Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007
side by side viewer icon HTML

Abstract

Atopic dermatitis (AD), a disorder that is on the rise, affects about 20% of people globally, including children. It is believed that immunological inadequacies, pathogenic microorganisms, the environment, and anomalies in the function of the epidermal barrier interact intricately with the pathophysiology of AD. Studies on the impact of oxidative stress on many skin conditions have been carried out, but there aren’t many on AD. Topical corticosteroids and calcineurin inhibitors are among the available drugs; nonetheless, they cause burning sensations, skin atrophy, and systemic side effects that hinder patient adherence. These limitations emphasize how important it is to have a fresh approach to AD management. Inflammation, the biological reaction of the immune system, can be caused by a number of factors, such as pathogens, damaged cells, and poisonous substances. Herbal anti-inflammatory medications and their ingredients offer strong defence against a range of pro-inflammatory mediators in illnesses and conditions.

Due to their ability to protect, encapsulate, and discharge the cargo at the location of skin damage. Nanomaterials have attracted a lot of interest as a way to provide medications for skin conditions like AD. However, many unanswered questions remain, particularly when creating safe formulations and translating proven nanomedicines into usable products for clinical use. Lipidic, polymeric, metal, silica, liposomes, hydrocarbon gels, and many other formulations have been developed as carriers for poorly soluble and permeable pharmaceuticals. This field is still developing. This review aims to shed light on incidents linked to the pathophysiology of AD and the difficulties facing current AD treatments. The review emphasizes the advantages of different nanomedicines in resolving problems with existing products and their possible prospects for the future.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X358884250211064638
2025-01-01
2025-10-18
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X358884.html?itemId=/content/journals/cis/10.2174/012210299X358884250211064638&mimeType=html&fmt=ahah

References

  1. GuoJ. ZhangH. LinW. LuL. SuJ. ChenX. Signaling pathways and targeted therapies for psoriasis.Signal Transduct. Target. Ther.20238143710.1038/s41392‑023‑01655‑638008779
    [Google Scholar]
  2. SilverbergJ.I. BarbarotS. GadkariA. SimpsonE.L. WeidingerS. OsorioM.P. RossiA.B. BrignoliL. SabaG. GuilleminI. FentonM.C. AuziereS. EckertL. Atopic dermatitis in the pediatric population.Ann. Allergy Asthma Immunol.20211264417428.e210.1016/j.anai.2020.12.02033421555
    [Google Scholar]
  3. AdhikaryP.P. IdowuT. TanZ. HoangC. ShantaS. DumbaniM. MappalakayilL. AwasthiB. BermudezM. WeinerJ. BeuleD. WolberG. PageB.D.G. HedtrichS. Disrupting TSLP–TSLP receptor interactions via putative small molecule inhibitors yields a novel and efficient treatment option for atopic diseases.EMBO Mol. Med.20241671630165610.1038/s44321‑024‑00085‑338877290
    [Google Scholar]
  4. ZhangY. ZhangB. WangR. ChenX. XiaoH. XuX. The causal relationship and potential mediators between plasma lipids and atopic dermatitis: A bidirectional two-sample, two-step mendelian randomization.Lipids Health Dis.202423119110.1186/s12944‑024‑02134‑938909247
    [Google Scholar]
  5. BieberT. Atopic dermatitis.N. Engl. J. Med.2008358141483149410.1056/NEJMra07408118385500
    [Google Scholar]
  6. BieberT. Disease modification in inflammatory skin disorders: Opportunities and challenges.Nat. Rev. Drug Discov.202322866268010.1038/s41573‑023‑00735‑037443275
    [Google Scholar]
  7. ZhuX. TianX. WangM. LiY. YangS. KongJ. Protective effect of Bifidobacterium animalis CGMCC25262 on HaCaT keratinocytes.Int. Microbiol.20242751417142810.1007/s10123‑024‑00485‑y38278974
    [Google Scholar]
  8. HuY. HeZ. LiZ. WangY. WuN. SunH. ZhouZ. HuQ. CongX. Lactylation: The novel histone modification influence on gene expression, protein function, and disease.Clin. Epigenetics20241617210.1186/s13148‑024‑01682‑238812044
    [Google Scholar]
  9. ThomasK.S. ApfelbacherC.A. ChalmersJ.R. SimpsonE. SpulsP.I. GerbensL.A.A. WilliamsH.C. SchmittJ. GabesM. HowellsL. StuartB.L. GrinichE. PawlitschekT. BurtonT. HowieL. GadkariA. EckertL. EbataT. BoersM. SaekiH. NakaharaT. KatohN. Recommended core outcome instruments for health‐related quality of life, long‐term control and itch intensity in atopic eczema trials: Results of the HOME VII consensus meeting.Br. J. Dermatol.2021185113914610.1111/bjd.1975133393074
    [Google Scholar]
  10. AmerioP. FerrucciS.M. GalluzzoM. NapolitanoM. NarcisiA. LeviA. FinoD.S. PalladinoC. PatrunoC. RossiM. A multidisciplinary approach is beneficial in atopic dermatitis.Dermatol. Ther.20241461443145510.1007/s13555‑024‑01185‑138811470
    [Google Scholar]
  11. SakaiT. HerrmannN. MaintzL. NümmT.J. WelchowskiT. ClausR.A. GrälerM.H. BieberT. Serum sphingosine‐1‐phosphate is elevated in atopic dermatitis and associated with severity.Allergy20217682592259510.1111/all.1482633764548
    [Google Scholar]
  12. FacherisP. JefferyJ. DucaD.E. YasskyG.E. The translational revolution in atopic dermatitis: The paradigm shift from pathogenesis to treatment.Cell. Mol. Immunol.202320544847410.1038/s41423‑023‑00992‑436928371
    [Google Scholar]
  13. WeidingerS. NovakN. Atopic dermatitis.Lancet2016387100231109112210.1016/S0140‑6736(15)00149‑X26377142
    [Google Scholar]
  14. BieberT. Atopic dermatitis: An expanding therapeutic pipeline for a complex disease.Nat. Rev. Drug Discov.2022211214010.1038/s41573‑021‑00266‑634417579
    [Google Scholar]
  15. KukrejaT. SarafS. NLC Based topical nano formulations for the management of atopic dermatitis: An updated review.J. Popul. Ther. Clin. Pharmacol.2023303708720
    [Google Scholar]
  16. SalokiA. KukrejaT. SarafS. Advancements in drug delivery for chronic inflammatory diseases: Recent approaches and strategies.J. Popul. Ther. Clin. Pharmacol.20232904376385
    [Google Scholar]
  17. Eczema (Atopic Dermatitis) | NIH: National institute of allergy and infectious diseases.Available from: https://www.niaid.nih.gov/diseases-conditions/eczema-atopic-dermatitis 2022
  18. CondròG. GueriniM. CastelloM. PeruginiP. Acne vulgaris, atopic dermatitis and rosacea: The role of the skin microbiota—A review.Biomedicines20221010252310.3390/biomedicines1010252336289784
    [Google Scholar]
  19. HammondM. GamalA. MukherjeeP.K. DamianiG. McCormickT.S. GhannoumM.A. NedorostS. Cutaneous dysbiosis may amplify barrier dysfunction in patients with atopic dermatitis.Front. Microbiol.20221394436510.3389/fmicb.2022.94436536452925
    [Google Scholar]
  20. MottalebA.M.M.A. NeumannD. LamprechtA. Lipid nanocapsules for dermal application: A comparative study of lipid-based versus polymer-based nanocarriers.Eur. J. Pharm. Biopharm.2011791364210.1016/j.ejpb.2011.04.00921558002
    [Google Scholar]
  21. JakasaI. KezicS. Evaluation of in-vivo animal and in-vitro models for prediction of dermal absorption in man.Hum. Exp. Toxicol.200827428128810.1177/096032710708582618684798
    [Google Scholar]
  22. ChrishtopV.V. PrilepskiiA.Y. NikonorovaV.G. MironovV.A. Nanosafety vs. nanotoxicology: Adequate animal models for testing in vivo toxicity of nanoparticles.Toxicology202146215295210.1016/j.tox.2021.15295234543703
    [Google Scholar]
  23. LemosC.N. PereiraF. DalmolinL.F. CubayachiC. RamosD.N. LopezR.F.V. Nanoparticles influence in skin penetration of drugs: In vitro and in vivo characterization.Nanostructures Eng Cells, Tissues Organs From Des to Appl201818724810.1016/B978‑0‑12‑813665‑2.00006‑5
    [Google Scholar]
  24. TabasI. GlassC.K. Anti-inflammatory therapy in chronic disease: Challenges and opportunities.Science2013339611616617210.1126/science.123072023307734
    [Google Scholar]
  25. MottalebA.M.M.A. MoulariB. BeduneauA. PellequerY. LamprechtA. Nanoparticles enhance therapeutic outcome in inflamed skin therapy.Eur. J. Pharm. Biopharm.201282115115710.1016/j.ejpb.2012.06.00622728016
    [Google Scholar]
  26. NuttenS. Atopic dermatitis: Global epidemiology and risk factors.Ann. Nutr. Metab.201566S181610.1159/00037022025925336
    [Google Scholar]
  27. TsujimotoH. HaraK. TsukadaY. HuangC.C. KawashimaY. ArakakiM. OkayasuH. MimuraH. MiwaN. Evaluation of the permeability of hair growing ingredient encapsulated PLGA nanospheres to hair follicles and their hair growing effects.Bioorg. Med. Chem. Lett.200717174771477710.1016/j.bmcl.2007.06.05717658251
    [Google Scholar]
  28. JungE.C. MaibachH.I. Animal models for percutaneous absorption.J. Appl. Toxicol.201535111010.1002/jat.300425345378
    [Google Scholar]
  29. LimcharoenB. ToprangkobsinP. BanlunaraW. WanichwecharungruangS. RichterH. LademannJ. PatzeltA. Increasing the percutaneous absorption and follicular penetration of retinal by topical application of proretinal nanoparticles.Eur. J. Pharm. Biopharm.20191399310010.1016/j.ejpb.2019.03.01430878519
    [Google Scholar]
  30. SummerfieldA. MeurensF. RicklinM.E. The immunology of the porcine skin and its value as a model for human skin.Mol. Immunol.2015661142110.1016/j.molimm.2014.10.02325466611
    [Google Scholar]
  31. ParveenN. SheikhA. MoluguluN. AnnaduraiS. WahabS. KesharwaniP. Drug permeation enhancement, efficacy, and safety assessment of azelaic acid loaded SNEDDS hydrogel to overcome the treatment barriers of atopic dermatitis.Environ. Res.2023236Pt 211685010.1016/j.envres.2023.11685037558118
    [Google Scholar]
  32. ShrotriyaS. RanpiseN. SatputeP. VidhateB. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis.Artif. Cells Nanomed. Biotechnol.20184671471148210.1080/21691401.2017.137365928884598
    [Google Scholar]
  33. ChenQ. YiS. YangL. ZhuL. Penetration pathways, influencing factors and predictive models for dermal absorption of exobiotic molecules: A critical review.Sci. Total Environ.202492717239010.1016/j.scitotenv.2024.17239038608904
    [Google Scholar]
  34. KhanS.J. DharmageS.C. MathesonM.C. GurrinL.C. Is the atopic march related to confounding by genetics and early‐life environment? A systematic review of sibship and twin data.Allergy2018731172810.1111/all.1322828618023
    [Google Scholar]
  35. ThomsenS.F. The contribution of twin studies to the understanding of the aetiology of asthma and atopic diseases.Eur Clin Respir J201522780310.3402/ecrj.v2.27803
    [Google Scholar]
  36. ThomsenS.F. Exploring the origins of asthma: Lessons from twin studies.Eur. Clin. Respir. J.2014112553510.3402/ecrj.v1.2553526557247
    [Google Scholar]
  37. Jalónd.E.G. PríetoB.M.J. YgartuaP. SantoyoS. PLGA microparticles: Possible vehicles for topical drug delivery.Int. J. Pharm.20012261-218118410.1016/S0378‑5173(01)00811‑011532580
    [Google Scholar]
  38. SerdaM. Synthesis and biological activity of new thiosemicarbazone analogues of iron chelators. BalintG. University of Silesia20137134354
    [Google Scholar]
  39. GoodarziV. NouriS. NassajZ.S. BighashM. AbbasianS. HaghR. Long non coding RNAs reveal important pathways in childhood asthma: A future perspective.J. Mol. Histol.202354425726910.1007/s10735‑023‑10131‑y37537509
    [Google Scholar]
  40. LademannJ. RichterH. TeichmannA. OtbergN. PeytaviB.U. LuengoJ. WeißB. SchaeferU.F. LehrC.M. WepfR. SterryW. Nanoparticles – An efficient carrier for drug delivery into the hair follicles.Eur. J. Pharm. Biopharm.200766215916410.1016/j.ejpb.2006.10.01917169540
    [Google Scholar]
  41. WheatleyL.M. HollowayJ.W. SvanesC. SearsM.R. BretonC. FedulovA.V. NilssonE. VercelliD. ZhangH. TogiasA. ArshadS.H. The role of epigenetics in multi‐generational transmission of asthma: An NIAID workshop report‐based narrative review.Clin. Exp. Allergy202252111264127510.1111/cea.1422336073598
    [Google Scholar]
  42. SørensenS.B.T. GeorgeP. JagunO. WolkR. NapatalungL. ZwillichS.H. IversenL. EhrensteinV. The epidemiology of hospital-treated alopecia areata in Denmark, 1995–2016.Dermatol. Ther.2024144993100610.1007/s13555‑024‑01145‑938625633
    [Google Scholar]
  43. SheuM.Y. FowlerA.J. KaoJ. SchmuthM. FluhrJ.W. ManM-Q. EliasP.M. FeingoldK.R. SchoonjansK. AuwerxJ. Topical peroxisome proliferator activated receptor-α activators reduce inflammation in irritant and allergic contact dermatitis models.J. Invest. Dermatol.200211819410110.1046/j.0022‑202x.2001.01626.x11851881
    [Google Scholar]
  44. BiswasS. NainM. AhmadS.S. SharmaA. Role of human twin studies to identify genetic linkage of malaria pathogenesis and outcomes.Am. J. Trop. Med. Hyg.2023109224124710.4269/ajtmh.23‑002837277110
    [Google Scholar]
  45. DekaH. SiddiqueM.A. AhmedS.J. MahantaP. MahantaP. Evaluation of IL-4 and IL-13 single nucleotide polymorphisms and their association with childhood asthma and its severity: A hospital-based case-control study.Cureus2024164e5746510.7759/cureus.5746538699097
    [Google Scholar]
  46. ThomsenS.F. Epidemiology and natural history of atopic diseases.Eur. Clin. Respir. J.2015212464210.3402/ecrj.v2.2464226557262
    [Google Scholar]
  47. MoulariB. BéduneauA. PellequerY. LamprechtA. Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis.J. Control. Release201418891710.1016/j.jconrel.2014.05.04624910194
    [Google Scholar]
  48. MottalebA.M.M.A. BeduneauA. PellequerY. LamprechtA. Stability of fluorescent labels in PLGA polymeric nanoparticles: Quantum dots versus organic dyes.Int. J. Pharm.2015494147147810.1016/j.ijpharm.2015.08.05026307264
    [Google Scholar]
  49. MittalA. RaberA.S. SchaeferU.F. WeissmannS. EbensenT. SchulzeK. GuzmánC.A. LehrC.M. HansenS. Non-invasive delivery of nanoparticles to hair follicles: A perspective for transcutaneous immunization.Vaccine201331343442345110.1016/j.vaccine.2012.12.04823290836
    [Google Scholar]
  50. VogtA. CombadiereB. HadamS. StielerK.M. LademannJ. SchaeferH. AutranB. SterryW. PeytaviB.U. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin.J. Invest. Dermatol.200612661316132210.1038/sj.jid.570022616614727
    [Google Scholar]
  51. PatzeltA. RichterH. KnorrF. SchäferU. LehrC.M. DähneL. SterryW. LademannJ. Selective follicular targeting by modification of the particle sizes.J. Control. Release20111501454810.1016/j.jconrel.2010.11.01521087645
    [Google Scholar]
  52. BuschL. KezibanY. DähneL. KeckC.M. MeinkeM.C. LademannJ. PatzeltA. The impact of skin massage frequency on the intrafollicular transport of silica nanoparticles: Validation of the ratchet effect on an ex vivo porcine skin model.Eur. J. Pharm. Biopharm.202115826627210.1016/j.ejpb.2020.11.01833264667
    [Google Scholar]
  53. RizwanM. AqilM. TalegaonkarS. AzeemA. SultanaY. AliA. Enhanced transdermal drug delivery techniques: An extensive review of patents.Recent Pat. Drug Deliv. Formul.20093210512410.2174/18722110978845228519519571
    [Google Scholar]
  54. MashhadA.H. NajaranT.Z. GolmohammadzadehS. Preparation and characterization of novel nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN) containing coenzyme Q10 as potent antioxidants and antityrosinase agents.Heliyon20241011e3142910.1016/j.heliyon.2024.e3142938882272
    [Google Scholar]
  55. TryC. MoulariB. BéduneauA. FantiniO. PinD. PellequerY. LamprechtA. Size dependent skin penetration of nanoparticles in murine and porcine dermatitis models.Eur. J. Pharm. Biopharm.201610010110810.1016/j.ejpb.2016.01.00226792104
    [Google Scholar]
  56. ChauhanI. YasirM. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv Pharm Bull.202010215016510.34172/apb.2020.021
    [Google Scholar]
  57. HafezA.S.M. HathoutR.M. SammourO.A. Tracking the transdermal penetration pathways of optimized curcumin-loaded chitosan nanoparticles via confocal laser scanning microscopy.Int. J. Biol. Macromol.201810875376410.1016/j.ijbiomac.2017.10.17029104049
    [Google Scholar]
  58. KahrN. NaeserV. StensballeL.G. KyvikK.O. SkyttheA. BackerV. BønnelykkeK. ThomsenS.F. Gene–environment interaction in atopic diseases: A population‐based twin study of early‐life exposures.Clin. Respir. J.201591798610.1111/crj.1211024444295
    [Google Scholar]
  59. ManM.Q. HatanoY. LeeS.H. ManM. ChangS. FeingoldK.R. LeungD.Y.M. HolleranW. UchidaY. EliasP.M. Characterization of a hapten-induced, murine model with multiple features of atopic dermatitis: Structural, immunologic, and biochemical changes following single versus multiple oxazolone challenges.J. Invest. Dermatol.20081281798610.1038/sj.jid.570101117671515
    [Google Scholar]
  60. ThomsenS.F. UlrikC.S. KyvikK.O. SkadhaugeL.R. SteffensenI. BackerV. Findings on the atopic triad from a Danish twin registry.Int. J. Tuberc. Lung Dis.200610111268127217131787
    [Google Scholar]
  61. ParhiR. SureshP. PatnaikS. Physical means of stratum corneum barrier manipulation to enhance transdermal drug delivery.Curr. Drug Deliv.201512212213810.2174/156720181166614051514532924827915
    [Google Scholar]
  62. ZhaoC.Y. TranA.Q.T. DizonL.J.P. KimJ. DanielB.S. VenugopalS.S. RhodesL.M. LawM.G. MurrellD.F. A pilot comparison study of four clinician‐rated atopic dermatitis severity scales.Br. J. Dermatol.2015173248849710.1111/bjd.1384625891151
    [Google Scholar]
  63. SantosC.P.A. GamaM. PeixotoD. OliveiraS.I. FariaF.I. ZeinaliM. RavasjaniA.S. MeloM.F. HamishehkarH. VeigaF. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis.Int. J. Pharm.202261812165610.1016/j.ijpharm.2022.12165635278601
    [Google Scholar]
  64. BensonHAE MohammedY GriceJE RobertsMS Formulation effects on topical nanoparticle penetration.Nanoscience in dermatology201611512610.1016/B978‑0‑12‑802926‑8.00009‑4
    [Google Scholar]
  65. MottalebA.M.M.A. MoulariB. BeduneauA. PellequerY. LamprechtA. Surface-charge-dependent nanoparticles accumulation in inflamed skin.J. Pharm. Sci.2012101114231423910.1002/jps.2328222855370
    [Google Scholar]
  66. JinH. HeR. OyoshiM. GehaR.S. Animal models of atopic dermatitis.J. Invest. Dermatol.20091291314010.1038/jid.2008.10619078986
    [Google Scholar]
  67. DinT.U.A. MalikI. ArshadD. DinT.U.A. Dupilumab for atopic dermatitis: The silver bullet we have been searching for?Cureus2020124e756510.7759/cureus.756532382467
    [Google Scholar]
  68. MairK.H. SedlakC. KäserT. PasternakA. LevastB. GernerW. SaalmüllerA. SummerfieldA. GerdtsV. WilsonH.L. MeurensF. The porcine innate immune system: An update.Dev. Comp. Immunol.201445232134310.1016/j.dci.2014.03.02224709051
    [Google Scholar]
  69. GodinB. TouitouE. Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models.Adv. Drug Deliv. Rev.200759111152116110.1016/j.addr.2007.07.00417889400
    [Google Scholar]
  70. AvciP. SadasivamM. GuptaA. MeloD.W.C.M.A. HuangY.Y. YinR. ChandranR. KumarR. OtufoworaA. NyameT. HamblinM.R. Animal models of skin disease for drug discovery.Expert Opin. Drug Discov.20138333135510.1517/17460441.2013.76120223293893
    [Google Scholar]
  71. TanakaA. AmagaiY. OidaK. MatsudaH. Recent findings in mouse models for human atopic dermatitis.Exp. Anim.2012612778410.1538/expanim.61.7722531722
    [Google Scholar]
  72. WachsmannP. MoulariB. BéduneauA. PellequerY. LamprechtA. Surfactant-dependence of nanoparticle treatment in murine experimental colitis.J. Control. Release20131721626810.1016/j.jconrel.2013.07.03123933520
    [Google Scholar]
  73. MangelsdorfS. VergouT. SterryW. LademannJ. PatzeltA. Comparative study of hair follicle morphology in eight mammalian species and humans.Skin Res. Technol.201420214715410.1111/srt.1209823800212
    [Google Scholar]
  74. TryC. Size dependent skin penetration of nanoparticles in murine and porcine dermatitis models.European J. Pharmaceut. Biopharm.2016100101108
    [Google Scholar]
  75. MottalebA.M.M.A. TryC. PellequerY. LamprechtA. Nanomedicine strategies for targeting skin inflammation.Nanomedicine20149111727174310.2217/nnm.14.7425321172
    [Google Scholar]
  76. FowlerA.J. SheuM.Y. SchmuthM. KaoJ. FluhrJ.W. RheinL. CollinsJ.L. WillsonT.M. MangelsdorfD.J. EliasP.M. FeingoldK.R. Liver X receptor activators display anti-inflammatory activity in irritant and allergic contact dermatitis models: Liver-X-receptor-specific inhibition of inflammation and primary cytokine production.J. Invest. Dermatol.2003120224625510.1046/j.1523‑1747.2003.12033.x12542530
    [Google Scholar]
  77. KhanM.M. ZaidiS.S. SiyalF.J. KhanS.U. IshratG. BatoolS. MustaphaO. KhanS. DinF. Statistical optimization of co-loaded rifampicin and pentamidine polymeric nanoparticles for the treatment of cutaneous leishmaniasis.J. Drug Deliv. Sci. Technol.20237910400510.1016/j.jddst.2022.104005
    [Google Scholar]
  78. TahirM.A. AliM.E. LamprechtA. Nanoparticle formulations as recrystallization inhibitors in transdermal patches.Int. J. Pharm.202057511888610.1016/j.ijpharm.2019.11888631790804
    [Google Scholar]
  79. GattuS. MaibachH.I. Modest but increased penetration through damaged skin: An overview of the in vivo human model.Skin Pharmacol. Physiol.20112412910.1159/00031499520588085
    [Google Scholar]
  80. AhmadJ. GautamA. KomathS. BanoM. GargA. JainK. Topical nano-emulgel for skin disorders: Formulation approach and characterization.Recent Patents Anti-Infect. Drug Disc.2019141364810.2174/1574891X1466618112911521330488798
    [Google Scholar]
  81. OjhaB. JainV.K. GuptaS. TalegaonkarS. JainK. Nanoemulgel: A promising novel formulation for treatment of skin ailments.Polym. Bull.20227974441446510.1007/s00289‑021‑03729‑3
    [Google Scholar]
  82. AlgahtaniM.S. AhmadM.Z. AhmadJ. Nanoemulgel for improved topical delivery of retinyl palmitate: Formulation design and stability evaluation.Nanomaterials202010584810.3390/nano1005084832353979
    [Google Scholar]
  83. AmbhoreN.P. DandagiP.M. GadadA.P. MandoraP. Formulation and characterization of tapentadol loaded nanoemulgel for topical application.Ind. J. Pharm. Educ. Res.201751452553510.5530/ijper.51.4.81
    [Google Scholar]
  84. ParekhK. MehtaT.A. DhasN. KumarP. PopatA. Emerging nanomedicines for the treatment of atopic dermatitis.AAPS PharmSciTech20212225510.1208/s12249‑021‑01920‑333486609
    [Google Scholar]
  85. AlamM.J. XieL. YapY.A. RobertR. A mouse model of MC903‐induced atopic dermatitis.Curr. Protoc.202333e69510.1002/cpz1.69536913546
    [Google Scholar]
  86. EspinozaL.C. GarcíaV.R. AbreuS.M. DomènechÒ. BadiaJ. LagunasR.M.J. ClaresB. CalpenaA.C. Topical pioglitazone nanoformulation for the treatment of atopic dermatitis: Design, characterization and efficacy in hairless mouse model.Pharmaceutics202012325510.3390/pharmaceutics1203025532178278
    [Google Scholar]
  87. MiseryL. HuetF. GouinO. StänderS. DeleuranM. Current pharmaceutical developments in atopic dermatitis.Curr. Opin. Pharmacol.20194671310.1016/j.coph.2018.12.00330611103
    [Google Scholar]
  88. KukrejaT. SarafS. Formulation of topical itraconazole nanostructured lipid carriers (Nlc) gel for onychomycosis.J. Ravishankar Univ.202335281810.52228/JRUB.2023‑35‑2‑2
    [Google Scholar]
  89. NewbyP.K. MarasJ. BakunP. MullerD. FerrucciL. TuckerK.L. Intake of whole grains, refined grains, and cereal fiber measured with 7-D diet records and associations with risk factors for chronic disease.Am. J. Clin. Nutr.20078661745175310.1093/ajcn/86.5.174518065595
    [Google Scholar]
  90. JettJ. McLaughlinM. WilsonT. SomervilleM. DellaMaestraW. RubensteinD. PiscitelliS. Dermal safety of tapinar of cream 1%: Results from 4 phase 1 trials.J. Drugs Dermatol.202221101084109010.36849/JDD.662736219046
    [Google Scholar]
  91. CassanoR. SeriniS. CurcioF. TrombinoS. CalvielloG. Preparation and study of solid lipid nanoparticles based on curcumin, resveratrol and capsaicin containing linolenic acid.Pharmaceutics2022148159310.3390/pharmaceutics1408159336015219
    [Google Scholar]
  92. JaiswalP. GidwaniB. VyasA. Nanostructured lipid carriers and their current application in targeted drug delivery.Artif. Cells Nanomed. Biotechnol.2016441274010.3109/21691401.2014.90982224813223
    [Google Scholar]
  93. FerreiraK.C.B. ValleA.B.C.S. PaesC.Q. TavaresG.D. PittellaF. Nanostructured lipid carriers for the formulation of topical anti-inflammatory nanomedicines based on natural substances.Pharmaceutics2021139145410.3390/pharmaceutics1309145434575531
    [Google Scholar]
  94. GomaaE. FathiH.A. EissaN.G. ElsabahyM. Methods for preparation of nanostructured lipid carriers.Methods20221993810.1016/j.ymeth.2021.05.00333992771
    [Google Scholar]
  95. LiQ. CaiT. HuangY. XiaX. ColeS.P.C. CaiY. A review of the structure, preparation, and application of NLCs, PNPs, and PLNsNanomaterials20177612210.3390/nano7060122
    [Google Scholar]
  96. PanareseF. AuriemmaM. CarboneA. AmerioP. Atopic dermatitis treatment: What’s new on the horizon?G. Ital. Dermatol. Venereol.201815319510129319277
    [Google Scholar]
  97. AbdE. BensonH. RobertsM. GriceJ. Minoxidil skin delivery from nanoemulsion formulations containing eucalyptol or oleic acid: Enhanced diffusivity and follicular targeting.Pharmaceutics20181011910.3390/pharmaceutics1001001929370122
    [Google Scholar]
  98. SvejgaardE. LarsenØ.P. DeleuranM. TernowitzT. PetersenR.J. NilssonJ. Treatment of head and neck dermatitis comparing itraconazole 200 mg and 400 mg daily for 1 week with placebo.J. Eur. Acad. Dermatol. Venereol.200418444544910.1111/j.1468‑3083.2004.00963.x15196159
    [Google Scholar]
  99. MallolJ. CraneJ. Mutiusv.E. OdhiamboJ. KeilU. StewartA. The international study of asthma and allergies in childhood (ISAAC) Phase Three: A global synthesis.Allergol. Immunopathol.2013412738510.1016/j.aller.2012.03.00122771150
    [Google Scholar]
  100. PahwaR GoyalA JialalI. Chronic inflammation.Pathobiol Hum Dis A Dyn Encycl Dis Mech.202230014
    [Google Scholar]
  101. SendekieA.K. DagnewE.M. TeferaB.B. BelachewE.A. Health-related quality of life and its determinants among patients with diabetes mellitus: A multicentre cross-sectional study in Northwest Ethiopia.BMJ Open2023131e06851810.1136/bmjopen‑2022‑06851836697040
    [Google Scholar]
  102. OdhiamboJ.A. WilliamsH.C. ClaytonT.O. RobertsonC.F. AsherM.I. Global variations in prevalence of eczema symptoms in children from ISAAC phase three.J. Allergy Clin. Immunol.2009124612511258.e2310.1016/j.jaci.2009.10.00920004783
    [Google Scholar]
  103. PapukashviliD. RcheulishviliN. LiuC. WangX. HeY. WangP.G. Strategy of developing nucleic acid-based universal monkeypox vaccine candidates.Front. Immunol.202213105030910.3389/fimmu.2022.105030936389680
    [Google Scholar]
  104. GirardTJ AntunesL ZhangN AmruteJM SubramanianR EldemI Peripheral blood mononuclear cell tissue factor (F3 gene) transcript levels and circulating extracellular vesicles are elevated in severe coronavirus 2019 (COVID-19) disease.J. Thromb. Haemost.2022213629638
    [Google Scholar]
  105. ChinnappannaN.K.R. YennamG. ChaitanyaC.B.H.N.V. PottathilS. BorahP. VenugopalaK.N. DebP.K. MailavaramR.P. Recent approaches in the drug research and development of novel antimalarial drugs with new targets.Acta Pharm.202373112710.2478/acph‑2023‑000136692468
    [Google Scholar]
  106. CalderonA.A. DimondC. ChoyD.F. PappuR. GrimbaldestonM.A. MohanD. ChungK.F. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD.Eur. Respir. Rev.20233216722014410.1183/16000617.0144‑202236697211
    [Google Scholar]
  107. BariE. FerreraF. AltosoleT. PerteghellaS. MauriP. RossiR. PassignaniG. MastracciL. GalatiM. AstoneG.I. MastrogiacomoM. CastagnolaP. FenoglioD. SilvestreD.D. TorreM.L. FilaciG. Trojan-horse silk fibroin nanocarriers loaded with a re-call antigen to redirect immunity against cancer.J. Immunother. Cancer2023111e00591610.1136/jitc‑2022‑00591636697251
    [Google Scholar]
  108. OlofssonE.H HaglundM EnglundE. On the regional distribution of cerebral microvascular ‘raspberries’ and their association with cerebral atherosclerosis and acute circulatory failure.Cerebral Circul. Cognition Behav.2023410015710.1016/j.cccb.2023.100157
    [Google Scholar]
  109. RamsookA.H. SchaefferM.R. MitchellR.A. DhillonS.S. MilneK.M. FergusonO.N. PuyatJ.H. KoehleM.S. SheelA.W. GuenetteJ.A. Voluntary activation of the diaphragm after inspiratory pressure threshold loading.Physiol. Rep.2023112e1557510.14814/phy2.1557536695772
    [Google Scholar]
  110. SatmanI. BayirliogluS. OkumusF. ErturkN. YemeniciM. CinemreS. GulfidanG. ArgaK.Y. MerihD.Y. IsseverH. Estimates and forecasts on the burden of prediabetes and diabetes in adult and elderly population in turkiye.Eur. J. Epidemiol.202338331332310.1007/s10654‑022‑00960‑836696072
    [Google Scholar]
  111. SaldanhaS. GoyalS. DasappaL. JacobL.A. BabuM.C.S. LokeshK.N. RudreshaA.H. RajeevL.K. MadhumathiD.S. Rapidly progressing plasma cell leukemia with underlying plasmablastic morphology: A rare case report of a 25-year old male.Int. J. Hematol. Oncol. Stem Cell Res.202216318418810.18502/ijhoscr.v16i3.1014236694704
    [Google Scholar]
  112. SinghA. EjazA. GuntaP.S. JakullaR.S. SinghD. Infective endocarditis as a complication of Crohn’s disease on immunotherapy.Cureus20221412e3284710.7759/cureus.3284736694487
    [Google Scholar]
  113. LiuY. XiaoZ. YeK. XuL. ZhangY. Smoking, alcohol consumption, diabetes, body mass index, and peptic ulcer risk: A two-sample Mendelian randomization study.Front. Genet.202313Jan99208010.3389/fgene.2022.99208036685897
    [Google Scholar]
  114. PovarninaP.Y. VolkovaA.A. VorontsovaO.N. KamenskyA.A. GudashevaT.A. SeredeninS.B. A low-molecular-weight BDNF mimetic, dipeptide GSB-214, prevents memory impairment in rat models of alzheimer’s disease.Acta Nat.20221449410036694902
    [Google Scholar]
  115. BassolsJ. Zegherd.F. DiazM. BadosaC.G. BeltranG.C. CarranzaP.E. VilaO.C. CasanoP. FrancoC.A. MalpiqueR. BermejoL.A. IbáñezL. Effects of half-dose spiomet treatment in girls with early puberty and accelerated bone maturation: A multicenter, randomized, placebo-controlled study protocol.Trials20232415610.1186/s13063‑022‑07050‑w36694227
    [Google Scholar]
  116. LomakinY.A. OvchinnikovaL.A. ZakharovaM.N. IvanovaM.V. SimanivT.O. KabilovM.R. BykovaN.A. MukhinaV.S. KaminskayaA.N. TupikinA.E. ZakharovaM.Y. FavorovA.V. IllarioshkinS.N. BelogurovA.A. GabibovA.G. Multiple sclerosis is associated with immunoglobulin germline gene variation of transitional B cells.Acta Nat.2022144849336694905
    [Google Scholar]
  117. OrgilZ. JohnsonL. KarthicA. WilliamsS.E. DingL. ZuckK.S. KingC.D. OlbrechtV.A. Feasibility and acceptability of perioperative application of biofeedback-based virtual reality versus active control for pain and anxiety in children and adolescents undergoing surgery: Protocol for a pilot randomised controlled trial.BMJ Open2023131e07127410.1136/bmjopen‑2022‑07127436697053
    [Google Scholar]
  118. FilhoL.R FortunaJS CozachencoD IsaacAR SilvaL.E.N SaldanhaA Brain FNDC5/Irisin expression in patients and mouse models of major depression.Eneuro2023102ENEURO.025622.2023
    [Google Scholar]
  119. ScottM.R. ZongW. KetchesinK.D. SeneyM.L. TsengG.C. ZhuB. Twelve-hour rhythms in transcript expression within the human dorsolateral prefrontal cortex are altered in schizophrenia.PLoS Biol.202321e300168810.1371/journal.pbio.3001688
    [Google Scholar]
  120. JinY-X. WangB. WangX. YuX. ChenL. YangY. Relationship between obstructive sleep apnea and liver abnormalities in older patients: A cross‐sectional study.Int. J. Clin. Prac.202320239310588
    [Google Scholar]
  121. EscherC. NagyE. CreutzfeldtJ. DahlO. RuizM. EricsonM. OsikaW. MeurlingL. Fear of making a mistake: A prominent cause of stress for COVID-19 ICU staff—a mixed-methods study.BMJ Open Qual.2023121e00200910.1136/bmjoq‑2022‑00200936697055
    [Google Scholar]
  122. SatoF. YamanoT. ManboY. SakaguchiK. YamaguchiK. MiyakeT. A rare case of scleritis and multiple rheumatoid pulmonary nodules associated with seronegative rheumatoid arthritis.Oxf. Med. Case Rep.202320231omac15510.1093/omcr/omac15536694604
    [Google Scholar]
  123. LiQ. YanW. LiuS. LiH. Study on the correlation and clinical significance of T-lymphocyte subsets, IL-6 and PCT in the severity of patients with sepsis.Pak. J. Med. Sci.202339122723136694784
    [Google Scholar]
  124. LombardoD. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine.J. Nanomat.201920193702518
    [Google Scholar]
  125. AmnuaikitT. LimsuwanT. KhongkowP. BoonmeP. Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes.Asian J. Pharm. Sci.201813547248410.1016/j.ajps.2018.02.00432104421
    [Google Scholar]
  126. GarcíaF.R. LalatsaA. StattsL. FernándezB.F. BallesterosM.P. SerranoD.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale.Int. J. Pharm.202057311881710.1016/j.ijpharm.2019.11881731678520
    [Google Scholar]
  127. NaseriN. ValizadehH. MilaniZ.P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  128. GaleanoG.A. HuertasM.C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release.Eur. J. Pharm. Biopharm.201813328530810.1016/j.ejpb.2018.10.01730463794
    [Google Scholar]
  129. SolaroR. ChielliniF. BattistiA. Targeted delivery of protein drugs by nanocarriers.Materials2010331928198010.3390/ma3031928
    [Google Scholar]
  130. SoutoE.B. AlmeidaA.J. MüllerR.H. Lipid nanoparticles (SLN®, NLC®) for cutaneous drug delivery: Structure, protection and skin effects.J. Biomed. Nanotechnol.20073431733110.1166/jbn.2007.04920055078
    [Google Scholar]
  131. PardeikeJ. HommossA. MüllerR.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.Int. J. Pharm.20093661-217018410.1016/j.ijpharm.2008.10.00318992314
    [Google Scholar]
  132. BhatiaS. Natural polymer drug delivery systems: Nanoparticles, plants, and algae. Nat Polym Drug Deliv Syst Nanoparticles, Plants.Algae2016Jan1225
    [Google Scholar]
  133. ZhangZ. TsaiP.C. RamezanliT. KohnM.B.B. Polymeric nanoparticles‐based topical delivery systems for the treatment of dermatological diseases.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20135320521810.1002/wnan.121123386536
    [Google Scholar]
  134. SayE.K.M. SawyE.H.S. Polymeric nanoparticles: Promising platform for drug delivery.Int. J. Pharm.20175281-267569110.1016/j.ijpharm.2017.06.05228629982
    [Google Scholar]
  135. KumariA. YadavS.K. YadavS.C. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf. B Biointerfaces201075111810.1016/j.colsurfb.2009.09.00119782542
    [Google Scholar]
  136. Costad.L.A.G. Souzad.M.L. Sousad.A.L.M.D. SilvaE.O. Silvad.R.M.F. RolimL.A. NetoR.P.J. Innovation overview of nanoparticle-based dermatological products: A patent study.Recent Pat. Nanotechnol.202014212814010.2174/187221051466620021412522232056534
    [Google Scholar]
  137. GhoshP. HanG. DeM. KimC. RotelloV. Gold nanoparticles in delivery applications.Adv. Drug Deliv. Rev.200860111307131510.1016/j.addr.2008.03.01618555555
    [Google Scholar]
  138. YehY.C. CreranB. RotelloV.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology.Nanoscale2012461871188010.1039/C1NR11188D22076024
    [Google Scholar]
  139. GurunathanS. ParkJ.H. HanJ.W. KimJ.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy.Int. J. Nanomedicine20151014203422210.2147/IJN.S8395326170659
    [Google Scholar]
  140. ZhangX.F. LiuZ.G. ShenW. GurunathanS. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches.Int. J. Mol. Sci.2016179153410.3390/ijms1709153427649147
    [Google Scholar]
  141. JafariS. DerakhshankhahH. AlaeiL. FattahiA. VarnamkhastiB.S. SabouryA.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications.Biomed. Pharmacother.20191091100111110.1016/j.biopha.2018.10.16730551360
    [Google Scholar]
  142. BalzusB. SahleF.F. HönzkeS. GereckeC. SchumacherF. HedtrichS. KleuserB. BodmeierR. Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium.Eur. J. Pharm. Biopharm.201711512213010.1016/j.ejpb.2017.02.00128189623
    [Google Scholar]
  143. DongP. SahleF.F. LohanS.B. SaeidpourS. AlbrechtS. TeutloffC. BodmeierR. UnbehauenM. WolffC. HaagR. LademannJ. PatzeltA. KortingS.M. MeinkeM.C. pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin.J. Control. Release201929521422210.1016/j.jconrel.2018.12.04530597246
    [Google Scholar]
  144. RosadoC. SilvaC. ReisC.P. Hydrocortisone-loaded poly(ε-caprolactone) nanoparticles for atopic dermatitis treatment.Pharm. Dev. Technol.201318371071810.3109/10837450.2012.71253722889124
    [Google Scholar]
  145. HussainZ. KatasH. AminM.M.C. KumolosasiE. SahudinS. Downregulation of immunological mediators in 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions by hydrocortisone-loaded chitosan nanoparticles.Int. J. Nanomedicine2014915143515625395851
    [Google Scholar]
  146. JungS.M. YoonG.H. LeeH.C. JungM.H. YuS.I. YeonS.J. MinS.K. KwonY.S. HwangJ.H. ShinH.S. Thermodynamic insights and conceptual design of skin-sensitive chitosan coated Ceramide/Plga nanodrug for regeneration of stratum corneum on atopic dermatitis.Sci. Rep.2015511808910.1038/srep1808926666701
    [Google Scholar]
  147. TessemaE.N. MariamG.T. PaulosG. WohlrabJ. NeubertR.H.H. Delivery of oat-derived phytoceramides into the stratum corneum of the skin using nanocarriers: Formulation, characterization and in vitro and ex-vivo penetration studies.Eur. J. Pharm. Biopharm.201812726026910.1016/j.ejpb.2018.02.03729501672
    [Google Scholar]
  148. DeliG. HatziantoniouS. NikasY. DemetzosC. Solid lipid nanoparticles and nanoemulsions containing ceramides: Preparation and physicochemical characterization.J. Liposome Res.200919318018810.1080/0898210080270204619552579
    [Google Scholar]
  149. GaurP.K. MishraS. VermaA. VermaN. Ceramide–palmitic acid complex based Curcumin solid lipid nanoparticles for transdermal delivery: Pharmacokinetic and pharmacodynamic study.J. Exp. Nanosci.2016111385310.1080/17458080.2015.1025301
    [Google Scholar]
  150. NohG.Y. SuhJ.Y. ParkS.N. Ceramide-based nanostructured lipid carriers for transdermal delivery of isoliquiritigenin: Development, physicochemical characterization, and in vitro skin permeation studies.Korean J. Chem. Eng.201734240040610.1007/s11814‑016‑0267‑3
    [Google Scholar]
/content/journals/cis/10.2174/012210299X358884250211064638
Loading
/content/journals/cis/10.2174/012210299X358884250211064638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test