Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007
side by side viewer icon HTML

Abstract

Objective

The objective of the present work was to achieve enhanced site-specific delivery of linezolid (LNZ) to the lung by developing solid lipid nanoparticles (SLN) as a carrier for dry powder inhalers (DPI).

Methods

The LNZ-loaded SLN (LNZ-SLN) were prepared by hot homogenization method by using Stearic acid, Tween 80, and Pluronic F-68 and further compared with the conventional form of DPI. The developed SLN were evaluated for physical characteristics, diffusion study, lung deposition by Andersen Cascade Impactor (ACI), cell viability study, and acute toxicity of lung tissues.

Results

The particle size, zeta potential, mass median aerodynamic diameter, and fine particle fraction of the DPI were found to be 1.23 ± 0.07 μm, -10 mV, 1.02 ± 0.04 µm, 44.17 ± 0.73% respectively which revealed the potential for pulmonary delivery. The encapsulation efficiency was 81 ± 2.08% and the biphasic release pattern was observed from prepared SLN at pH 7.4.

Conclusion

The initial burst release of 30% and followed by controlled release (100%) was observed for 72h. Differential scanning calorimetry and powder X-ray diffraction pointed out the amorphous nature of the LNZ. The Transmission electron microscopy and Scanning electron microscopy reflected the encapsulation of LNZ in SLN. Furthermore, cell viability study and the histopathological study revealed the biocompatibility and safety of the formulation. The LNZ-SLN DPI ascertained an improved lung deposition with controlled release and the least toxicity as compared to the conventional form of DPI which confirmed its feasibility for pulmonary administration.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/2210299X01666230508103042
2023-01-01
2025-12-08
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E080523216630.html?itemId=/content/journals/cis/10.2174/2210299X01666230508103042&mimeType=html&fmt=ahah

References

  1. Cruz-KnightW. Blake-GumbsL. Tuberculosis.Prim. Care201340374375610.1016/j.pop.2013.06.00323958367
    [Google Scholar]
  2. KaurM. GargT. NarangR.K. A review of emerging trends in the treatment of tuberculosis.Artif. Cells Nanomed. Biotechnol.201644247848410.3109/21691401.2014.96274525365354
    [Google Scholar]
  3. KaurM GargT RathG GoyalAK Current nanotechnological strategies for effective delivery of bioactive drug molecules in the treatment of tuberculosis.Crit Rev Ther Drug Carrier Syst.2014311498810.1615/CritRevTherDrugCarrierSyst.2014008285
    [Google Scholar]
  4. Available from: https://www.who.int/news-room/fact-sheets/detail/tuberculosis
  5. Available from: https://tbcindia.gov.in/WriteReadData/l892s/India%20TB%20Report%202020.pdf
  6. KaurR. GargT. MalikB. GuptaU.D. GuptaP. RathG. GoyalA.K. Development and characterization of spray-dried porous nanoaggregates for pulmonary delivery of anti-tubercular drugs.Drug Deliv.201623387287710.3109/10717544.2014.92042824870203
    [Google Scholar]
  7. CampbellI.A. Bah-SowO. Pulmonary tuberculosis: Diagnosis and treatment.BMJ200633275511194119710.1136/bmj.332.7551.119416709993
    [Google Scholar]
  8. PhamD.D. FattalE. TsapisN. Pulmonary drug delivery systems for tuberculosis treatment.Int. J. Pharm.2015478251752910.1016/j.ijpharm.2014.12.00925499020
    [Google Scholar]
  9. WHOGlobal tuberculosis control: WHO report.Aust. N. Z. J. Public Health201236549749810.1111/j.1753‑6405.2012.00928.x
    [Google Scholar]
  10. Global Tuberculosis Report 2013.WHOGeneva, Switzerland2013
    [Google Scholar]
  11. TanZ.M. LaiG.P. PandeyM. SrichanaT. PichikaM.R. GorainB. BhattamishraS.K. ChoudhuryH. Novel approaches for the treatment of pulmonary tuberculosis.Pharmaceutics20201212119610.3390/pharmaceutics1212119633321797
    [Google Scholar]
  12. SulisG. RoggiA. MatteelliA. RaviglioneM.C. Tuberculosis: Epidemiology and control.Mediterr. J. Hematol. Infect. Dis.201461e201407010.4084/mjhid.2014.07025408856
    [Google Scholar]
  13. SeungK.J. KeshavjeeS. RichM.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis.Cold Spring Harb. Perspect. Med.201559a01786310.1101/cshperspect.a01786325918181
    [Google Scholar]
  14. MuralidharanP. MalapitM. MalloryE. HayesD.Jr MansourH.M. Inhalable nanoparticulate powders for respiratory delivery.Nanomedicine20151151189119910.1016/j.nano.2015.01.00725659645
    [Google Scholar]
  15. ParumasivamT. ChangR.Y.K. AbdelghanyS. YeT.T. BrittonW.J. ChanH.K. Dry powder inhalable formulations for anti-tubercular therapy.Adv. Drug Deliv. Rev.20161028310110.1016/j.addr.2016.05.01127212477
    [Google Scholar]
  16. GoyalAK GargT BhandariS RathG Advancement in pulmonary drug delivery systems for treatment of tuberculosis. Nanostructures for Drug Delivery201766969510.1016/B978‑0‑323‑46143‑6.00022‑1
    [Google Scholar]
  17. SarasijaS. PatilJ.S. Pulmonary drug delivery strategies: A concise, systematic review.Lung India2012291444910.4103/0970‑2113.9236122345913
    [Google Scholar]
  18. EkambaramP. a. hasansathaliA. PriyankaK. Solid lipid nanoparticles: A review.Sci. Revs. Chem. Commun.20122180102
    [Google Scholar]
  19. WeberS. ZimmerA. PardeikeJ. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art.Eur. J. Pharm. Biopharm.201486172210.1016/j.ejpb.2013.08.01324007657
    [Google Scholar]
  20. PatilK.D. BagadeS.B. BondeS.C. Biodistribution, pharmacokinetics and toxicity evaluation of mannosylatedgelatin nanoparticles of linezolid for anti-tubercular therapy.Mater. Technol.202019
    [Google Scholar]
  21. DrydenM.S. Linezolid pharmacokinetics and pharmacodynamics in clinical treatment.J. Antimicrob. Chemother.201166S4iv7iv1510.1093/jac/dkr07221521707
    [Google Scholar]
  22. MacGowanA.P. Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections.J. Antimicrob. Chemother.2003519000217ii2510.1093/jac/dkg24812730139
    [Google Scholar]
  23. EstesK.S. DerendorfH. Comparison of the pharmacokinetic properties of vancomycin, linezolid, tigecyclin, and daptomycin.Eur. J. Med. Res.2010151253354310.1186/2047‑783X‑15‑12‑53321163728
    [Google Scholar]
  24. ShahS. CristopherD. SharmaS. SoniwalaM. ChavdaJ. Inhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: Design, development and In vitro evaluation.J. Drug Deliv. Sci. Technol.20206010201310.1016/j.jddst.2020.102013
    [Google Scholar]
  25. BhardwajA. KumarL. NarangR.K. MurthyR.S.R. Development and characterization of ligand-appended liposomes for multiple drug therapy for pulmonary tuberculosis.Artif. Cells Nanomed. Biotechnol.2013411525910.3109/10731199.2012.70231622889361
    [Google Scholar]
  26. TakeuchiI. TaniguchiY. TamuraY. OchiaiK. MakinoK. Effects of l-leucine on PLGA microparticles for pulmonary administration prepared using spray drying: Fine particle fraction and phagocytotic ratio of alveolar macrophages.Colloids Surf. A Physicochem. Eng. Asp.201853741141710.1016/j.colsurfa.2017.10.047
    [Google Scholar]
  27. HuangJ. ChenZ. YingL. LiL. ZhangG. Rifapentine-linezolid-loaded PLGA microspheres for interventional therapy of cavitary pulmonary tuberculosis: Preparation and In vitro characterization.Drug Des. Devel. Ther.20171158559210.2147/DDDT.S12789728424536
    [Google Scholar]
  28. ÜnerM. YenerG. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives.Int. J. Nanomedicine20072328930018019829
    [Google Scholar]
  29. MahajanP.S. MahajanK.B. DarekarA.B. A review on solid lipid nanoparticle (SLN): An advanced treatment modality.Int. J. Pharm. Sci. Res.2015693698
    [Google Scholar]
  30. LiY.Z. SunX. GongT. LiuJ. ZuoJ. ZhangZ.R. Inhalable microparticles as carriers for pulmonary delivery of thymopentin-loaded solid lipid nanoparticles.Pharm. Res.20102791977198610.1007/s11095‑010‑0201‑z20625801
    [Google Scholar]
  31. CapanogluM. Dibek MisirliogluE. ToyranM. CivelekE. KocabasC.N. Evaluation of inhaler technique, adherence to therapy and their effect on disease control among children with asthma using metered dose or dry powder inhalers.J. Asthma201552883884510.3109/02770903.2015.102807526037396
    [Google Scholar]
  32. GargT KumarA RathG GoyalAK Gastroretentive drug delivery systems for therapeutic management of peptic ulcer.Crit Rev Ther Drug Carrier Syst.20143165315710.1615/CritRevTherDrugCarrierSyst.2014011104
    [Google Scholar]
  33. GasparD.P. FariaV. GonçalvesL.M.D. TaboadaP. Remuñán-LópezC. AlmeidaA.J. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and In vitro studies.Int. J. Pharm.20164971-219920910.1016/j.ijpharm.2015.11.05026656946
    [Google Scholar]
  34. PokharkarV.B. Patil-GadheA.A. KyadarkunteA.Y. PereiraM. JejurikarG. PatoleM.S. RisbudA. Rifapentine-proliposomes for inhalation: In vitro and In vivo toxicity.Toxicol. Int.201421327528210.4103/0971‑6580.15536125948966
    [Google Scholar]
  35. WangS. ChenT. ChenR. HuY. ChenM. WangY. Emodin loaded solid lipid nanoparticles: Preparation, characterization and antitumor activity studies.Int. J. Pharm.20124301-223824610.1016/j.ijpharm.2012.03.02722465546
    [Google Scholar]
  36. MaliA.J. PawarA.P. BothirajaC. Improved lung delivery of budesonide from biopolymer based dry powder inhaler through natural inhalation of rat.Mater. Technol.201429635035710.1179/1753555714Y.0000000163
    [Google Scholar]
  37. BothirajaC. DhageK. KambleR. D-α-Tocopherol polyethylene glycol succinate and stearoylmacrogol glycerides biomaterial based nanostructured mixed micelles as nose-to-brain targeting drug delivery system.Mater. Technol.202014
    [Google Scholar]
  38. KambleR. SharmaS. MehtaP. Norfloxacin mixed solvency based solid dispersions: An in-vitro and in-vivo investigation.J. Taibah Univ. Sci.201711351252210.1016/j.jtusci.2016.11.003
    [Google Scholar]
  39. ShajiJ. KumbharM. Formulation and characterization of linezolid loaded Eudragit RS 100 polymeric nanoparticles.Int. J. Pharm. Sci. Res.20191019441952
    [Google Scholar]
  40. GajraB. PatelR.R. DalwadiC. Formulation, optimization and characterization of cationic polymeric nanoparticles of mast cell stabilizing agent using the Box–Behnken experimental design.Drug Dev. Ind. Pharm.201642574775710.3109/03639045.2015.109349626559522
    [Google Scholar]
  41. RawatM. SarafS. Formulation optimization of double emulsification method for preparation of enzyme-loaded Eudragit S100 microspheres.J. Microencapsul.200926430631410.1080/0265204080231976718686142
    [Google Scholar]
/content/journals/cis/10.2174/2210299X01666230508103042
Loading
/content/journals/cis/10.2174/2210299X01666230508103042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test