Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Restoring tissue integrity is the outcome of the intricate biological process known as wound healing. Haemostasis, inflammation, proliferation, and tissue remodeling are the four main stages that make up its physiological makeup. In order to restore tissue integrity, a number of cellular and extracellular pathways are triggered at the site of a wound in a highly controlled and coordinated manner. This process can be hampered by various reasons, which can lead to poor cosmetic results, increased patient morbidity and mortality, and delayed wound healing. This current review aims to summarize the pathogenesis, risk factors, current approaches, nanotechnology, and major phytochemicals for wound management. It is commonly known that malnutrition poses a risk to the healing process, and extensive research has validated the role that nutrition plays in the healing process. The requirement for calories and proteins rises during the healing process of wounds, resulting in an increased need for vital amino acids, carbohydrates, vitamins, fatty acids, and other micronutrients. While providing the right nutrients and assessing the nutritional state and phases of wound healing, nutritional evaluation is still required during the healing process. Natural products have components that are anti-inflammatory, angiogenic, antioxidant, and these properties play a major role in the treatment of wound healing. The use of topical phytochemicals to improve acute and chronic wound healing has been increasingly supported by research in recent years. In addition, the nonmaterial created by combining several disciplines has been employed in the domains of medicine and has been widely used in wound healing due to its great adsorption capacity, drug loading, and antibacterial characteristics, leading to the rapid development of Nanotechnology.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X379001250720125120
2025-08-04
2025-11-08
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X379001.html?itemId=/content/journals/cis/10.2174/012210299X379001250720125120&mimeType=html&fmt=ahah

References

  1. DąbrowskaA.K. SpanoF. DerlerS. AdlhartC. SpencerN.D. RossiR.M. The relationship between skin function, barrier properties, and body-dependent factors.Skin Res. Technol.201824216517410.1111/srt.1242429057509
    [Google Scholar]
  2. YoungA. McNaughtC.E. The physiology of wound healing.Surgery2011291047547910.1016/j.mpsur.2011.06.011
    [Google Scholar]
  3. HoverstenKP KiemeleLJ StolpAM TakahashiPY VerdoornBP Prevention, diagnosis, and management of chronic wounds in older adults.Mayo Clin Proc20209592021203410.1016/j.mayocp.2019.10.01432276784
    [Google Scholar]
  4. VitaleS. ColaneroS. PlacidiM. Di EmidioG. TatoneC. AmicarelliF. D’AlessandroA.M. Phytochemistry and biological activity of medicinal plants in wound healing: An overview of current research.Molecules20222711356610.3390/molecules2711356635684503
    [Google Scholar]
  5. GhoshD. MondalS. RamakrishnaK. A topical ointment formulation containing leaves extract of Aegialitis rotundifolia Roxb., accelerates excision, incision and burn wound healing in rats.Wound Medicine201926110016810.1016/j.wndm.2019.100168
    [Google Scholar]
  6. BroughtonG.II JanisJ.E. AttingerC.E. The basic science of wound healing.Plast. Reconstr. Surg.20061177Suppl.12S34S10.1097/01.prs.0000225430.42531.c216799372
    [Google Scholar]
  7. KavalukasS.L. BarbulA. Nutrition and wound healing: An update.Plast. Reconstr. Surg.2011127Suppl. 138S43S10.1097/PRS.0b013e318201256c21200272
    [Google Scholar]
  8. GhoshD. MondalS. KR. Phytochemical properties of a rare mangrove Aegialitis rotundifolia Roxb. leaf extract and its influence on human dermal fibroblast cell migration using wound scratch model.Natl. J. Physiol. Pharm. Pharmacol.201990110.5455/njppp.2019.9.1030716022019
    [Google Scholar]
  9. JuM. KimY. SeoK.W. Role of nutrition in wound healing and nutritional recommendations for promotion of wound healing: A narrative review.Ann. Clin. Nutr. Metab.2023153677110.15747/ACNM.2023.15.3.67
    [Google Scholar]
  10. MacKayD. MillerA.L. Nutritional support for wound healing.Altern. Med. Rev.20038435937714653765
    [Google Scholar]
  11. JaffeL. WuS. The role of nutrition in chronic wound care management. Podiatry management.Diabet. Foot20173697782
    [Google Scholar]
  12. Fernández-GuarinoM. Hernández-BuleM.L. BacciS. Cellular and molecular processes in wound healing.Biomedicines2023119252610.3390/biomedicines1109252637760967
    [Google Scholar]
  13. WilkinsonH.N. HardmanM.J. Wound healing: Cellular mechanisms and pathological outcomes.Open Biol.202010920022310.1098/rsob.20022332993416
    [Google Scholar]
  14. VelnarT. BaileyT. SmrkoljV. The wound healing process: An overview of the cellular and molecular mechanisms.J. Int. Med. Res.20093751528154210.1177/14732300090370053119930861
    [Google Scholar]
  15. GolebiewskaE.M. PooleA.W. Platelet secretion: From haemostasis to wound healing and beyond.Blood Rev.201529315316210.1016/j.blre.2014.10.00325468720
    [Google Scholar]
  16. ZaidiA. GreenL. Physiology of haemostasis.Anaesth. Intensive Care Med.201920315215810.1016/j.mpaic.2019.01.005
    [Google Scholar]
  17. PandithH. ZhangX. LiggettJ. MinK.W. GritsanapanW. BaekS.J. Hemostatic and wound healing properties of Chromolaena odorata leaf extract.ISRN Dermatol.20132013116826910.1155/2013/16826923984087
    [Google Scholar]
  18. SchultzGS ChinGA MoldawerL DiegelmannRF Principles of wound healing.In: Mechanisms of Vascular Disease: A Reference Book for Vascular SpecialistsThe University of Adelaide Press201142345010.1017/UPO9781922064004.024
    [Google Scholar]
  19. BaranoskiS. AyelloE.A. Wound care essentials: Practice principles.Lippincott Williams & Wilkins2008
    [Google Scholar]
  20. GushikenL.F.S. BeserraF.P. BastosJ.K. JacksonC.J. PellizzonC.H. Cutaneous wound healing: An update from physiopathology to current therapies.Life202111766510.3390/life1107066534357037
    [Google Scholar]
  21. ShawT.J. MartinP. Wound repair: A showcase for cell plasticity and migration.Curr. Opin. Cell Biol.201642293710.1016/j.ceb.2016.04.00127085790
    [Google Scholar]
  22. MahmoudN.N. HamadK. Al ShibitiniA. JumaS. SharifiS. GouldL. MahmoudiM. Investigating inflammatory markers in wound healing: Understanding implications and identifying artifacts.ACS Pharmacol. Transl. Sci.202471182710.1021/acsptsci.3c0033638230290
    [Google Scholar]
  23. PerréardM HeutteN ClarisseB HumbertM LeconteA GéryB BoisserieT DadounN MartinL BlanchardD BabinE BastitV Head and neck cancer patients under radiotherapy undergoing skin application of hydrogel dressing or hyaluronic acid: Results from a prospective, randomized study.Support Care Cancer2023321710.1007/s00520‑023‑08216‑138055076
    [Google Scholar]
  24. Tomic-CanicM. WongL.L. SmolaH. The epithelialisation phase in wound healing: Options to enhance wound closure.J. Wound Care2018271064665810.12968/jowc.2018.27.10.64630332358
    [Google Scholar]
  25. TottoliE.M. DoratiR. GentaI. ChiesaE. PisaniS. ContiB. Skin wound healing process and new emerging technologies for skin wound care and regeneration.Pharmaceutics202012873510.3390/pharmaceutics1208073532764269
    [Google Scholar]
  26. DarbyI.A. LaverdetB. BontéF. DesmoulièreA. Fibroblasts and myofibroblasts in wound healing.Clin. Cosmet. Investig. Dermatol.2014730131110.2147/CCID.S5004625395868
    [Google Scholar]
  27. DillerR.B. TaborA.J. The role of the extracellular matrix (ECM) in wound healing: A review.Biomimetics2022738710.3390/biomimetics703008735892357
    [Google Scholar]
  28. ZhaoS. ZhangX. XuY. FengY. ShengW. CenJ. WuD. HanY. Impact of JAK2V617F mutation burden on disease phenotype in Chinese patients with JAK2V617F-positive polycythemia vera (PV) and essential thrombocythemia (ET).Int. J. Med. Sci.2016131859110.7150/ijms.1053926917989
    [Google Scholar]
  29. ClintonA. CarterT. Chronic wound biofilms: Pathogenesis and potential therapies.Lab. Med.201546427728410.1309/LMBNSWKUI4JPN7SO26489671
    [Google Scholar]
  30. LearnedA. RobinsonS.A. NguyenT.T. Comprehensive care of lower-extremity wounds.Surg. Clin. North Am.2023103474576510.1016/j.suc.2023.04.01537455035
    [Google Scholar]
  31. PeñaO.A. MartinP. Cellular and molecular mechanisms of skin wound healing.Nat. Rev. Mol. Cell Biol.202425859961610.1038/s41580‑024‑00715‑138528155
    [Google Scholar]
  32. ChakrabortyR SanyalS DuttaS Raja ShaikhU Kumar DubeyP DasP SadhuR DuttaK DeyP Kumar JhaS An ethnobotanical study of medicinal plants used by the ethnic group of people of the district of North 24 Parganas, Howrah, Kolkata, West Bengal, India.Practice and Re-Emergence of Herbal MedicineEurekaSelect202317518710.2174/9789815080414123010011
    [Google Scholar]
  33. KatohK. Effects of electrical stimulation of the cell: Wound healing, cell proliferation, apoptosis, and signal transduction.Med. Sci.20231111110.3390/medsci1101001136810478
    [Google Scholar]
  34. SorgH. SorgC.G.G. Skin wound healing: Of players, patterns, and processes.Eur. Surg. Res.202364214115710.1159/00052827136417847
    [Google Scholar]
  35. HongY.K. ChangY.H. LinY.C. ChenB. GuevaraB.E.K. HsuC.K. Inflammation in wound healing and pathological scarring.Adv. Wound Care202312528830010.1089/wound.2021.016136541356
    [Google Scholar]
  36. YangX. LiW. LiuY. CaoN. HeY. SunQ. ZhouS. Charged fibrous dressing to promote diabetic chronic wound healing.Adv. Healthc. Mater.2024132230218310.1002/adhm.20230218337830231
    [Google Scholar]
  37. VirtanenM.I. BrinchmannM.F. PatelD.M. IversenM.H. Chronic stress negatively impacts wound healing, welfare, and stress regulation in internally tagged Atlantic salmon (Salmo salar).Front. Physiol.202314114723510.3389/fphys.2023.114723537078022
    [Google Scholar]
  38. AlmaA. MarconiG.D. RossiE. MagnoniC. PaganelliA. Obesity and wound healing: Focus on mesenchymal stem cells.Life202313371710.3390/life1303071736983872
    [Google Scholar]
  39. AppooA. ChristensenB.L. SomayajiR. Examining the association between immunosuppressants and wound healing: A narrative review.Adv. Skin Wound Care202437526126710.1097/ASW.000000000000012738648239
    [Google Scholar]
  40. MaggioreG. ZhuH. Relationships between regeneration, wound healing, and cancer.Annu. Rev. Cancer Biol.20248117719710.1146/annurev‑cancerbio‑062822‑123558
    [Google Scholar]
  41. LiuX. SunY. WangJ. KangY. WangZ. CaoW. YeJ. GaoC. A tough, antibacterial and antioxidant hydrogel dressing accelerates wound healing and suppresses hypertrophic scar formation in infected wounds.Bioact. Mater.20243426928110.1016/j.bioactmat.2023.12.01938261887
    [Google Scholar]
  42. CullenB. GefenA. The biological and physiological impact of the performance of wound dressings.Int. Wound J.20232041292130310.1111/iwj.1396036110054
    [Google Scholar]
  43. AtayikM.C. ÇakatayU. Redox signaling in impaired cascades of wound healing: Promising approach.Mol. Biol. Rep.20235086927693610.1007/s11033‑023‑08589‑w37341917
    [Google Scholar]
  44. ChenY. LiY. CengY. LiC. LiY. WangY. WangK. RETRACTED: Examining the relationship between nutritional status and wound healing in head and neck cancer treatment: A focus on malnutrition and nutrient deficiencies.Int. Wound J.2024213e1481010.1111/iwj.1481038414357
    [Google Scholar]
  45. ZhengY. DongX. ChenS. HeY. AnJ. LiuM. HeL. ZhangY. Low-level laser therapy prevents medication-related osteonecrosis of the jaw-like lesions via IL-1RA-mediated primary gingival wound healing.BMC Oral Health20232311410.1186/s12903‑022‑02678‑136627695
    [Google Scholar]
  46. NorahanM.H. Pedroza-GonzálezS.C. Sánchez-SalazarM.G. ÁlvarezM.M. Trujillo de SantiagoG. Structural and biological engineering of 3D hydrogels for wound healing.Bioact. Mater.20232419723510.1016/j.bioactmat.2022.11.01936606250
    [Google Scholar]
  47. XuF. SunW. MaW. WangW. KongD. ChanY.K. MaQ. All-aqueous microfluidic printing of multifunctional bioactive microfibers promote whole-stage wound healing.Colloids Surf. B Biointerfaces202423411372010.1016/j.colsurfb.2023.11372038157763
    [Google Scholar]
  48. NieL. WeiQ. SunM. DingP. WangL. SunY. DingX. OkoroO.V. JiangG. ShavandiA. Injectable, self-healing, transparent, and antibacterial hydrogels based on chitosan and dextran for wound dressings.Int. J. Biol. Macromol.202323312349410.1016/j.ijbiomac.2023.12349436736977
    [Google Scholar]
  49. Van VlierbergheS. DubruelP. SchachtE. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review.Biomacromolecules20111251387140810.1021/bm200083n21388145
    [Google Scholar]
  50. WangM. HuangX. ZhengH. TangY. ZengK. ShaoL. LiL. Nanomaterials applied in wound healing: Mechanisms, limitations and perspectives.J. Control. Release202133723624710.1016/j.jconrel.2021.07.01734273419
    [Google Scholar]
  51. MindivanF. BozB. A scaffold material: Reduced graphene oxide and carbon quantum dots filled polycaprolactone nanofibers.Diam. Relat. Mater.202515311203910.1016/j.diamond.2025.112039
    [Google Scholar]
  52. VivcharenkoV. WojcikM. PalkaK. PrzekoraA. Highly porous and superabsorbent biomaterial made of marine-derived polysaccharides and ascorbic acid as an optimal dressing for exuding wound management.Materials2021145121110.3390/ma1405121133806657
    [Google Scholar]
  53. VivcharenkoV. TrzaskowskaM. PrzekoraA. Wound dressing modifications for accelerated healing of infected wounds.Int. J. Mol. Sci.2023248719310.3390/ijms2408719337108356
    [Google Scholar]
  54. MozaffariN. MohammadiR. DelirezhN. HobbenaghiR. MohammadiV. Effect of macrophages combined with supernatant of mesenchymal stem cell culture and macrophage culture on wound healing in rats.Tissue Cell20249010247410.1016/j.tice.2024.10247439079451
    [Google Scholar]
  55. ShahidiM. VatanmakanianM. AramiM.K. Sadeghi ShiraziF. EsmaeiliN. HydarporianS. JafariS. A comparative study between platelet-rich plasma and platelet-poor plasma effects on angiogenesis.Med. Mol. Morphol.2018511213110.1007/s00795‑017‑0168‑528948378
    [Google Scholar]
  56. HeY. LiuK. GuoS. ChangR. ZhangC. GuanF. YaoM. Multifunctional hydrogel with reactive oxygen species scavenging and photothermal antibacterial activity accelerates infected diabetic wound healing.Acta Biomater.202315519921710.1016/j.actbio.2022.11.02336402298
    [Google Scholar]
  57. JeeJ.P. PangeniR. JhaS.K. ByunY. ParkJ.W. Preparation and in vivo evaluation of a topical hydrogel system incorporating highly skin-permeable growth factors, quercetin, and oxygen carriers for enhanced diabetic wound-healing therapy.Int. J. Nanomedicine2019145449547510.2147/IJN.S21388331409998
    [Google Scholar]
  58. ZhangC. YangX. YuL. ChenX. ZhangJ. ZhangS. WuS. Electrospun polyasparthydrazide nanofibrous hydrogel loading with in-situ synthesized silver nanoparticles for full-thickness skin wound healing application.Mater. Des.202423911281810.1016/j.matdes.2024.112818
    [Google Scholar]
  59. KimD. KwonS. Vibrational stress affects extracellular signal-regulated kinases activation and cytoskeleton structure in human keratinocytes.PLoS One2020154e023117410.1371/journal.pone.023117432267880
    [Google Scholar]
  60. ArgentaL.C. MorykwasM.J. Vacuum-assisted closure: A new method for wound control and treatment: clinical experience.Ann. Plast. Surg.199738656357710.1097/00000637‑199706000‑000029188971
    [Google Scholar]
  61. FalangaV. Wound healing and its impairment in the diabetic foot.Lancet200536694981736174310.1016/S0140‑6736(05)67700‑816291068
    [Google Scholar]
  62. BalchP.A. Prescription for nutritional healing.Penguin Random House2006
    [Google Scholar]
  63. StechmillerJ.K. Understanding the role of nutrition and wound healing.Nutr. Clin. Pract.2010251616810.1177/088453360935899720130158
    [Google Scholar]
  64. DengL. DuC. SongP. ChenT. RuiS. ArmstrongD.G. DengW. The role of oxidative stress and antioxidants in diabetic wound healing.Oxid. Med. Cell. Longev.202120211885275910.1155/2021/885275933628388
    [Google Scholar]
  65. BarbareskoJ. KochM. SchulzeM.B. NöthlingsU. Dietary pattern analysis and biomarkers of low-grade inflammation: A systematic literature review.Nutr. Rev.201371851152710.1111/nure.1203523865797
    [Google Scholar]
  66. BremH. Tomic-CanicM. Cellular and molecular basis of wound healing in diabetes.J. Clin. Invest.200711751219122210.1172/JCI3216917476353
    [Google Scholar]
  67. WeisenhornE.M. An analysis of dynamic proteomes with enhanced sample preparation and computation.The University of Wisconsin - Madison ProQuest Dissertations & Theses2019
    [Google Scholar]
  68. GhomiE.R. ShakibaM. ArdahaeiA.S. KenariM.A. FarajiM. AtaeiS. KohansalP. JafariI. AbdoussM. RamakrishnaS. Innovations in drug delivery for chronic wound healing.Curr. Pharm. Des.202228534035110.2174/138161282766621071410230434269663
    [Google Scholar]
  69. BeelenM. BurkeL.M. GibalaM.J. van LoonL.J.C. Nutritional strategies to promote postexercise recovery.Int. J. Sport Nutr. Exerc. Metab.201020651553210.1123/ijsnem.20.6.51521116024
    [Google Scholar]
  70. SandovalC. FaríasJ. ZamoranoM. HerreraC. Vitamin supplements as a nutritional strategy against chronic alcohol consumption? An updated review.Antioxidants202211356410.3390/antiox1103056435326214
    [Google Scholar]
  71. LuL. LiaoX. LuoX. Nutritional strategies for reducing nitrogen, phosphorus and trace mineral excretions of livestock and poultry.J. Integr. Agric.201716122815283310.1016/S2095‑3119(17)61701‑5
    [Google Scholar]
  72. RexJ.R. MuthukumarN.M. SelvakumarP.M. Phytochemicals as a potential source for anti-microbial, anti-oxidant and wound healing-a review.MOJ Biorg Org Chem.201822617010.15406/mojboc.2018.02.0058
    [Google Scholar]
  73. MondalS. GhoshD. SagarN. GanapatyS. Evaluation of antioxidant, toxicological and wound healing properties of hibiscus rosa-sinensis L. (Malvaceae) ethanolic leaves extract on different experimental animal models.Indian J. Pharm. Educ. Res.201650462063710.5530/ijper.50.4.15
    [Google Scholar]
  74. GhoshP.K. GabaA. Phyto-extracts in wound healing.J. Pharm. Pharm. Sci.201316576082010.18433/J3831V24393557
    [Google Scholar]
  75. SivamaniR.K. MaB.R. WehrliL.N. MaverakisE. Phytochemicals and naturally derived substances for wound healing.Adv. Wound Care20121521321710.1089/wound.2011.033024527308
    [Google Scholar]
  76. MohantyC. DasM. SahooS.K. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model.Mol. Pharm.20129102801281110.1021/mp300075u22946786
    [Google Scholar]
  77. ReddyJ.S. RaoP.R. ReddyM.S. Wound healing effects of heliotropium indicum, plumbago zeylanicum and acalypha indica in rats.J. Ethnopharmacol.200279224925110.1016/S0378‑8741(01)00388‑911801388
    [Google Scholar]
  78. YengN.K. ShaariR. NordinM.L. SabriJ. Investigation of wound healing effect of Acalypha indica extract in spraguedawley rats.Biomed. Pharmacol. J.20191241857186510.13005/bpj/1816
    [Google Scholar]
  79. LautM. NdaongN.A. UtamiT. Cutaneous wound healing activity of herbal ointment containing the leaf extract of Acalypha indica L . on mice ( Mus musculus ).J Phys Conf Ser20191146101202510.1088/1742‑6596/1146/1/012025
    [Google Scholar]
  80. da Silveira VasconcelosM. Gomes-RochetteN.F. de OliveiraM.L.M. Nunes-PinheiroD.C.S. ToméA.R. Maia de SousaF.Y. PinheiroF.G.M. MouraC.F.H. MirandaM.R.A. MotaE.F. de MeloD.F. Anti-inflammatory and wound healing potential of cashew apple juice ( Anacardium occidentale L.) in mice.Exp. Biol. Med.2015240121648165510.1177/153537021557629925819683
    [Google Scholar]
  81. NeheteM. DeS. DeganiM. TatkeP. A topical formulation of Anacardium occidentale L. leaves extract enhances wound healing via mediating TNF-α and TGF-β.Indian J. Exp. Biol.20236106424435[IJEB].
    [Google Scholar]
  82. SandhiutamiN.M.D. FahleniF. MiftahurrohmahN. WidhiyasariN.K.A. AzaliaA. AmaliaI. Enhanced wound healing effect of Areca catechu L. ointment via antibacterial activity and anti-inflammatory process at grade IIA burns in rats.J. Herbmed Pharmacol.202312338839810.34172/jhp.2023.42
    [Google Scholar]
  83. VermaD.K. BharatM. NayakD. ShanbhagT. ShanbhagV. RajputR.S. Areca catechu: Effect of topical ethanolic extract on burn wound healing in albino rats.Int. J. Pharmacol. Clin. Sci.201213
    [Google Scholar]
  84. AkkolE.K. KocaU. PeşinI. YılmazerD. TokerG. YeşiladaE. Exploring the wound healing activity of Arnebia densiflora (Nordm.) Ledeb. by in vivo models.J. Ethnopharmacol.2009124113714110.1016/j.jep.2009.03.01919500923
    [Google Scholar]
  85. KosgerH.H. OzturkM. SokmenA. BulutE. AyS. Wound healing effects of arnebia densiflora root extracts on rat palatal mucosa.Eur. J. Dent.200932969910.1055/s‑0039‑169741419421388
    [Google Scholar]
  86. AsifA. KakubG. MehmoodS. KhunumR. GulfrazM. Wound healing activity of root extracts of Berberis lyceum royle in rats.Phytother. Res.200721658959110.1002/ptr.211017295382
    [Google Scholar]
  87. MughalT.A. AliS. MumtazS. SummerM. KhatoonS. KhalilS. Antibacterial and wound healing efficacy of silver nanoparticles synthesized from root bark of Berberis lycium royle.ChemistrySelect2024919e20240129210.1002/slct.202401292
    [Google Scholar]
  88. NalwayaN. PokharnaG. DebL. JainN.K. Wound healing activity of latex of Calotropis gigantea.Int. J. Pharm. Pharm. Sci.200911176181
    [Google Scholar]
  89. DeshmukhP.T. FernandesJ. AtulA. ToppoE. Wound healing activity of Calotropis gigantea root bark in rats.J. Ethnopharmacol.2009125117818110.1016/j.jep.2009.06.00719539020
    [Google Scholar]
  90. Arribas-LópezE. ZandN. OjoO. SnowdenM.J. KochharT. A systematic review of the effect of Centella asiatica on wound healing.Int. J. Environ. Res. Public Health2022196326610.3390/ijerph1906326635328954
    [Google Scholar]
  91. ShuklaA. RasikA.M. JainG.K. ShankarR. KulshresthaD.K. DhawanB.N. In vitroand in vivo wound healing activity of asiaticoside isolated from Centella asiatica.J. Ethnopharmacol.199965111110.1016/S0378‑8741(98)00141‑X10350364
    [Google Scholar]
  92. DinizL.R.L. CaladoL.L. DuarteA.B.S. de SousaD.P. Centella asiatica and its metabolite asiatic acid: Wound healing effects and therapeutic potential.Metabolites202313227610.3390/metabo1302027636837896
    [Google Scholar]
  93. SinghH. AliS.S. KhanN.A. MishraA. MishraA.K. Wound healing potential of Cleome viscosa Linn. seeds extract and isolation of active constituent.S. Afr. J. Bot.201711246046510.1016/j.sajb.2017.06.026
    [Google Scholar]
  94. PragadheeswariR. SangeethaK. Diabetic foot wound care treatment using Cleome viscosa herb.International Conference on Information Engineering, Management and Security2016, pp. 107-110.
    [Google Scholar]
  95. AkbikD. GhadiriM. ChrzanowskiW. RohanizadehR. Curcumin as a wound healing agent.Life Sci.201411611710.1016/j.lfs.2014.08.01625200875
    [Google Scholar]
  96. MaghimaaM. AlharbiS.A. Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity.J. Photochem. Photobiol. B202020411180610.1016/j.jphotobiol.2020.11180632044619
    [Google Scholar]
  97. TejadaS. ManayiA. DagliaM. NabaviS.F. SuredaA. HajheydariZ. GortziO. Pazoki-ToroudiH. NabaviS.M. Wound healing effects of curcumin: A short review.Curr. Pharm. Biotechnol.201617111002100710.2174/138920101766616072112310927640646
    [Google Scholar]
  98. SidhuG.S. SinghA.K. ThaloorD. BanaudhaK.K. PatnaikG.K. SrimalR.C. MaheshwariR.K. Enhancement of wound healing by curcumin in animals.Wound Repair Regen.19986216717710.1046/j.1524‑475X.1998.60211.x9776860
    [Google Scholar]
  99. KrishnaV. MankaniK.L. ManjunathaB.K. VidyaS.M. ManoharaY.N. SinghS.J. Wound healing activity of the leaf extracts and deoxyelephantopin isolated from Elephantopus scaber Linn.Indian J. Pharmacol.200537423824210.4103/0253‑7613.16570
    [Google Scholar]
  100. AslamM.S. AhmadM.S. MamatA.S. AhmadM.Z. SalamF. Antioxidant and wound healing activity of polyherbal fractions of Clinacanthus nutans and Elephantopusscaber.Evid. Based Complement. Alternat. Med.201620161468524610.1155/2016/468524627528881
    [Google Scholar]
  101. TuhinR.H. BegumM.M. RahmanM.S. KarimR. BegumT. AhmedS.U. MostofaR. HossainA. Abdel-DaimM. BegumR. Wound healing effect of Euphorbia hirta linn. (Euphorbiaceae) in alloxan induced diabetic rats.BMC Complement. Altern. Med.201717142310.1186/s12906‑017‑1930‑x28836990
    [Google Scholar]
  102. BigoniyaP. AgrawalS. VermaN.K. Potential wound healing activity of Euphorbia hirta Linn total flavonoid fraction.Int. J. Pharm. Sci. Rev. Res.2013222149156
    [Google Scholar]
  103. GargV. PaliwalS. Wound-healing activity of ethanolic and aqueous extracts of Ficus benghalensis.J. Adv. Pharm. Technol. Res.20112211011410.4103/2231‑4040.8295722171302
    [Google Scholar]
  104. ChowdharyN KaurM SinghA KumarB Wound healing activity of aqueous extracts of Ficus religiosa and Ficus benghalensis leaves in rats.Indian J. Res. Pharm. Biotechnol.20142210711081
    [Google Scholar]
  105. BopageN.S. Kamal Bandara GunaherathG.M. JayawardenaK.H. WijeyaratneS.C. AbeysekeraA.M. SomaratneS. Dual function of active constituents from bark of Ficus racemosa L in wound healing.BMC Complement. Altern. Med.20181812910.1186/s12906‑018‑2089‑929370854
    [Google Scholar]
  106. MurtiK. KumarU. Enhancement of wound healing with roots of Ficus racemosa L. in albino rats.Asian Pac. J. Trop. Biomed.20122427628010.1016/S2221‑1691(12)60022‑723569913
    [Google Scholar]
  107. ArunM. SatishS. AnimaP. Evaluation of wound healing, antioxidant and antimicrobial efficacy of Jasminum auriculatum Vahl. leaves.Avicenna J. Phytomed.20166329530427462552
    [Google Scholar]
  108. ChaturvediA.P. KumarM. TripathiY.B. Efficacy of Jasminum grandiflorum L. leaf extract on dermal wound healing in rats.Int. Wound J.201310667568210.1111/j.1742‑481X.2012.01043.x22905741
    [Google Scholar]
  109. CIKC IndiraG Wound healing activity of ethanolic extract of roots of Morindapubescens JE Smith.J Pharmacogn Phytochem2016534346
    [Google Scholar]
  110. vD.S. GayathriP. DineshG. GopalT.K. ChamundeeswariD. SM.K. Wound healing potential of chloroform extract of leaf and fruit of Morinda pubescens – An in silico and in vitro approach.Journal of Phytopharmacology20187216717410.31254/phyto.2018.7211
    [Google Scholar]
  111. ParkS.H. KimK.B. KimM.J. ChoiJ.S. ChoY.J. AhnD.H. Antimicrobial activity of extracts from different parts and essential oil from Pinus densiflora on skin pathogens.J. Life Sci.2017276646651
    [Google Scholar]
  112. TohidiM. KhayamiM. NejatiV. MeftahizadeH. Evaluation of antibacterial activity and wound healing of Pistacia atlantica and Pistacia khinjuk.J. Med. Plants Res.201151743104314
    [Google Scholar]
  113. BoulebdaN. BelkhiriA. BelfadelF. BensegueniA. BahriL. Dermal wound healing effect of Pistacia lentiscus fruit’s fatty oil.Pharmacognosy Res.2009126671
    [Google Scholar]
  114. Chidambara MurthyK.N. ReddyV.K. VeigasJ.M. MurthyU.D. Study on wound healing activity of Punica granatum peel.J. Med. Food20047225625910.1089/109662004122411115298776
    [Google Scholar]
  115. ZekavatO. AmanatA. KaramiM. PaydarS. GramizadehB. Zareian-JahromiM. Wound healing studies using Punica granatum peel: An animal experimental study.Adv. Skin Wound Care201629521722510.1097/01.ASW.0000481116.16998.5527089150
    [Google Scholar]
  116. AsadiM.S. MirghazanfariS.M. DadpayM. NassireslamiE. Evaluation of wound healing activities of pomegranate (Punica granatum-Lythraceae) peel and pulp.JRMDS201863230236
    [Google Scholar]
  117. LabibR.M. AyoubI.M. MichelH.E. MehannyM. KamilV. HanyM. MagdyM. MoatazA. MagedB. MohamedA. Appraisal on the wound healing potential of Melaleuca alternifolia and Rosmarinus officinalis L. essential oil-loaded chitosan topical preparations.PLoS One2019149e021956110.1371/journal.pone.021956131525200
    [Google Scholar]
  118. NejatiH. FarahpourM.R. NagadehiM.N. Topical Rosemary officinalis essential oil improves wound healing against disseminated Candida albicans infection in rat model.Comp. Clin. Pathol.20152461377138310.1007/s00580‑015‑2086‑z
    [Google Scholar]
  119. SinghM.P. GuptaA. SisodiaS.S. Wound healing activity of Terminalia bellerica Roxb. and gallic acid in experimentally induced diabetic animals.J. Complement. Integr. Med.20201722019013310.1515/jcim‑2019‑0133
    [Google Scholar]
  120. KumarH. HoodaT. SangwanY. Antibacterial, antioxidant, antimicrobial and wound healing potential of triticum aestivum & terminalia bellirica.Int. J. Pharma Prof. Res.201342786793[IJPPR].
    [Google Scholar]
  121. SimopoulosA.P. n−3 fatty acids and human health: Defining strategies for public policy.Lipids200136S1Suppl.S83S8910.1007/s11745‑001‑0687‑711837998
    [Google Scholar]
  122. CardozoL.F.M.F. PedruzziL.M. StenvinkelP. Stockler-PintoM.B. DalepraneJ.B. LeiteM.Jr MafraD. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2.Biochimie20139581525153310.1016/j.biochi.2013.04.01223643732
    [Google Scholar]
  123. AhluwaliaN. AndreevaV.A. Kesse-GuyotE. HercbergS. Dietary patterns, inflammation and the metabolic syndrome.Diabetes Metab.20133929911010.1016/j.diabet.2012.08.00723062863
    [Google Scholar]
  124. MindivanF. GöktaşM. The green synthesis of carbon quantum dots (CQDs) and characterization of polycaprolactone (PCL/CQDs) films.Colloids Surf. A Physicochem. Eng. Asp.202367713244610.1016/j.colsurfa.2023.132446
    [Google Scholar]
  125. MindivanF. GöktaşM. MaktaS. Biotribological behavior of polycaprolacton (PCL)/carbon quantum dots (CQDS) films.NanoEra.202441610
    [Google Scholar]
  126. De Toro-MartínJ. ArsenaultB. DesprésJ.P. VohlM.C. Precision nutrition: A review of personalized nutritional approaches for the prevention and management of metabolic syndrome.Nutrients20179891310.3390/nu908091328829397
    [Google Scholar]
  127. BonettiF BromboG ZulianiG Nootropics, functional foods, and dietary patterns for prevention of cognitive decline.Nutrition and Functional Foods for Healthy AgingAcademic Press201721123210.1016/B978‑0‑12‑805376‑8.00019‑8
    [Google Scholar]
  128. MindivanF. MindivanH. DarcanC. Electroless Ni–B coating of pure titanium surface for enhanced tribocorrosion performance in artificial saliva and antibacterial activity.Tribol. Ind.201739227027610.24874/ti.2017.39.02.15
    [Google Scholar]
  129. RoobabU. BatoolZ. ManzoorM.F. ShabbirM.A. KhanM.R. AadilR.M. Sources, formulations, advanced delivery and health benefits of probiotics.Curr. Opin. Food Sci.202032172810.1016/j.cofs.2020.01.003
    [Google Scholar]
  130. TagaA. MaragakisN.J. Current and emerging ALS biomarkers: Utility and potential in clinical trials.Expert Rev. Neurother.2018181187188610.1080/14737175.2018.153098730273061
    [Google Scholar]
  131. CaglayanM.O. MindivanF. ŞahinS. Sensor and bioimaging studies based on carbon quantum dots: the green chemistry approach.Crit. Rev. Anal. Chem.202252481484710.1080/10408347.2020.182802933054365
    [Google Scholar]
  132. GalbraithS. MarschnerI.C. MarschnerI.C. Guidelines for the design of clinical trials with longitudinal outcomes.Control. Clin. Trials200223325727310.1016/S0197‑2456(02)00205‑212057878
    [Google Scholar]
  133. GrandJ.H. CasparS. MacdonaldS.W. Clinical features and multidisciplinary approaches to dementia care.J. Multidiscip. Healthc.2011412514710.2147/JMDH.S1777321655340
    [Google Scholar]
  134. SondiI. Salopek-SondiB. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria.J. Colloid Interface Sci.2004275117718210.1016/j.jcis.2004.02.01215158396
    [Google Scholar]
  135. LukicJ. ChenV. StrahinicI. BegovicJ. Lev-TovH. DavisS.C. Tomic-CanicM. PastarI. Probiotics or pro-healers: The role of beneficial bacteria in tissue repair.Wound Repair Regen.201725691292210.1111/wrr.1260729315980
    [Google Scholar]
  136. FallahM. AminN. MoghadasianM.H. JafarnejadS. Probiotics for the management of oral mucositis: An interpretive review of current evidence.Adv. Pharm. Bull.202313226927410.34172/apb.2023.02937342370
    [Google Scholar]
  137. PeralM.C. Huaman MartinezM.A. ValdezJ.C. Bacteriotherapy with Lactobacillus plantarum in burns.Int. Wound J.200961738110.1111/j.1742‑481X.2008.00577.x19291120
    [Google Scholar]
  138. VyasU. RanganathanN. Probiotics, prebiotics, and synbiotics: Gut and beyond.Gastroenterol. Res. Pract.20122012111610.1155/2012/87271623049548
    [Google Scholar]
  139. GerhardD. SousaF.J.S.S. AndrausR.A.C. PardoP.E. NaiG.A. NetoH.B. MessoraM.R. MaiaL.P. Probiotic therapy reduces inflammation and improves intestinal morphology in rats with induced oral mucositis.Braz. Oral Res.2017310e7110.1590/1807‑3107bor‑2017.vol31.007128678976
    [Google Scholar]
  140. TrindadeL.M. MartinsV.D. RodriguesN.M. SouzaE.L.S. MartinsF.S. CostaG.M.F. Almeida-LeiteC.M. FariaA.M.C. CardosoV.N. MaioliT.U. GenerosoS.V. Oral administration of Simbioflora® (synbiotic) attenuates intestinal damage in a mouse model of 5-fluorouracil-induced mucositis.Benef. Microbes20189347748610.3920/BM2017.008229633632
    [Google Scholar]
  141. IvecM. BotićT. KorenS. JakobsenM. WeingartlH. CencičA. Interactions of macrophages with probiotic bacteria lead to increased antiviral response against vesicular stomatitis virus.Antiviral Res.200775326627410.1016/j.antiviral.2007.03.01317512614
    [Google Scholar]
  142. HuangL. Chiang ChiauJ.S. ChengM.L. ChanW.T. JiangC.B. ChangS.W. YeungC.Y. LeeH.C. SCID/NOD mice model for 5-FU induced intestinal mucositis: Safety and effects of probiotics as therapy.Pediatr. Neonatol.201960325226010.1016/j.pedneo.2018.07.00730150027
    [Google Scholar]
  143. YeungC.Y. ChanW.T. JiangC.B. ChengM.L. LiuC.Y. ChangS.W. Chiang ChiauJ.S. LeeH.C. Amelioration of chemotherapy-induced intestinal mucositis by orally administered probiotics in a mouse model.PLoS One2015109e013874610.1371/journal.pone.013874626406888
    [Google Scholar]
  144. SongY.G. LeeS.H. Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface.Arch. Oral Biol.2017761610.1016/j.archoralbio.2016.12.01428063305
    [Google Scholar]
  145. ChowO. BarbulA. Immunonutrition: Role in wound healing and tissue regeneration.Adv. Wound Care201431465310.1089/wound.2012.041524761344
    [Google Scholar]
  146. GhalyP. IliopoulosJ. AhmadM. The role of nutrition in wound healing: An overview.Br. J. Nurs.2021305S38S4210.12968/bjon.2021.30.5.S3833733851
    [Google Scholar]
  147. TodorovicV. Food and wounds: Nutritional factors in wound formation and healing.Br. J. Community Nurs.20027Sup210.12968/bjcn.2002.7.Sup2.12981
    [Google Scholar]
  148. DemlingR.H. Nutrition, anabolism, and the wound healing process: An overview.Eplasty20099e919274069
    [Google Scholar]
  149. DoraiA.A. Wound care with traditional, complementary and alternative medicine.Indian J. Plast. Surg.201245241842410.4103/0970‑0358.10133123162243
    [Google Scholar]
  150. PereiraR.F. BártoloP.J. Traditional therapies for skin wound healing.Adv. Wound Care20165520822910.1089/wound.2013.050627134765
    [Google Scholar]
  151. RheeS.M. ValleM.F. WilsonL.M. LazarusG. ZenilmanJ.M. RobinsonK.A. Negative pressure wound therapy technologies for chronic wound care in the home setting: A systematic review.Wound Repair Regen.201523450651710.1111/wrr.1229525845268
    [Google Scholar]
  152. UrciuoloF. CasaleC. ImparatoG. NettiP.A. Bioengineered skin substitutes: The role of extracellular matrix and vascularization in the healing of deep wounds.J. Clin. Med.2019812208310.3390/jcm812208331805652
    [Google Scholar]
  153. GoldmanR. Growth factors and chronic wound healing: Past, present, and future.Adv. Skin Wound Care2004171243510.1097/00129334‑200401000‑0001214752324
    [Google Scholar]
  154. MarfiaG. NavoneS.E. Di VitoC. UghiN. TabanoS. MiozzoM. TremoladaC. BollaG. CrottiC. IngegnoliF. RampiniP. RiboniL. GualtierottiR. CampanellaR. Mesenchymal stem cells: Potential for therapy and treatment of chronic non-healing skin wounds.Organogenesis201511418320610.1080/15476278.2015.112601826652928
    [Google Scholar]
  155. HamdanS. PastarI. DrakulichS. DikiciE. Tomic-CanicM. DeoS. DaunertS. Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications.ACS Cent. Sci.20173316317510.1021/acscentsci.6b0037128386594
    [Google Scholar]
  156. HajhosseiniB. KuehlmannB.A. BonhamC.A. KampermanK.J. GurtnerG.C. Hyperbaric oxygen therapy: Descriptive review of the technology and current application in chronic wounds.Plast. Reconstr. Surg. Glob. Open202089e313610.1097/GOX.000000000000313633133975
    [Google Scholar]
  157. StratmannB. CosteaT.C. NolteC. HillerJ. SchmidtJ. ReindelJ. MasurK. MotzW. TimmJ. KernerW. TschoepeD. Effect of cold atmospheric plasma therapy vs standard therapy placebo on wound healing in patients with diabetic foot ulcers: A randomized clinical trial.JAMA Netw. Open202037e201041110.1001/jamanetworkopen.2020.1041132672829
    [Google Scholar]
  158. LipskyB.A. DrydenM. GottrupF. NathwaniD. SeatonR.A. StryjaJ. Antimicrobial stewardship in wound care: A position paper from the British Society for Antimicrobial Chemotherapy and European Wound Management Association.J. Antimicrob. Chemother.201671113026303510.1093/jac/dkw28727494918
    [Google Scholar]
  159. McDonnellG. RussellA.D. Antiseptics and disinfectants: Activity, action, and resistance.Clin. Microbiol. Rev.200114122710.1128/CMR.14.1.227‑227.20019880479
    [Google Scholar]
  160. MondalS. GhoshD. GanapatyS. Sushrutha ReddyM. RamakrishnaK. Evaluation of Healing Potential of Achyranthes aspera L. (Amaranthaceae) seeds in excision, incision, dead space and burn wound model-An in-vivo Study.Pharmacogn. J.20168330030610.5530/pj.2016.3.20
    [Google Scholar]
/content/journals/cis/10.2174/012210299X379001250720125120
Loading
/content/journals/cis/10.2174/012210299X379001250720125120
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test