics20211312210210.3390/pharmaceutics1312210234959384
    [Google Scholar]
  70. AwaadA. Abdel AzizH.O. Iron biodistribution profile changes in the rat spleen after administration of high-fat diet or iron supplementation and the role of curcumin.J. Mol. Histol.202152475176610.1007/s10735‑021‑09986‑w34050395
    [Google Scholar]
  71. BadriaF.A. IbrahimA.S. BadriaA.F. ElmarakbyA.A. Curcumin attenuates iron accumulation and oxidative stress in the liver and spleen of chronic iron-overloaded rats.PLoS One2015107e013415610.1371/journal.pone.013415626230491
    [Google Scholar]
  72. PrasadS. LallR. Zinc-curcumin based complexes in health and diseases: An approach in chemopreventive and therapeutic improvement.J. Trace Elem. Med. Biol.20227312702310.1016/j.jtemb.2022.12702335780653
    [Google Scholar]
  73. SoetiknoV. SariF.R. LakshmananA.P. ArumugamS. HarimaM. SuzukiK. KawachiH. WatanabeK. Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the N rf2–keap1 pathway.Mol. Nutr. Food Res.20135791649165910.1002/mnfr.20120054023174956
    [Google Scholar]
  74. GaedekeJ. NobleN.A. BorderW.A. Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1.Kidney Int.20056852042204910.1111/j.1523‑1755.2005.00658.x16221204
    [Google Scholar]
  75. TokaçM. TanerG. AydınS. ÖzkardeşA.B. DündarH.Z. TaşlıpınarM.Y. ArıkökA.T. KılıçM. BaşaranA.A. BasaranN. Protective effects of curcumin against oxidative stress parameters and DNA damage in the livers and kidneys of rats with biliary obstruction.Food Chem. Toxicol.201361283510.1016/j.fct.2013.01.01523376509
    [Google Scholar]
  76. FleenorB.S. SindlerA.L. MarviN.K. HowellK.L. ZiglerM.L. YoshizawaM. SealsD.R. Curcumin ameliorates arterial dysfunction and oxidative stress with aging.Exp. Gerontol.201348226927610.1016/j.exger.2012.10.00823142245
    [Google Scholar]
  77. DuanC. WangH. JiaoD. GengY. WuQ. YanH. LiC. Curcumin restrains oxidative stress of after intracerebral hemorrhage in rat by activating the nrf2/ho-1 pathway.Front. Pharmacol.20221388922610.3389/fphar.2022.88922635571134
    [Google Scholar]
  78. WuX. ZhouX. LaiS. LiuJ. QiJ. Curcumin activates Nrf2/HO ‐1 signaling to relieve diabetic cardiomyopathy injury by reducing ROS in vitro and in vivo.FASEB J.2022369e2250510.1096/fj.202200543RRR35971779
    [Google Scholar]
  79. OkadaK. WangpoengtrakulC. TanakaT. ToyokuniS. UchidaK. OsawaT. Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice.J. Nutr.200113182090209510.1093/jn/131.8.209011481399
    [Google Scholar]
  80. SongK. ParkJ. LeeS. LeeD. JangH.J. KimS.N. KoH. KimH. LeeJ. HwangG. KangK. YamabeN. Protective effect of tetrahydrocurcumin against cisplatin-induced renal damage: in vitro and in vivo studies.Planta Med.201581428629110.1055/s‑0035‑154569625719941
    [Google Scholar]
  81. ParkC.S. JangH.J. LeeJ.H. OhM.Y. KimH.J. Tetrahydrocurcumin ameliorates tacrolimus-induced nephrotoxicity via inhibiting apoptosis.Transplant. Proc.20185092854285910.1016/j.transproceed.2018.03.03130401411
    [Google Scholar]
  82. SangartitW. HaK.B. LeeE.S. KimH.M. KukongviriyapanU. LeeE.Y. ChungC.H. Tetrahydrocurcumin ameliorates kidney injury and high systolic blood pressure in high-fat diet-induced type 2 diabetic mice.Endocrinol. Metab.202136481082210.3803/EnM.2021.98834474516
    [Google Scholar]
  83. KukongviriyapanU. ApaijitK. KukongviriyapanV. Oxidative stress and cardiovascular dysfunction associated with cadmium exposure: Beneficial effects of curcumin and tetrahydrocurcumin.Tohoku J. Exp. Med.20162391253810.1620/tjem.239.2527151191
    [Google Scholar]
  84. RajasankarS. RamkumarM. GobiV. JanakiramanU. ManivasagamT. ThenmozhiA. EssaM. ChidambaramR. ChidambaramS. GuilleminG. Demethoxycurcumin, a natural derivative of curcumin abrogates rotenone-induced dopamine depletion and motor deficits by its antioxidative and anti-inflammatory properties in Parkinsonian rats.Pharmacogn. Mag.2018145391610.4103/pm.pm_113_1729576695
    [Google Scholar]
  85. NakmareongS. KukongviriyapanU. PakdeechoteP. DonpunhaW. KukongviriyapanV. KongyingyoesB. SompamitK. PhisalaphongC. Antioxidant and vascular protective effects of curcumin and tetrahydrocurcumin in rats with l-NAME-induced hypertension.Naunyn Schmiedebergs Arch. Pharmacol.2011383551952910.1007/s00210‑011‑0624‑z21448566
    [Google Scholar]
  86. UllahF. LiangA. RangelA. GyengesiE. NiedermayerG. MünchG. High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation.Arch. Toxicol.20179141623163410.1007/s00204‑017‑1939‑428204864
    [Google Scholar]
  87. DhillonN. AggarwalB.B. NewmanR.A. WolffR.A. KunnumakkaraA.B. AbbruzzeseJ.L. NgC.S. BadmaevV. KurzrockR. Phase II trial of curcumin in patients with advanced pancreatic cancer.Clin. Cancer Res.200814144491449910.1158/1078‑0432.CCR‑08‑002418628464
    [Google Scholar]
  88. MehrabiM. KaramiF. SiahM. EsmaeiliS. KhodarahmiR. Is curcumin an active suicidal antioxidant only in the aqueous environments?J. Indian Chem. Soc.202219834413450
    [Google Scholar]
  89. HeW. WangJ. JinQ. ZhangJ. LiuY. JinZ. WangH. HuL. ZhuL. ShenM. HuangL. HuangS. LiW. ZhugeQ. WuJ. Design, green synthesis, antioxidant activity screening, and evaluation of protective effect on cerebral ischemia reperfusion injury of novel monoenone monocarbonyl curcumin analogs.Bioorg. Chem.202111410508010.1016/j.bioorg.2021.10508034225164
    [Google Scholar]
  90. Wilhelm RomeroK. QuirósM.I. Vargas HuertasF. Vega-BaudritJ.R. Navarro-HoyosM. Araya-SibajaA.M. Design of hybrid polymeric-lipid nanoparticles using curcumin as a model: Preparation, characterization, and in vitro evaluation of demethoxycurcumin and bisdemethoxycurcumin-loaded nanoparticles.Polymers20211323420710.3390/polym1323420734883709
    [Google Scholar]
  91. XuP. QianY. WangR. ChenZ. WangT. Entrapping curcumin in the hydrophobic reservoir of rice proteins toward stable antioxidant nanoparticles.Food Chem.202238713290610.1016/j.foodchem.2022.13290635413554
    [Google Scholar]
  92. HuangY. SongY. FuX.Y. LiJ.X. FanY.R. HuangM. ZhaoQ.P. YangX.B. YangW.D. Antioxidant activity of benzylidene-substituted curcumin derivatives.Oxid. Commun.2015382655665
    [Google Scholar]
  93. DongS. LuoX. LiuY. ZhangM. LiB. DaiW. Diarylheptanoids from the root of Curcuma aromatica and their antioxidative effects.Phytochem. Lett.20182714815310.1016/j.phytol.2018.07.021
    [Google Scholar]
  94. BianQ.Y. WangS.Y. XuL.J. ChanC.O. MokD.K.W. ChenS.B. Two new antioxidant diarylheptanoids from the fruits of Alpinia oxyphylla.J. Asian Nat. Prod. Res.201315101094109910.1080/10286020.2013.81629723869536
    [Google Scholar]
  95. Felegyi-TóthC.A. GarádiZ. DarcsiA. CsernákO. BoldizsárI. BéniS. AlbertiÁ. Isolation and quantification of diarylheptanoids from European hornbeam (Carpinus betulus L.) and HPLC-ESI-MS/MS characterization of its antioxidative phenolics.J. Pharm. Biomed. Anal.202221011455410.1016/j.jpba.2021.11455434973466
    [Google Scholar]
  96. MatsudaH. IshikadoA. NishidaN. NinomiyaK. FujiwaraH. KobayashiY. YoshikawaM. Hepatoprotective, superoxide scavenging, and antioxidative activities of aromatic constituents from the bark of Betula platyphylla var. japonica.Bioorg. Med. Chem. Lett.19988212939294410.1016/S0960‑894X(98)00528‑99873651
    [Google Scholar]
  97. PonomarenkoJ. TrouillasP. MartinN. DizhbiteT. KrasilnikovaJ. TelyshevaG. Elucidation of antioxidant properties of wood bark derived saturated diarylheptanoids: A comprehensive (DFT-supported) understanding.Phytochemistry201410317818710.1016/j.phytochem.2014.03.01024703933
    [Google Scholar]
  98. HuW. WangM.H. Antioxidative activity and anti-inflammatory effects of diarylheptanoids isolated from Alnus hirsuta.J. Wood Sci.201157432333010.1007/s10086‑010‑1170‑x
    [Google Scholar]
  99. DinićJ. NovakovićM. Podolski-RenićA. StojkovićS. MandićB. TeševićV. VajsV. IsakovićA. PešićM. Antioxidative activity of diarylheptanoids from the bark of black alder (Alnus glutinosa) and their interaction with anticancer drugs.Planta Med.201480131088109610.1055/s‑0034‑138299325137576
    [Google Scholar]
  100. KuroyanagiM. ShimomaeM. NagashimaY. MutoN. OkudaT. KawaharaN. NakaneT. SanoT. New diarylheptanoids from Alnus japonica and their antioxidative activity.Chem. Pharm. Bull.200553121519152310.1248/cpb.53.151916327181
    [Google Scholar]
  101. LiuZ.Q. Why natural antioxidants are readily recognized by biological systems? 3D architecture plays a role!Food Chem.202238013214310.1016/j.foodchem.2022.13214335091319
    [Google Scholar]
  102. LeT. YinJ. LeeM. Anti-inflammatory and anti-oxidative activities of phenolic compounds from alnus sibirica stems fermented by Lactobacillus plantarum subsp argentoratensis.Molecules2017229156610.3390/molecules2209156628927000
    [Google Scholar]
  103. TungN. KimS. RaJ. ZhaoY.Z. SohnD. KimY. Antioxidative and hepatoprotective diarylheptanoids from the bark of Alnus japonica.Planta Med.201076662662910.1055/s‑0029‑124059519918716
    [Google Scholar]
  104. ZhengQ.T. YangZ.H. YuL.Y. RenY.Y. HuangQ.X. LiuQ. MaX.Y. ChenZ.K. WangZ.B. ZhengX. Synthesis and antioxidant activity of curcumin analogs.J. Asian Nat. Prod. Res.201719548950310.1080/10286020.2016.123556227690628
    [Google Scholar]
  105. AlbertiÁ. RiethmüllerE. BéniS. Characterization of diarylheptanoids: An emerging class of bioactive natural products.J. Pharm. Biomed. Anal.2018147133410.1016/j.jpba.2017.08.05128958734
    [Google Scholar]
  106. LeeJ.S. KimH.J. ParkH. LeeY.S. New diarylheptanoids from the stems of Carpinus cordata.J. Nat. Prod.20026591367137010.1021/np020048l12350169
    [Google Scholar]
  107. CerulliA. LauroG. MasulloM. CantoneV. OlasB. KontekB. NazzaroF. BifulcoG. PiacenteS. Cyclic diarylheptanoids from corylus avellana green leafy covers: Determination of their absolute configurations and evaluation of their antioxidant and antimicrobial activities.J. Nat. Prod.20178061703171310.1021/acs.jnatprod.6b0070328520428
    [Google Scholar]
  108. EspositoT. SansoneF. FranceschelliS. Del GaudioP. PicernoP. AquinoR. MencheriniT. Hazelnut (Corylus avellana L.) shells extract: Phenolic composition, antioxidant effect and cytotoxic activity on human cancer cell lines.Int. J. Mol. Sci.201718239210.3390/ijms1802039228208804
    [Google Scholar]
  109. MasulloM. CerulliA. OlasB. PizzaC. PiacenteS. Giffonins A-I, antioxidant cyclized diarylheptanoids from the leaves of the hazelnut tree (Corylus avellana), source of the Italian PGI product “Nocciola di Giffoni”.J. Nat. Prod.2015781172510.1021/np500496625420236
    [Google Scholar]
  110. MasulloM. CantoneV. CerulliA. LauroG. MessanoF. RussoG.L. PizzaC. BifulcoG. PiacenteS. Giffonins j-p, highly hydroxylated cyclized diarylheptanoids from the leaves of Corylus avellana cultivar “tonda di giffoni”.J. Nat. Prod.201578122975298210.1021/acs.jnatprod.5b0069526606246
    [Google Scholar]
  111. MasulloM. MariA. CerulliA. BottoneA. KontekB. OlasB. PizzaC. PiacenteS. Quali-quantitative analysis of the phenolic fraction of the flowers of Corylus avellana, source of the Italian PGI product “Nocciola di Giffoni”: Isolation of antioxidant diarylheptanoids.Phytochemistry201613027328110.1016/j.phytochem.2016.06.00727372151
    [Google Scholar]
  112. ShahidiF. AlasalvarC. Liyana-PathiranaC.M. Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts.J. Agric. Food Chem.20075541212122010.1021/jf062472o17249682
    [Google Scholar]
  113. MasulloM. CerulliA. MariA. de Souza SantosC.C. PizzaC. PiacenteS. LC-MS profiling highlights hazelnut (Nocciola di Giffoni PGI) shells as a byproduct rich in antioxidant phenolics.Food Res. Int.201710118018710.1016/j.foodres.2017.08.06328941682
    [Google Scholar]
  114. MasulloM. LauroG. CerulliA. KontekB. OlasB. BifulcoG. PiacenteS. PizzaC. Giffonins, antioxidant diarylheptanoids from Corylus avellana, and their ability to prevent oxidative changes in human plasma proteins.J. Nat. Prod.202184364665310.1021/acs.jnatprod.0c0125133616390
    [Google Scholar]
  115. RiethmüllerE. TóthG. AlbertiA. SonatiM. KéryA. Antioxidant activity and phenolic composition of Corylus colurna.Nat. Prod. Commun.20149567968225026720
    [Google Scholar]
  116. AkazawaH. AkihisaT. TaguchiY. BannoN. YoneimaR. YasukawaK. Melanogenesis inhibitory and free radical scavenging activities of diarylheptanoids and other phenolic compounds from the bark of Acer nikoense.Biol. Pharm. Bull.20062991970197210.1248/bpb.29.197016946520
    [Google Scholar]
  117. ZhangJ. YamadaS. OgiharaE. KuritaM. BannoN. QuW. FengF. AkihisaT. Biological activities of triterpenoids and phenolic compounds from Myrica cerifera bark.Chem. Biodivers.201613111601160910.1002/cbdv.20160024727492128
    [Google Scholar]
  118. TingY.C. KoH.H. WangH.C. PengC.F. ChangH.S. HsiehP.C. ChenI.S. Biological evaluation of secondary metabolites from the roots of Myrica adenophora.Phytochemistry2014103899810.1016/j.phytochem.2014.04.00324810013
    [Google Scholar]
  119. YoshimuraM. YamakamiS. AmakuraY. YoshidaT. Diarylheptanoid sulfates and related compounds from Myrica rubra bark.J. Nat. Prod.201275101798180210.1021/np300212c23066712
    [Google Scholar]
  120. AkazawaH. FujitaY. BannoN. WatanabeK. KimuraY. ManosroiA. ManosroiJ. AkihisaT. Three new cyclic diarylheptanoids and other phenolic compounds from the bark of Myrica rubra and their melanogenesis inhibitory and radical scavenging activities.J. Oleo Sci.201059421322110.5650/jos.59.21320299768
    [Google Scholar]
  121. VaresiA. CampagnoliL.I.M. CarraraA. PolaI. FlorisE. RicevutiG. ChirumboloS. PascaleA. Non-enzymatic antioxidants against Alzheimer’s disease: Prevention, diagnosis and therapy.Antioxidants202312118010.3390/antiox1201018036671042
    [Google Scholar]
  122. BakirS. CatalkayaG. CeylanF.D. KhanH. GuldikenB. CapanogluE. KamalM.A. Role of dietary antioxidants in neurodegenerative diseases: Where are we standing?Curr. Pharm. Des.202026771472910.2174/138161282666620010714361931914905
    [Google Scholar]
  123. PritamP. DekaR. BhardwajA. SrivastavaR. KumarD. JhaA.K. JhaN.K. VillaC. JhaS.K. Antioxidants in alzheimer’s disease: Current therapeutic significance and future prospects.Biology202211221210.3390/biology1102021235205079
    [Google Scholar]
  124. PadmavathiV. Phytho chemical constituents and their biological aspects of Senna auriculata.Indo Am. J. Pharmaceut. Sci.20185764706475
    [Google Scholar]
  125. Bibi SadeerN. MontesanoD. AlbrizioS. ZenginG. MahomoodallyM.F. The versatility of antioxidant assays in food science and safety-chemistry, applications, strengths, and limitations.Antioxidants20209870910.3390/antiox908070932764410
    [Google Scholar]
  126. SerafiniM. Del RioD. Understanding the association between dietary antioxidants, redox status and disease: is the Total Antioxidant Capacity the right tool?Redox Rep.20049314515210.1179/13510000422500481415327744
    [Google Scholar]
  127. ChenY. LinQ. WangJ. MuJ. LiangY. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies.Int. J. Biol. Macromol.202322495897110.1016/j.ijbiomac.2022.10.18136283556
    [Google Scholar]
  128. FrankelE.N. GermanJ.B. Antioxidants in foods and health: problems and fallacies in the field.J. Sci. Food Agric.200686131999200110.1002/jsfa.2616
    [Google Scholar]
  129. KothaR.R. TareqF.S. YildizE. LuthriaD.L. Oxidative stress and antioxidants-a critical review on in vitro antioxidant assays.Antioxidants20221112238810.3390/antiox1112238836552596
    [Google Scholar]
  130. AlamM.N. BristiN.J. RafiquzzamanM. Review on in vivo and in vitro methods evaluation of antioxidant activity.Saudi Pharm. J.201321214315210.1016/j.jsps.2012.05.00224936134
    [Google Scholar]
  131. López-AlarcónC. DenicolaA. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays.Anal. Chim. Acta201376311010.1016/j.aca.2012.11.05123340280
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673282309231226111037
Loading
/content/journals/cmc/10.2174/0109298673282309231226111037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test