Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

The skin, constituting the largest organ of the human body, plays a multifaceted role essential for maintaining overall health and homeostasis. A wound can be defined as any injury that disrupts the integrity of the skin or underlying tissues, resulting in damage to the epidermis and potential exposure of deeper structures. Wound healing is a highly specialised, dynamic, multi-phase process that uses a complex mechanism to mend wounded or damaged tissues. A chronic condition is more prone to infections and aberrant scar development, which are the results of any disruption in the complex physiological healing process. Inflammation, tissue creation, and tissue remodelling are the three overlapping stages of wound healing. The role of the TIME principle has also been emphasized in the review, which stresses the importance of Tissue debridement, Inflammation/infection control, Moisture balance, and Edge advancement. Clotting, inflammation, granulation tissue creation, epithelialisation, neovascularisation, collagen synthesis, and wound contraction are the steps of this intricate and ever-changing sequence of events. Despite the advent of numerous therapy regimens, the intricate wound healing mechanism and meticulously long treatment requirements make wounds difficult to diagnose and treat clinically. The review deals with the complex pathways of wound healing, its pathophysiology, and cellular dynamics, along with innovations in skin regeneration and wound healing from scaffolds to biomaterials. The intricate role of flavonoids and antibiotics, along with the advancements in the healing of acute and chronic wounds, has also been discussed. The review also includes the latest strategies like nano-material bacterial fibers, keratin-based formulations, dermis regeneration template (DRT), 3D bioprinting, use of medical-grade honey (MGH), Steri-Strip orientation, and treatment based on mesenchymal stem cells (MSCs) to manage the complications in healing, which have immense potential to change the wound care paradigm in the future.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X381179251029053347
2025-11-13
2026-02-02
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X381179.html?itemId=/content/journals/cis/10.2174/012210299X381179251029053347&mimeType=html&fmt=ahah

References

  1. HuangJ. LeiX. HuangZ. RongZ. LiH. XieY. DuanL. XiongJ. WangD. ZhuS. LiangY. WangJ. XiaJ. Bioprinted gelatin-recombinant type iii collagen hydrogel promotes wound healing.Int. J. Bioprint.20228251710.18063/ijb.v8i2.51735669327
    [Google Scholar]
  2. IshiiT. TakashimizuI. Casco-RoblesM.M. TayaY. YuzurihaS. ToyamaF. MaruoF. KishiK. ChibaC. Skin wound healing of the adult newt, cynops pyrrhogaster: A unique re-epithelialization and scarless model.Biomedicines2021912189210.3390/biomedicines912189234944708
    [Google Scholar]
  3. QinP. TangJ. SunD. YangY. LiuN. LiY. FuZ. WangY. LiC. LiX. ZhangY. LiuY. WangS. SunJ. DengZ. HeL. WangY. YangX. Zn2+ cross-linked alginate carrying hollow silica nanoparticles loaded with rl-qn15 peptides provides promising treatment for chronic skin wounds.ACS Appl. Mater. Interfaces20221426294912950510.1021/acsami.2c0358335731847
    [Google Scholar]
  4. NaikS. One size does not fit all: Diversifying immune function in the skin.J. Immunol.2022208222723410.4049/jimmunol.210075835017212
    [Google Scholar]
  5. GongM. YanF. YuL. LiF. A dopamine-methacrylated hyaluronic acid hydrogel as an effective carrier for stem cells in skin regeneration therapy.Cell Death Dis.202213873810.1038/s41419‑022‑05060‑936030275
    [Google Scholar]
  6. ChengX.C. TongW.Z. RuiW. FengZ. ShuaiH. ZheW. Single-cell sequencing technology in skin wound healing.Burns Trauma202412tkae04310.1093/burnst/tkae04339445224
    [Google Scholar]
  7. BianD. WuY. SongG. AziziR. ZamaniA. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review.Stem Cell Res. Ther.20221312410.1186/s13287‑021‑02697‑935073970
    [Google Scholar]
  8. HorgosM.S. PopO.L. ŞandorM. BorzaI.L. NegreanR.A. CoțeA. NeamtuA.A. GrierosuC. SachelarieL. HuniadiA. Platelets rich plasma (prp) procedure in the healing of atonic wounds.J. Clin. Med.20231212389010.3390/jcm1212389037373585
    [Google Scholar]
  9. JiaoQ. ZhiL. YouB. WangG. WuN. JiaY. Skin homeostasis: Mechanism and influencing factors.J. Cosmet. Dermatol.20242351518152610.1111/jocd.1615538409936
    [Google Scholar]
  10. AbilkassymovaA. TurgumbayevaA. SarsenovaL. TastambekK. AltynbayN. ZiyaevaG. BlatovR. AltynbayevaG. BekeshevaK. AbdievaG. UalievaP. ShynykulZ. KalykovaA. Exploring Four Atraphaxis Species: Traditional Medicinal Uses, Phytochemistry, and Pharmacological Activities.Molecules202429491010.3390/molecules2904091038398660
    [Google Scholar]
  11. AkpaloA.E. SaloufouI.K. ElohK. KpegbaK. Wound healing biomolecules present in four proposed soft aqueous extractions of <i>Ageratum conyzoides</i> Linn.Int. J. Biol. Chem. Sci.202014263865110.4314/ijbcs.v14i2.26
    [Google Scholar]
  12. AlabiO.S. ObisesanA.O. OlaA.A. Prevalence of methicillin-resistant <i>Staphylococcus aureus</i> and extended spectrum β–lactamase producers among bacteria isolated from infected wounds in a tertiary hospital in Ibadan City.Afr. J. Clin. Exp. Microbiol.201617423510.4314/ajcem.v17i4.3
    [Google Scholar]
  13. AltoéL.S. AlvesR.S. SarandyM.M. Morais-SantosM. NovaesR.D. GonçalvesR.V. Does antibiotic use accelerate or retard cutaneous repair? A systematic review in animal models.PLoS One20191410e022351110.1371/journal.pone.022351131600279
    [Google Scholar]
  14. AmanahN.K. MashudiS. MunawarohS. AzzarinA.W. KarimahF.N. GunawanF. Exploring the efficacy of musa cavendish stem extract (mucase) as a novel wound dressing: A comparative study with sofratulle®.Cureus2024162e5441110.7759/cureus.5441138505455
    [Google Scholar]
  15. AmbrožováN. UlrichováJ. GalandákováA. Models for the study of skin wound healing. The role of Nrf2 and NF-κB.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2017161111310.5507/bp.2016.06328115750
    [Google Scholar]
  16. Asante-KwatiaE. AdjeiS. JibiraY. GyimahL. Adjei-HinnehG. AmponsahI.K. MensahA.Y. Amphimas pterocarpoides harms.: An Evaluation of flavonoid and phenolic contents, wound healing, anthelmintic and antioxidant activities of the leaves and stem bark.Heliyon2021711e0826110.1016/j.heliyon.2021.e0826134765780
    [Google Scholar]
  17. AshrafiM. BaguneidM. Alonso-RasgadoT. Rautemaa-RichardsonR. BayatA. Cutaneous wound biofilm and the potential for electrical stimulation in management of the microbiome.Future Microbiol.201712433735710.2217/fmb‑2016‑020428287302
    [Google Scholar]
  18. AslamM. AhmadM. RiazH. RazaS. HussainS. Role of flavonoids as wound healing agent.Phytochemicals - Source of Antioxidants and Role in Disease PreventionInTech201810.5772/intechopen.79179
    [Google Scholar]
  19. AtaideJ.A. ZanchettaB. SantosÉ.M. FavaA.L.M. AlvesT.F.R. CefaliL.C. ChaudM.V. Oliveira-NascimentoL. SoutoE.B. MazzolaP.G. Nanotechnology-based dressings for wound management.Pharmaceuticals20221510128610.3390/ph1510128636297398
    [Google Scholar]
  20. AzisH. TaherM. SusantiD. ZakariaZ. In vitro wound healing activity of Sapium indicum Willd leaf extracts.Afr. J. Tradit. Complement. Altern. Med.2015122126132
    [Google Scholar]
  21. Liyana Maryam Arun Gupta Triveni Soubam Swati Sharma SoubamT. SharmaS. Mohamed Saad Bala Basma Yahya Alashwal Synthesis of keratin spray from chicken feathers for biomedical applications.Maejo Int. J. Energy Environ. Commun. (MIJEEC)202132182210.54279/mijeec.v3i2.245225
    [Google Scholar]
  22. BanuS.A. SharunK. MamachanM. AbualigahL. KumarR. PawdeA.M. DhamaK. MaitiS.K. Amarpal Wound healing and skin regeneration: Present status and future directions.J. Exp. Biol. Agric. Sci.202311687188310.18006/2023.11(6).871.883
    [Google Scholar]
  23. BelluE. MediciS. CoradduzzaD. CrucianiS. AmlerE. MaioliM. Nanomaterials in skin regeneration and rejuvenation.Int. J. Mol. Sci.20212213709510.3390/ijms2213709534209468
    [Google Scholar]
  24. BeroualK. AgabouA. AbdeldjelilM.C. BoutaghaneN. HaouamS. Hamdi-PachaY. Evaluation of crude flaxseed (Linum usitatissimum L.) oil in burn wound healing in New Zealand rabbits.Afr. J. Tradit. Complement. Altern. Med.201714328028610.21010/ajtcam.v14i3.2928480439
    [Google Scholar]
  25. BhardwajN. ChouhanD. MandalB.B. Tissue engineered skin and wound healing: Current strategies and future directions.Curr. Pharm. Des.201723243455348228552069
    [Google Scholar]
  26. BorenaB.M. MartensA. BroeckxS.Y. MeyerE. ChiersK. DuchateauL. SpaasJ.H. Regenerative skin wound healing in mammals: State-of-the-art on growth factor and stem cell based treatments.Cell. Physiol. Biochem.201536112310.1159/00037404925924569
    [Google Scholar]
  27. BosanquetD.C. HardingK.G. Wound duration and healing rates: Cause or effect?Wound Repair Regen.201422214315010.1111/wrr.1214924635167
    [Google Scholar]
  28. BrekelmansW. Borger van der BurgB.L.S. LeursL.N. HoogendoornR. ZuureF.B.J.M. HoencampR. Optimization of best practice wound care in The Netherlands.Int. J. Low. Extrem. Wounds202221451352010.1177/153473462096581533084448
    [Google Scholar]
  29. CatanzanoO. QuagliaF. BoatengJ.S. Wound dressings as growth factor delivery platforms for chronic wound healing.Expert Opin. Drug Deliv.202118673775910.1080/17425247.2021.186709633338386
    [Google Scholar]
  30. Chandra JagetiaG. JagetiaR. LyngdohR. BorahB. Mimosa pudica (Lajwanti) accelerates repair and regeneration of deep dermal excision wound in Swiss albino mice.Int. J. Complement. Altern. Med.20179210.15406/ijcam.2017.09.00293
    [Google Scholar]
  31. ChenC. ZhaiS. LiC. TanM. ZhaoJ. WeiY. DaiT. WangL. Exploration of the wound healing potential of thermoplastic polyurethane electrospun membrane incorporated with phenolic acids in spenceria ramalana trimen.Macromol. Biosci.2022221210030210.1002/mabi.20210030234679241
    [Google Scholar]
  32. ChuncharuneeA. WaikakulS. WongkajornsilpA. ChongkolwatanaV. ChuncharuneeL. SirimontapornA. RungruangT. SreekanthG.P. Invalid freeze-dried platelet gel promotes wound healing.Saudi Pharm. J.2019271334010.1016/j.jsps.2018.07.01630627050
    [Google Scholar]
  33. ChurkoJ.M. LairdD.W. Gap junction remodeling in skin repair following wounding and disease.Physiology201328319019810.1152/physiol.00058.201223636264
    [Google Scholar]
  34. ClevengerA.J. Jimenez-VergaraA.C. TsaiE.H. de Barros RighesG. Díaz-LasprillaA.M. Ramírez-CaballeroG.E. Munoz-PintoD.J. Growth factor binding peptides in poly (ethylene glycol) diacrylate (pegda)-based hydrogels for an improved healing response of human dermal fibroblasts.Gels2022912810.3390/gels901002836661794
    [Google Scholar]
  35. DemilewW. AdinewG. AsradeS. Evaluation of the wound healing activity of the crude extract of leaves of Acanthus polystachyus Delile (Acanthaceae).Evid Based Complement Alternat Med20182018204789610.1155/2018/204789629991951
    [Google Scholar]
  36. DengC. WangL. FengJ. LuF. Treatment of human chronic wounds with autologous extracellular matrix/stromal vascular fraction gel.Medicine20189732e1166710.1097/MD.000000000001166730095623
    [Google Scholar]
  37. DiegelmannR.F. EvansM.C. Wound healing: An overview of acute, fibrotic and delayed healing.Front. Biosci.200491-328328910.2741/118414766366
    [Google Scholar]
  38. DunnL ProsserH TanJ VanagsL NgM BursillC Murine model of wound healing.J Vis Exp201375e5026510.3791/5026523748713
    [Google Scholar]
  39. BanerjeeK. ChatterjeeM. Sandur VR. NachimuthuR. MadhyasthaH. ThiagarajanP. Azadirachta indica A. Juss (Neem) oil topical formulation with liquid crystals ensconcing depot water for anti-inflammatory, wound healing and anti-methicillin resistant Staphylococcus aureus activities.J. Drug Deliv. Sci. Technol.20216410256310.1016/j.jddst.2021.102563
    [Google Scholar]
  40. DwivediA.K. SharmaH.K. Evaluation of wound healing activity of polyherbal skin care cream.J. Drug Deliv. Ther.2022126-S101410.22270/jddt.v12i6‑S.5832
    [Google Scholar]
  41. XiongS. ZhangX. LuP. WuY. WangQ. SunH. HengB.C. BunpetchV. ZhangS. OuyangH. A Gelatin-sulfonated silk composite scaffold based on 3d printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization.Sci. Rep.201771428810.1038/s41598‑017‑04149‑y28655891
    [Google Scholar]
  42. EffendiMZ FadilMS SumarminR Bioactivity of torch ginger umbut extract (Etlingera elatior) against heal wounds of mice (Mus musculus).EKSAKTA: Berkala Ilmiah Bidang MIPA202021212413010.24036/eksakta/vol21‑iss2/230
    [Google Scholar]
  43. EkomS.E. TamokouJ.D.D. KueteV. Antibacterial and therapeutic potentials of the Capsicum annuum extract against infected wound in a rat model with its mechanisms of antibacterial action.BioMed Res. Int.202120211430390210.1155/2021/430390234646883
    [Google Scholar]
  44. LiZ. ZhangS. ZuberF. AltenriedS. JaklenecA. LangerR. RenQ. Topical application of Lactobacilli successfully eradicates Pseudomonas aeruginosa biofilms and promotes wound healing in chronic wounds.Microbes Infect.202325810517610.1016/j.micinf.2023.10517637406851
    [Google Scholar]
  45. AlyS.H. ElissawyA.M. MahmoudA.M.A. El-TokhyF.S. MageedS.S.A. AlmahliH. Al-RashoodS.T. BinjubairF.A. HassabM.A.E. EldehnaW.M. SingabA.E.N.B. Synergistic effect of sophora japonica and glycyrrhiza glabra flavonoid-rich fractions on wound healing: in vivo and molecular docking studies.Molecules2023287299410.3390/molecules2807299437049756
    [Google Scholar]
  46. GhatakS. MaytinE.V. MackJ.A. HascallV.C. AtanelishviliI. Moreno RodriguezR. MarkwaldR.R. MisraS. Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis.Int. J. Cell Biol.2015201512010.1155/2015/83489326448760
    [Google Scholar]
  47. EkuadziE. DicksonR. FleischerT. AnnanK. PistoriusD. ObererL. GibbonsS. Flavonoid glycosides from the stem bark of Margaritaria discoidea demonstrate antibacterial and free radical scavenging activities.Phytother. Res.201428578478710.1002/ptr.505323970448
    [Google Scholar]
  48. ElangweC.N. MorozkinaS.N. OlekhnovichR.O. KrasichkovA. PolyakovaV.O. UspenskayaM.V. A review on chitosan and cellulose hydrogels for wound dressings.Polymers20221423516310.3390/polym1423516336501559
    [Google Scholar]
  49. ElliotS. WikramanayakeT.C. JozicI. Tomic-CanicM. A modeling conundrum: Murine models for cutaneous wound healing.J. Invest. Dermatol.2018138473674010.1016/j.jid.2017.12.00129579457
    [Google Scholar]
  50. ElshamyA.I. AmmarN.M. HassanH.A. El-KashakW.A. Al-RejaieS.S. Abd-ElGawadA.M. FarragA.R.H. Topical wound healing activity of myricetin isolated from Tecomaria capensis v. aurea.Molecules20202521487010.3390/molecules2521487033105570
    [Google Scholar]
  51. FranzM.G. KuhnM.A. WrightT.E. WachtelT.L. RobsonM.C. Use of the wound healing trajectory as an outcome determinant for acute wound healing.Wound Repair Regen.20008651151610.1046/j.1524‑475x.2000.00511.x11208178
    [Google Scholar]
  52. Gutiérrez GaiténY.I. Melissa NordenJ. Scull LizamaR. Felipe GonzálezA. Oruña SánchezL. Baeza FonteA.N. Ocanto TorresZ. Phytochemical profile, acute dermal toxicity and wound healing activity of Guettarda calyptrata A. Rich.Journal of Herbmed Pharmacology202110224925610.34172/jhp.2021.28
    [Google Scholar]
  53. GaoY. SongN. LiuW. DongA. WangY.J. YangY.W. Construction of antibacterial N-halamine polymer nanomaterials capable of bacterial membrane disruption for efficient anti-infective wound therapy.Macromol. Biosci.2019194180045310.1002/mabi.20180045330645044
    [Google Scholar]
  54. ChoiY.H. KimH.J. LeeJ. Effects of quercetin on wound healing.J. Ethnopharmacol.201517219920610.1016/j.jep.2015.05.002
    [Google Scholar]
  55. JovanovićM. SokolovićD. The effects of rutin on wound healing and inflammation.J. Pharm. Pharmacol.201971121865187210.1111/jphp.13156
    [Google Scholar]
  56. AlmeidaA. SilvaJ. Kaempferol and its effects on wound healing: A review.Phytother. Res.20183281365137510.1002/ptr.6091
    [Google Scholar]
  57. LiL. ChenX. ZhangJ. Apigenin promotes wound healing through its effects on collagen synthesis and angiogenesis.Phytomedicine202069153224
    [Google Scholar]
  58. VermaS. ChaudharyR. Luteolin: A promising therapeutic agent for wound healing.J. Nat. Prod.20208351584159510.1021/acs.jnatprod.9b01134
    [Google Scholar]
  59. AkramM. MahmoodT. Naringenin in wound healing: Mechanisms of action and clinical implications.Curr. Drug Metab.201920862563610.2174/1389200219666190902124240
    [Google Scholar]
  60. BruneA. HanleyA. Genistein accelerates wound healing by modulating inflammation and collagen synthesis.Wound Repair Regen.202028328729610.1111/wrr.12765
    [Google Scholar]
  61. GarwoodC.S. SteinbergJ.S. What’s new in wound treatment: A critical appraisal.Diabetes Metab. Res. Rev.201632S1Suppl. 126827410.1002/dmrr.274726452442
    [Google Scholar]
  62. GhazaliN.A. ElmyA. YuenL.C. SaniN.Z. DasS. SuhaimiF. YusofR. YusoffN.H. ThentZ.C. Piper betel leaves induces wound healing activity via proliferation of fibroblasts and reducing 11β hydroxysteriod dehydrogenase-1 expression in diabetic rat.J. Ayurveda Integr. Med.20167419820810.1016/j.jaim.2016.08.00827889427
    [Google Scholar]
  63. GoulartD.B. The use of silver hydrogel in wound treatment as an alternative to reduce antibiotic-resistant pathogens.Research, Society and Development20221112e38711123484910.33448/rsd‑v11i12.34849
    [Google Scholar]
  64. GuoH. HuangS. XuA. XueW. Injectable adhesive self-healing multiple-dynamic-bond crosslinked hydrogel with photothermal antibacterial activity for infected wound healing.Chem. Mater.20223462655267110.1021/acs.chemmater.1c03944
    [Google Scholar]
  65. GuoS. DiPietroL.A. Factors affecting wound healing.J. Dent. Res.201089321922910.1177/002203450935912520139336
    [Google Scholar]
  66. GuoW. DingX. ZhangH. LiuZ. HanY. WeiQ. OkoroO.V. ShavandiA. NieL. Recent advances of chitosan-based hydrogels for skin-wound dressings.Gels202410317510.3390/gels1003017538534593
    [Google Scholar]
  67. HabaD ItabashiM TamaiN TobeH SanadaH NakagamiG. Effectiveness of vibration therapy for hard-to-heal wounds in clinical study: A scoping review.Chronic Wound Care Management and Research202411210.2147/CWCMR.S423054
    [Google Scholar]
  68. HanJ.Y. Choi-KwonS. Adaptation of evidence-based surgical wound care algorithm.J. Korean Acad. Nurs.201141676877910.4040/jkan.2011.41.6.76822310861
    [Google Scholar]
  69. HawthorneB. SimmonsJ.K. StuartB. TungR. ZamierowskiD.S. MellottA.J. Enhancing wound healing dressing development through interdisciplinary collaboration.J. Biomed. Mater. Res. B Appl. Biomater.2021109121967198510.1002/jbm.b.3486134002476
    [Google Scholar]
  70. HeY. PanL. YangT. WangW. LiC. ChenB. ShenY. Metabolomic and confocal laser scanning microscopy (CLSM) analyses reveal the important function of flavonoids in Amygdalus pedunculata Pall leaves with temporal changes.Front. Plant Sci.20211264827710.3389/fpls.2021.64827734093611
    [Google Scholar]
  71. HolubováA. ChlupáčováL. KrocováJ. CetlováL. PetersL.J.F. CremersN.A.J. PokornáA. The use of medical grade honey on infected chronic diabetic foot ulcers—a prospective case-control study.Antibiotics2023129136410.3390/antibiotics1209136437760661
    [Google Scholar]
  72. HolubováA. ChlupáčováL. CetlováL. CremersN.A.J. PokornáA. Medical-grade honey as an alternative treatment for antibiotics in non-healing wounds—a prospective case series.Antibiotics202110891810.3390/antibiotics1008091834438968
    [Google Scholar]
  73. IbrahimN.I. WongS.K. MohamedI.N. MohamedN. ChinK.Y. Ima-NirwanaS. ShuidA.N. Wound healing properties of selected natural products.Int. J. Environ. Res. Public Health20181511236010.3390/ijerph1511236030366427
    [Google Scholar]
  74. IshikawaS. TakedaA. AkimotoM. KounoikeN. UchinumaE. UezonoY. Effects of neuropeptides and their local administration to cutaneous wounds in sensory-impaired areas.J. Plast. Surg. Hand Surg.201448214314710.3109/2000656X.2013.83526524006918
    [Google Scholar]
  75. JacobsenF. FisahnC. SorkinM. ThieleI. HirschT. StrickerI. KlaassenT. RoemerA. FugmannB. SteinstraesserL. Efficacy of topically delivered moxifloxacin against wound infection by Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus.Antimicrob. Agents Chemother.20115552325233410.1128/AAC.01071‑1021343458
    [Google Scholar]
  76. JiangY. Perez-MorenoM. Translational frontiers: Insight from lymphatics in skin regeneration.Front. Physiol.202415134755810.3389/fphys.2024.134755838487264
    [Google Scholar]
  77. JonesA.M. GriffithsJ.L. SandersA.J. OwenS. RugeF. HardingK.G. JiangW.G. The clinical significance and impact of interleukin 15 on keratinocyte cell growth and migration.Int. J. Mol. Med.201638367968610.3892/ijmm.2016.268727460304
    [Google Scholar]
  78. JonesS.G. EdwardsR. ThomasD.W. Inflammation and wound healing: The role of bacteria in the immuno-regulation of wound healing.Int. J. Low. Extrem. Wounds20043420120810.1177/153473460427181015866816
    [Google Scholar]
  79. KangD. ChoiT.H. HanK. SonD. KimJ.H. KimS.H. ParkJ. Regulation of K+ channels may enhance wound healing in the skin.Med. Hypotheses200871692792910.1016/j.mehy.2008.05.03818760881
    [Google Scholar]
  80. KapareH.S. GiramP.S. RautS.S. GaikwadH.K. Paiva-SantosA.C. Formulation development and evaluation of Indian propolis hydrogel for wound healing.Gels20239537510.3390/gels905037537232965
    [Google Scholar]
  81. KimS.H. LeeJ.H. KimS.E. ShinS.H. KimH.J. LeeS.J. KimJ.H. SuhI.S. Retrospective study of the efficacy of vascularized tissue transfer for treating antibiotic-resistant bacteria-infected wound.Medicine202110023e2590710.1097/MD.000000000002590734114986
    [Google Scholar]
  82. KimS. ShinY. ChoiY. LimK.M. JeongY. DayemA.A. LeeY. AnJ. SongK. JangS.B. ChoS.G. Improved wound healing and skin regeneration ability of 3,2′-dihydroxyflavone-treated mesenchymal stem cell-derived extracellular vesicles.Int. J. Mol. Sci.2023248696410.3390/ijms2408696437108128
    [Google Scholar]
  83. KirkerK.R. JamesG.A. In vitro studies evaluating the effects of biofilms on wound‐healing cells: A review.Acta Pathol. Microbiol. Scand. Suppl.2017125434435210.1111/apm.1267828407431
    [Google Scholar]
  84. KolimiP. NaralaS. NyavanandiD. YoussefA.A.A. DudhipalaN. Innovative treatment strategies to accelerate wound healing: Trajectory and recent advancements.Cells20221115243910.3390/cells1115243935954282
    [Google Scholar]
  85. LeiY. JiangP. TianT. RETRACTED: Comparative analysis of surgical and non‐surgical wound approaches in diabetic foot ulcer treatment: Meta‐analysis and systematic review.Int. Wound J.2024214e1460110.1111/iwj.1460138158715
    [Google Scholar]
  86. LévesqueM. VilliardÉ. RoyS. Skin wound healing in axolotls: A scarless process.J. Exp. Zoolog. B Mol. Dev. Evol.2010314B868469710.1002/jez.b.2137120718005
    [Google Scholar]
  87. LiY. ZhengL. XuX. SongL. LiY. LiW. ZhangS. ZhangF. JinH. Mesenchymal stem cells modified with angiopoietin-1 gene promote wound healing.Stem Cell Res. Ther.20134511310.1186/scrt32424477049
    [Google Scholar]
  88. LiuW. XiongS. ZhangY. DuJ. DongC. YuZ. MaX. Transcriptome profiling reveals important transcription factors and biological processes in skin regeneration mediated by mechanical stretch.Front. Genet.20211275735010.3389/fgene.2021.75735034659370
    [Google Scholar]
  89. LuthfiM. Yuliati WijayantiE.H. Abdul RazakF.B. IrmaliaW.R. The efficacy of okra fruit extract on the expression of transforming growth factor beta 1 in the tooth socket of diabetic Wistar rats.Dent. Res. J. (Isfahan)20211819110.4103/1735‑3327.33087235003556
    [Google Scholar]
  90. MaigodaT.C. The Effectiveness of Guava (Psidium Guajava) and Senduduk Leaves (Melastoma Malabathricum l.) Extract Gel Towards the Inflammation Markers and Collagens On induced male rats (sprague dawley) with diabetes.Malays. Appl. Biol.202251115716210.55230/mabjournal.v51i1.2152
    [Google Scholar]
  91. MaliuhinaO.O. SmoilovskaH.P. BielenichevI.F. MazulinO.V. KhortetskaT.V. Wound healing activity of the lipophilic extract of Tagetes erecta L.Zaporozhye Medical Journal20190210.14739/2310‑1210.2019.2.161510
    [Google Scholar]
  92. MammanH JamilM BawaM AdonM Investigation of pulse electric field effect on HT29 cell alignment properties cultured on laminin micro-patterned surface.Int J Eng Technol201873.3610810.14419/ijet.v7i3.36.29088
    [Google Scholar]
  93. MarcarelliM. TrovatoL. NovareseE. RiccioM. GrazianoA. Rigenera protocol in the treatment of surgical wound dehiscence.Int. Wound J.201714127728110.1111/iwj.1260127126653
    [Google Scholar]
  94. MarfiaG. NavoneS.E. Di VitoC. UghiN. TabanoS. MiozzoM. TremoladaC. BollaG. CrottiC. IngegnoliF. RampiniP. RiboniL. GualtierottiR. CampanellaR. Mesenchymal stem cells: Potential for therapy and treatment of chronic non-healing skin wounds.Organogenesis201511418320610.1080/15476278.2015.112601826652928
    [Google Scholar]
  95. MârzaS.M. MagyariK. BogdanS. MoldovanM. PeșteanC. NagyA. GalA.F. TăbăranF. PurdoiuR.C. LicăreteE. SuarasanS. BaiaL. PapucI. The impact of composites with silicate-based glasses and gold nanoparticles on skin wound regeneration.Molecules202126362010.3390/molecules2603062033504095
    [Google Scholar]
  96. MenkeN.B. CainJ.W. ReynoldsA. ChanD.M. SegalR.A. WittenT.M. BonchevD.G. DiegelmannR.F. WardK.R. Virginia Commonwealth University Reanimation, Engineering Shock Center, The Wound Healing Group An in silico approach to the analysis of acute wound healing.Wound Repair Regen.201018110511310.1111/j.1524‑475X.2009.00549.x20002899
    [Google Scholar]
  97. MiF.L. WuY.B. ShyuS.S. SchoungJ.Y. HuangY.B. TsaiY.H. HaoJ.Y. Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery.J. Biomed. Mater. Res.200259343844910.1002/jbm.126011774301
    [Google Scholar]
  98. MishraA. KushareA. GuptaM.N. AmbreP. Advanced dressings for chronic wound management.ACS Appl. Bio Mater.2024752660267610.1021/acsabm.4c0013838723276
    [Google Scholar]
  99. MohanM. JailaniM. AmirsyahM. Comparison of effectiveness of silver sulfadiazine and gentamicin on abrasion wound healing.Jurnal Rekonstruksi dan Estetik2021412010.20473/jre.v4i1.24350
    [Google Scholar]
  100. MontminyT. OppenheimerN.E. CoccoD. Management of irradiated post-mastectomy wound dehiscence with synthetic electrospun fiber matrix: A case report.Front. Oncol.202414137112210.3389/fonc.2024.137112238699633
    [Google Scholar]
  101. de Assunção MoraisL.C. KogaA. KleinT. KistA. de OliveiraM.R.P. Cavalcante LipinskiL. BeltrameF.L. Colerato FerrariP. Preliminary evaluation of wound healing potential ofleonurus japonicushoutt. extracts.Chem. Biodivers.20232012e20230124310.1002/cbdv.202301243
    [Google Scholar]
  102. MurphyP.S. EvansG.R.D. Advances in wound healing: A review of current wound healing products.Plast. Surg. Int.2012201211810.1155/2012/19043622567251
    [Google Scholar]
  103. MurphyS.V. AtalaA. 3D bioprinting of tissues and organs.Nat. Biotechnol.201432877378510.1038/nbt.295825093879
    [Google Scholar]
  104. NamT. LimT. LeeB. LimS. KangH. EomS. KimD. Comparison of anti-inflammatory effects of flavonoid-rich common and tartary buckwheat sprout extracts in lipopolysaccharide-stimulated RAW 264.7 and peritoneal macrophages.Oxid Med Cell Longev20172017965803010.1155/2017/965803028928906
    [Google Scholar]
  105. NaseebM. AlbajriE. AlmasaudiA. AlamriT. NiyaziH.A. AljaouniS. MohamedA.B.O. NiyaziH.A. AliA.S. Shaker AliS. SaberS.H. AbuarakiH.A. HaqueS. HarakehS. Rutin promotes wound healing by inhibiting oxidative stress and inflammation in metformin-controlled diabetes in rats.ACS Omega2024930acsomega.3c0559510.1021/acsomega.3c0559539100330
    [Google Scholar]
  106. NeyensJ. HeusdenW. VeenendaalD.V. ScholsJ. Effects of concurrent optical and magnetic stimulation in hard-to-heal wounds: A real-world evidence case series.J. Wound Care202433856056810.12968/jowc.2024.013339137251
    [Google Scholar]
  107. OrrapinS. RekasemK. Role of topical biological therapies and dressings in healing ischemic wounds.Int. J. Low. Extrem. Wounds201817423624610.1177/1534734618815360
    [Google Scholar]
  108. PangY. ZhangY. HuangL. XuL. WangK. WangD. GuanL. ZhangY. YuF. ChenZ. XieX. Effects and mechanisms of total flavonoids from Blumea balsamifera (L.) DC. on skin wound in rats.Int. J. Mol. Sci.20171812276610.3390/ijms1812276629257119
    [Google Scholar]
  109. PicardF. HersantB. BoscR. MéningaudJ.P. Should we use platelet‐rich plasma as an adjunct therapy to treat “acute wounds,” “burns,” and “laser therapies”: A review and a proposal of a quality criteria checklist for further studies.Wound Repair Regen.201523216317010.1111/wrr.1226625683096
    [Google Scholar]
  110. PimpaleT. MondheA. Shoelace and honey technique: An innovative and inexpensive method of wound healing.IP International Journal of Orthopaedic Rheumatology202492798210.18231/j.ijor.2023.015
    [Google Scholar]
  111. Quiñones-VicoM.I. Fernández-GonzálezA. Ubago-RodríguezA. MollK. Norrby-TeglundA. SvenssonM. Gutiérrez-FernándezJ. TorresJ.M. Arias-SantiagoS. Antibiotics against pseudomonas aeruginosa on human skin cell lines: Determination of the highest non-cytotoxic concentrations with antibiofilm capacity for wound healing strategies.Pharmaceutics202416111710.3390/pharmaceutics1601011738258128
    [Google Scholar]
  112. RabhaP. SrinivasS. BhuyanK. Closure of skin in surgical wounds with skin stapler and conventional sutures: A comparative study.Int. Surg. J.2021916610.18203/2349‑2902.isj20215132
    [Google Scholar]
  113. RajuM.G. PravallikaU. PavaniK. EdunooriK. N. V. L. Suvarchala Reddy V. Preclinical assessment of wound healing and anti-inflammatory activities of Eichhornia crassipes in Wistar albino rats.Asian J. Res. Zool.20236414915910.9734/ajriz/2023/v6i4132
    [Google Scholar]
  114. Rosas-CruzG.P. Silva-CorreaC.R. Calderón- PeñaA.A. Villarreal-La TorreV.E. Aspajo-VillalazC.L. Cruzado-RazcoJ.L. Rosario-ChávarriJ.D. Rodríguez-SotoJ. Pretel-SevillanoO.E. Sagástegui-GuarnizW.A. González-SicchaA.D. Wound healing activity of an ointment from Solanum tuberosum L.” Tumbay yellow potato” on Mus musculus balb/c.Pharmacogn. J.20201261268127510.5530/pj.2020.12.175
    [Google Scholar]
  115. RousselleP. BrayeF. DayanG. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies.Adv. Drug Deliv. Rev.201914634436510.1016/j.addr.2018.06.01929981800
    [Google Scholar]
  116. SandulacheV.C. DoharJ.E. HebdaP.A. Adult-fetal fibroblast interactions: Effects on cell migration and implications for cell transplantation.Cell Transplant.200514533133710.3727/00000000578398302516052914
    [Google Scholar]
  117. SanjayS. ShanmugarajanD.T.S. Development and formulation of drug-loaded hydrogel for skin regenerative potential.Journal of advanced zoology202445510.53555/jaz.v45i5.4692
    [Google Scholar]
  118. SardiwallaY. ZimmoK. WilliamsJ. BezuhlyM. The effect of Steri-Strip orientation on wound healing: A survey of current applications and trends amongst surgeons.DALHOUSIE MEDICAL JOURNAL201845110.15273/dmj.Vol45No1.8787
    [Google Scholar]
  119. SchremlS. SzeimiesR-M. KarrerS. HeinlinJ. LandthalerM. BabilasP. The impact of the pH value on skin integrity and cutaneous wound healing.J. Eur. Acad. Dermatol. Venereol.201024437337810.1111/j.1468‑3083.2009.03413.x19703098
    [Google Scholar]
  120. SetiawanW.A. SanjayaI.N.H. SuardikaA. WidiyantiE.S. Prilaksana KalimantaraP.N.A. The benefit of amniotic membrane as a surgical wound dressing for post cesarean section.Eur. J. Med. Health Sci.202353495410.24018/ejmed.2023.5.3.1675
    [Google Scholar]
  121. ShanmugavadivuA. BalagangadharanK. SelvamuruganN. Angiogenic and osteogenic effects of flavonoids in bone regeneration.Biotechnol. Bioeng.202211992313233010.1002/bit.2816235718883
    [Google Scholar]
  122. ShenY. GuoY. MikusP. SulniuteR. WilczynskaM. NyT. LiJ. Plasminogen is a key proinflammatory regulator that accelerates the healing of acute and diabetic wounds.Blood2012119245879588710.1182/blood‑2012‑01‑40782522563086
    [Google Scholar]
  123. SingerA.J. Healing mechanisms in cutaneous wounds: Tipping the balance.Tissue Eng. Part B Rev.20222851151116710.1089/ten.teb.2021.011434915757
    [Google Scholar]
  124. SinghA.K. LodhiS. JainA.P. Preliminary pharmacological investigations on Lens culinaris seeds for wound healing potential in rats.Advance Pharmaceutical Journal20194616116610.31024/apj.2019.4.6.4
    [Google Scholar]
  125. SmaropoulosE. CremersN.A.J. Treating severe wounds in pediatrics with medical grade honey: A case series.Clin. Case Rep.20208346947610.1002/ccr3.269132185038
    [Google Scholar]
  126. SmithF. SharpA. Undertaking a person-centred assessment of patients with chronic wounds.Nurs. Stand.20193410778210.7748/ns.2019.e1130531468929
    [Google Scholar]
  127. SokolovT.V. Prevention and treatment of potentially problematic acute wounds to achieve full recovery by using platelet-rich plasma: Research results.J. Biomed. Clin. Res.202013212713310.2478/jbcr‑2020‑0018
    [Google Scholar]
  128. SorgH. TilkornD.J. HagerS. HauserJ. MirastschijskiU. Skin wound healing: An update on the current knowledge and concepts.Eur. Surg. Res.2017581-2819410.1159/00045491927974711
    [Google Scholar]
  129. de SouzaJ.M. VieiraÉ.C. CortezT.M. MondelliA.L. MiotH.A. AbbadeL.P.F. Clinical and microbiologic evaluation of chronic leg ulcers: A cross-sectional study.Adv. Skin Wound Care201427522222710.1097/01.ASW.0000445952.83084.a024732126
    [Google Scholar]
  130. SubramanianS. DuraipandianC. AlsayariA. RamachawolranG. WongL.S. SekarM. GanS.H. SubramaniyanV. SeethalakshmiS. JeyabalanS. DhanasekaranS. ChinniS.V. Mat RaniN.N.I. WahabS. Wound healing properties of a new formulated flavonoid-rich fraction from Dodonaea viscosa Jacq. leaves extract.Front. Pharmacol.202314109690510.3389/fphar.2023.109690536817128
    [Google Scholar]
  131. SunJ. HanS. WangY. ZhaoG. QianW. DongJ. Detection of redox state evolution during wound healing process based on a redox-sensitive wound dressing.Anal. Chem.201890116660666510.1021/acs.analchem.8b0047129757626
    [Google Scholar]
  132. SüntarI.P. AkkolE.K. YalçınF.N. KocaU. KeleşH. YeşiladaE. Wound healing potential of Sambucus ebulus L. leaves and isolation of an active component, quercetin 3-O-glucoside.J. Ethnopharmacol.2010129110611410.1016/j.jep.2010.01.05120132876
    [Google Scholar]
  133. SutthammikornN. SupajaturaV. YueH. TakahashiM. ChansakaowS. NakanoN. SongP. OgawaT. IkedaS. OkumuraK. OgawaH. NiyonsabaF. Topical Gynura procumbens as a novel therapeutic improves wound healing in diabetic mice.Plants2021106112210.3390/plants1006112234205899
    [Google Scholar]
  134. SychrováA. ŠkovranováG. ČulenováM. Bittner FialováS. Prenylated flavonoids in topical infections and wound healing.Molecules20222714449110.3390/molecules2714449135889363
    [Google Scholar]
  135. TaguchiN. YuriguchiM. AndoT. KitaiR. AokiH. KunisadaT. Flavonoids with two OH groups in the B-ring promote pigmented hair regeneration.Biol. Pharm. Bull.20194291446144910.1248/bpb.b19‑0029531474706
    [Google Scholar]
  136. TakeoM. LeeW. ItoM. Wound healing and skin regeneration.Cold Spring Harb. Perspect. Med.201551a02326710.1101/cshperspect.a02326725561722
    [Google Scholar]
  137. TanP.C. ChaoP.C. ChengC. ChenC.H. HuangR.L. ZhouS.B. XieY. LiQ.F. A randomized, controlled clinical trial of autologous stromal vascular fraction cells transplantation to promote mechanical stretch-induced skin regeneration.Stem Cell Res. Ther.202112124310.1186/s13287‑021‑02318‑533858504
    [Google Scholar]
  138. Tokuyama-TodaR SatomuraK. The Physiological Roles of Leptin in Skin Wound Healing.Wound Healing - New insights into Ancient ChallengesIntechOpen201610.5772/63368
    [Google Scholar]
  139. TörenE BuzgoM. Nanotechnology-enabled scar removal: Advances, challenges, and opportunities.Preprints2023
    [Google Scholar]
  140. TyavambizaC. MeyerM. MeyerS. Cellular and molecular events of wound healing and the potential of silver based nanoformulations as wound healing agents.Bioengineering202291171210.3390/bioengineering911071236421113
    [Google Scholar]
  141. UbbinkD.T. LindeboomR. EskesA.M. BrullH. LegemateD.A. VermeulenH. Predicting complex acute wound healing in patients from a wound expertise centre registry: A prognostic study.Int. Wound J.201512553153610.1111/iwj.1214924007311
    [Google Scholar]
  142. Ud-DinS. BayatA. Non‐invasive objective devices for monitoring the inflammatory, proliferative and remodelling phases of cutaneous wound healing and skin scarring.Exp. Dermatol.201625857958510.1111/exd.1302727060469
    [Google Scholar]
  143. UdegbunamS.O. UdegbunamR.I. MuogboC.C. AnyanwuM.U. NwaehujorC.O. Wound healing and antibacterial properties of methanolic extract of Pupalia lappacea Juss in rats.BMC Complement. Altern. Med.201414115710.1186/1472‑6882‑14‑15724886368
    [Google Scholar]
  144. VitaleS. ColaneroS. PlacidiM. Di EmidioG. TatoneC. AmicarelliF. D’AlessandroA.M. Phytochemistry and biological activity of medicinal plants in wound healing: An overview of current research.Molecules20222711356610.3390/molecules2711356635684503
    [Google Scholar]
  145. WaasdorpM. KromB.P. BikkerF.J. van ZuijlenP.P.M. NiessenF.B. GibbsS. The bigger picture: Why oral mucosa heals better than skin.Biomolecules2021118116510.3390/biom1108116534439831
    [Google Scholar]
  146. WahyuningtyasE. The effectiveness of combination of Piper betle L. ethanol extract and Manuka honey spray gel to accelerating acute wound healing.E3S Web Conf20245000400310.1051/e3sconf/202450004003
    [Google Scholar]
  147. WangJ. YuanT. ShiJ. Application of medical-nursing integration multidisciplinary-assisted surgical wound nursing mode in improving the quality of wound treatment.Emerg. Med. Int.202220221610.1155/2022/929952936081954
    [Google Scholar]
  148. WangL. QinW. ZhouY. ChenB. ZhaoX. ZhaoH. MiE. MiE. WangQ. NingJ. Transforming growth factor β plays an important role in enhancing wound healing by topical application of Povidone-iodine.Sci. Rep.20177199110.1038/s41598‑017‑01116‑528428640
    [Google Scholar]
  149. WangS. WangZ. XuC. CuiL. MengG. YangS. WuJ. LiuZ. GuoX. PEG- α- CD/AM/liposome @amoxicillin double network hydrogel wound dressing—Multiple barriers for long-term drug release.J. Biomater. Appl.20213591085109510.1177/088532822199194833611960
    [Google Scholar]
  150. WardA.C. DubeyP. BasnettP. LikaG. NewmanG. CorriganD.K. RussellC. KimJ. ChakrabartyS. ConnollyP. RoyI. Toward a closed loop, integrated biocompatible biopolymer wound dressing patch for detection and prevention of chronic wound infections.Front. Bioeng. Biotechnol.20208103910.3389/fbioe.2020.0103932984295
    [Google Scholar]
  151. WongS.Y. ManikamR. MuniandyS. Prevalence and antibiotic susceptibility of bacteria from acute and chronic wounds in Malaysian subjects.J. Infect. Dev. Ctries.20159993694410.3855/jidc.588226409734
    [Google Scholar]
  152. XuZ. HanS. GuZ. WuJ. Advances and impact of antioxidant hydrogel in chronic wound healing.Adv. Healthc. Mater.202095190150210.1002/adhm.20190150231977162
    [Google Scholar]
  153. XuanyuanX ZhangL ZhengY JiangR MaY LeiM XuH ZengH. SPRR1B+ keratinocytes prime oral mucosa for rapid wound healing via STAT3 activation.Commun Biol202471115510.1038/s42003‑024‑06864‑539300285
    [Google Scholar]
  154. YangH.J. KangS.Y. The clinical uses of collagen-based matrices in the treatment of chronic wounds.J. Wound Manage. Res.201915210310810.22467/jwmr.2019.00640
    [Google Scholar]
  155. YangJ. XuL. Electrospun nanofiber membranes with various structures for wound dressing.Materials20231617602110.3390/ma1617602137687713
    [Google Scholar]
  156. YannasI.V. TzeranisD.S. SoP.T.C. Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation.Wound Repair Regen.201725217719110.1111/wrr.1251628370669
    [Google Scholar]
  157. YehC.J. ChenC.C. LeuY.L. LinM.W. ChiuM.M. WangS.H. The effects of artocarpin on wound healing: in vitro and in vivo studies.Sci. Rep.2017711559910.1038/s41598‑017‑15876‑729142215
    [Google Scholar]
  158. YoshidaS. KadotaH. AnanK. HatakeyamaN. Free chimeric anterolateral thigh flap with vastus lateralis muscle transfer for the treatment of intractable upper arm lymphorrhea due to large upper body lymphangioma.International Journal of Surgical Wound Care202452465110.36748/ijswc.5.2_46
    [Google Scholar]
  159. YouH.J. HanS.K. Cell therapy for wound healing.J. Korean Med. Sci.201429331131910.3346/jkms.2014.29.3.31124616577
    [Google Scholar]
  160. Che ZainM.S. LeeS.Y. SarianM.N. FakuraziS. ShaariK. In vitro wound healing potential of flavonoid C-glycosides from oil palm (Elaeis guineensis Jacq.) leaves on 3T3 fibroblast cells.Antioxidants20209432610.3390/antiox904032632316665
    [Google Scholar]
  161. ZhangJ. JiaL. ZhengH. FengJ. WeiS. LiJ. CuiJ. ChenF. The stimulation of macrophages by systematical administration of GM-CSF can accelerate adult wound healing process.Int. J. Mol. Sci.202223191128710.3390/ijms23191128736232590
    [Google Scholar]
  162. ZhangM. ChenX. ZhangY. ZhaoX. ZhaoJ. WangX. The potential of functionalized dressing releasing flavonoids facilitates scar-free healing.Front. Med.2022997812010.3389/fmed.2022.97812036262272
    [Google Scholar]
  163. ZhangY. CuiJ. CangZ. PeiJ. ZhangX. SongB. FanX. MaX. LiY. Hair follicle stem cells promote epidermal regeneration under expanded condition.Front. Physiol.202415130601110.3389/fphys.2024.130601138455843
    [Google Scholar]
  164. ZhaoB. XiongY. ZhangY. JiaL. ZhangW. XuX. Rutin promotes osteogenic differentiation of periodontal ligament stem cells through the GPR30-mediated PI3K/AKT/mTOR signaling pathway.Exp. Biol. Med.2020245655256110.1177/153537022090346332036685
    [Google Scholar]
  165. ZohdiR.M. ZakariaZ.A.B. YusofN. MustaphaN.M. AbdullahM.N.H. Sea cucumber ( Stichopus hermanii ) based hydrogel to treat burn wounds in rats.J. Biomed. Mater. Res. B Appl. Biomater.201198B1303710.1002/jbm.b.3182821504052
    [Google Scholar]
  166. SusantiI. Effan Fahri MahendraR. BurhanA. Effectiveness of modern dressing on healing diabetic foot ulcer: A literature review.Java Nursing Journal202311162110.61716/jnj.v1i1.4
    [Google Scholar]
  167. NuutilaK. ErikssonE. Moist wound healing with commonly available dressings.Adv. Wound Care (New Rochelle)2021101268569810.1089/wound.2020.123232870777
    [Google Scholar]
  168. PiejkoL. SzołtysekI. DudaJ. PolakA. An unusual example of complex wound care with physical therapy treatments – a case report.Physiotherapy Review2024281556810.5114/phr.2024.136489
    [Google Scholar]
  169. SunW. ChenM. DuanD. LiuW. CuiW. LiL. Effectiveness of moist dressings in wound healing after surgical suturing: A Bayesian network meta‐analysis of randomised controlled trials.Int. Wound J.2023201697810.1111/iwj.1383935546485
    [Google Scholar]
  170. BasuA. CelmaG. StrømmeM. FerrazN. In vitro and in vivo evaluation of the wound healing properties of nanofibrillated cellulose hydrogels.ACS Appl. Bio Mater.2018161853186310.1021/acsabm.8b0037034996286
    [Google Scholar]
  171. BoatengJ. CatanzanoO. Advanced therapeutic dressings for effective wound healing—a review.J. Pharm. Sci.2015104113653368010.1002/jps.2461026308473
    [Google Scholar]
  172. HargisA. YaghiM. BermudezN.M. GefenA. Foam dressings for wound healing.Curr. Dermatol. Rep.2024131283510.1007/s13671‑024‑00422‑2
    [Google Scholar]
  173. GuptaR. DarbyG.C. ImagawaD.K. Efficacy of negative pressure wound treatment in preventing surgical site infections after whipple procedures.Am. Surg.201783101166116910.1177/00031348170830103129391117
    [Google Scholar]
  174. WillyC. AgarwalA. AndersenC.A. SantisG.D. GabrielA. GrauhanO. GuerraO.M. LipskyB.A. MalasM.B. MathiesenL.L. SinghD.P. ReddyV.S. Closed incision negative pressure therapy: International multidisciplinary consensus recommendations.Int. Wound J.201714238539810.1111/iwj.1261227170231
    [Google Scholar]
  175. SheenN.A. SamarA.M. ButtM.I. AyubZ. NadeemF. Efficacy of negative pressure wound therapy in early diabetic foot ulcer management in comparison with advanced moist wound therapy.PAFMJ20217162087209010.51253/pafmj.v6i6.6231
    [Google Scholar]
  176. Svensson-BjörkR. ZarroukM. AsciuttoG. HasselmannJ. AcostaS. Meta-analysis of negative pressure wound therapy of closed groin incisions in arterial surgery.Br. J. Surg.2019106431031810.1002/bjs.1110030725478
    [Google Scholar]
  177. TuuliM.G. LiuJ. TitaA.T.N. LongoS. TrudellA. CarterE.B. ShanksA. WoolfolkC. CaugheyA.B. WarrenD.K. OdiboA.O. ColditzG. MaconesG.A. HarperL. Effect of prophylactic negative pressure wound therapy vs standard wound dressing on surgical-site infection in obese women after cesarean delivery.JAMA2020324121180118910.1001/jama.2020.1336132960242
    [Google Scholar]
  178. NatarajM. MaiyaA.G. KarkadaG. HandeM. RodriguesG.S. ShenoyR. PrasadS.S. Application of topical oxygen therapy in healing dynamics of diabetic foot ulcers - a systematic review.Rev. Diabet. Stud.2019151748210.1900/RDS.2019.15.7431904759
    [Google Scholar]
  179. QuegM. De LeonJ. Effectiveness of topical oxygen therapy in wound healing for patients with diabetic foot ulcer.Frontiers of Nursing2023101859310.2478/fon‑2023‑0010
    [Google Scholar]
  180. IsnandarI. SyaflidaR. OesA. FairuzY.N. Effectivity of ozone water application on the socket after posterior tteeth extraction to accelerate clotting time phase.Majalah Kedokteran Gigi Indonesia2021628910.22146/majkedgiind.42461
    [Google Scholar]
  181. RothA. KrishnakumarA. McCainR.R. MaruthamuthuM.K. McIntoshM. ChenY.X. CoxA.D. Hopf JannaschA.S. NguyenJ. SeleemM.N. RahimiR. Biocompatibility and safety assessment of combined topical ozone and antibiotics for treatment of infected wounds.ACS Biomater. Sci. Eng.2023963606361710.1021/acsbiomaterials.2c0154837235768
    [Google Scholar]
  182. RöthA. ElkashifA. SelvamaniV. StuckyR.A. SeleemM.N. ZiaieB. RahimiR. Wearable and flexible ozone generating system for treatment of infected dermal wounds.Front. Bioeng. Biotechnol.2020845810.3389/fbioe.2020.0045832509746
    [Google Scholar]
  183. SilvaV. PeironeC. AmaralJ.S. CapitaR. Alonso-CallejaC. Marques-MagallanesJ.A. MartinsÂ. CarvalhoÁ. MaltezL. PereiraJ.E. CapeloJ.L. IgrejasG. PoetaP. High efficacy of ozonated oils on the removal of biofilms produced by methicillin-resistant staphylococcus aureus (mrsa) from infected diabetic foot ulcers.Molecules20202516360110.3390/molecules2516360132784722
    [Google Scholar]
  184. WangX. LiaoD. JiQ.M. YangY.H. LiM.C. YiX.Y. LiC. ChenY. TaoH.B. ZhaiW.H. Analysis of bactericidal effect of three medical ozonation dosage forms on multidrug-resistant bacteria from burn patients.Infect. Drug Resist.2022151637164310.2147/IDR.S35327735418764
    [Google Scholar]
  185. WenQ. LiuD. WangX. ZhangY. FangS. QiuX. ChenQ. A systematic review of ozone therapy for treating chronically refractory wounds and ulcers.Int. Wound J.202219485387010.1111/iwj.1368734612569
    [Google Scholar]
  186. XiaoW. TangH. WuM. LiaoY. LiK. LiL. XuX. Ozone oil promotes wound healing by increasing the migration of fibroblasts via PI3K/Akt/mTOR signaling pathway.Biosci. Rep.2017376BSR2017065810.1042/BSR2017065828864782
    [Google Scholar]
  187. LeeS.Y. JeonS. KwonY.W. KwonM. KangM.S. SeongK.Y. ParkT.E. YangS.Y. HanD.W. HongS.W. KimK.S. Combinatorial wound healing therapy using adhesive nanofibrous membrane equipped with wearable LED patches for photobiomodulation.Sci. Adv.2022815eabn164610.1126/sciadv.abn164635427152
    [Google Scholar]
  188. SharmaA. SharmaD. ZhaoF. Updates on recent clinical assessment of commercial chronic wound care products.Adv. Healthc. Mater.20231225230055610.1002/adhm.20230055637306401
    [Google Scholar]
  189. GizawM. ThompsonJ. FaglieA. LeeS.Y. NeuenschwanderP. ChouS.F. Electrospun fibers as a dressing material for drug and biological agent delivery in wound healing applications.Bioengineering201851910.3390/bioengineering501000929382065
    [Google Scholar]
  190. JiangY. HanY. WangJ. LvF. YiZ. KeQ. XuH. Space-oriented nanofibrous scaffold with silicon-doped amorphous calcium phosphate nanocoating for diabetic wound healing.ACS Appl. Bio Mater.20192278779510.1021/acsabm.8b0065735016283
    [Google Scholar]
  191. JohnJ.V. McCarthyA. KaranA. XieJ. Electrospun nanofibers for wound management.ChemNanoMat202287e20210034910.1002/cnma.20210034935990019
    [Google Scholar]
/content/journals/cis/10.2174/012210299X381179251029053347
Loading
/content/journals/cis/10.2174/012210299X381179251029053347
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Epithelialisation; Inflammation; Neovascularisation; Pathophysiology; Scaffolds; Wound
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test