Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Around 2.5% of persons will experience obsessive-compulsive disorder (OCD), which has a significant morbidity. About 70% of individuals might have significant symptom relief with the correct medicine. Pharmacological therapy is based on a class of drugs called selective serotonin reuptake inhibitors (SSRIs). They are frequently given in higher doses and for longer durations compared to depression. Unfortunately, remission is not common. Second-line therapy that combines tricyclic clomipramine with low-dose neuroleptics is successful. For patients who are resistant to effective therapies, several augmentation procedures have been investigated, although they have not yet received strong support from controlled research. Psychotherapy and medication are frequently combined, however, thorough research has not shown that there are any synergistic benefits for adult patients. According to neuropsychological research, the development of OCD and cognitions is influenced by an imbalance in activity between the fronto-striatal circuitry's direct (excitatory) and indirect (inhibitory) pathways. A variety of anxiolytic qualities have been found in substances derived from plants that have been tested for various mental diseases. We did a detailed analysis of the pharmacological and clinical evidence of herbal medications and phytochemicals with anti-obsessive-compulsive properties using the electronic databases PubMed, Scopus, . to find out the status of the relevant research. The review is focused to identify the neurotransmitters involved in OCD along with the diagnostic biomarkers so as to identify the disease at an early stage and provide safe and effective pharmacotherapy. The findings showed that a number of plant remedies, comprising , , , , and , as well as a number of natural compounds, including , and , have tentative low-quality evidence. The most important anti-OCD mechanism, according to existing pre-clinical studies and the need for more research to confirm its efficacy, may include manipulating the monoamine system, notably serotonin reuptake inhibition.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X256025231010053232
2023-01-01
2025-10-03
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E2210299X256025.html?itemId=/content/journals/cis/10.2174/012210299X256025231010053232&mimeType=html&fmt=ahah

References

  1. AlbeldaN. JoelD. Animal models of obsessive-compulsive disorder: Exploring pharmacology and neural substrates.Neurosci. Biobehav. Rev.2012361476310.1016/j.neubiorev.2011.04.00621527287
    [Google Scholar]
  2. AlbeldaN. Bar-OnN. JoelD. The role of NMDA receptors in the signal attenuation rat model of obsessive-compulsive disorder.Psychopharmacology20102101132410.1007/s00213‑010‑1808‑920238210
    [Google Scholar]
  3. AgratiD. Fernández-GuastiA. ZuluagaM.J. UriarteN. PereiraM. FerreiraA. Compulsive-like behaviour according to the sex and the reproductive stage of female rats.Behav. Brain Res.2005161231331910.1016/j.bbr.2005.02.01715922059
    [Google Scholar]
  4. de OliveiraK.C. CamiloC. GastaldiV.D. Sant’Anna FeltrinA. LisboaB.C.G. de Jesus Rodrigues de PaulaV. MorettoA.C. LaferB. HoexterM.Q. MiguelE.C. MaschiettoM. AkiyamaÉ.D. GrinbergL.T. LeiteR.E.P. SuemotoC.K. de Lucena Ferretti-RebustiniR.E. PasqualucciC.A. Jacob-FilhoW. BrentaniH. Brain areas involved with obsessive-compulsive disorder present different DNA methylation modulation.BMC Genomic Data20212214510.1186/s12863‑021‑00993‑034717534
    [Google Scholar]
  5. MiladM.R. RauchS.L. Obsessive-compulsive disorder: Beyond segregated cortico-striatal pathways.Trends Cogn. Sci.2012161435110.1016/j.tics.2011.11.00322138231
    [Google Scholar]
  6. MaiaT.V. CooneyR.E. PetersonB.S. The neural bases of obsessive-compulsive disorder in children and adults.Dev. Psychopathol.20082041251128310.1017/S095457940800060618838041
    [Google Scholar]
  7. AlbinR.L. YoungA.B. PenneyJ.B. The functional anatomy of basal ganglia disorders.Trends Neurosci.1989121036637510.1016/0166‑2236(89)90074‑X2479133
    [Google Scholar]
  8. MoreiraP.S. MarquesP. Soriano-MasC. MagalhãesR. SousaN. SoaresJ.M. MorgadoP. The neural correlates of obsessive-compulsive disorder: A multimodal perspective.Transl. Psychiatry201778e122410.1038/tp.2017.18928850108
    [Google Scholar]
  9. MelloniM. UrbistondoC. SedeñoL. GelorminiC. KichicR. IbanezA. The extended fronto-striatal model of obsessive compulsive disorder: Convergence from event-related potentials, neuropsychology and neuroimaging.Front. Hum. Neurosci.2012625910.3389/fnhum.2012.0025923015786
    [Google Scholar]
  10. PittengerC. BlochM.H. WilliamsK. Glutamate abnormalities in obsessive compulsive disorder: Neurobiology, pathophysiology, and treatment.Pharmacol. Ther.2011132331433210.1016/j.pharmthera.2011.09.00621963369
    [Google Scholar]
  11. MenziesL. ChamberlainS.R. LairdA.R. ThelenS.M. SahakianB.J. BullmoreE.T. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: The orbitofronto-striatal model revisited.Neurosci. Biobehav. Rev.200832352554910.1016/j.neubiorev.2007.09.00518061263
    [Google Scholar]
  12. HansenE.S. HasselbalchS. LawI. BolwigT.G. The caudate nucleus in obsessive-compulsive disorder. Reduced metabolism following treatment with paroxetine: A PET study.Int. J. Neuropsychopharmacol.20025111010.1017/S146114570100268112057027
    [Google Scholar]
  13. RaduaJ. Mataix-ColsD. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder.Br. J. Psychiatry2009195539340210.1192/bjp.bp.108.05504619880927
    [Google Scholar]
  14. RaduaJ. van den HeuvelO.A. SurguladzeS. Mataix-ColsD. Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders.Arch. Gen. Psychiatry201067770171110.1001/archgenpsychiatry.2010.7020603451
    [Google Scholar]
  15. GreenbergB.D. RauchS.L. HaberS.N. Invasive circuitry-based neurotherapeutics: Stereotactic ablation and deep brain stimulation for OCD.Neuropsychopharmacology201035131733610.1038/npp.2009.12819759530
    [Google Scholar]
  16. PittengerC. Neurotransmitter dysregulation in OCD.Obsessive-compulsive Disorder: Phenomenology, Pathophysiology, and Treatment.New YorkOxford Academic201710.1093/med/9780190228163.003.0025
    [Google Scholar]
  17. CharneyD.S. GoodmanW.K. PriceL.H. WoodsS.W. RasmussenS.A. HeningerG.R. Serotonin function in obsessive-compulsive disorder. A comparison of the effects of tryptophan and m-chlorophenylpiperazine in patients and healthy subjects.Arch. Gen. Psychiatry198845217718510.1001/archpsyc.1988.018002600950123337615
    [Google Scholar]
  18. InselT.R. MuellerE.A. AltermanI. LinnoilaM. MurphyD.L. Obsessive-compulsive disorder and serotonin: Is there a connection?Biol. Psychiatry198520111174118810.1016/0006‑3223(85)90176‑32413912
    [Google Scholar]
  19. DongM.X. ChenG.H. HuL. Dopaminergic system alteration in anxiety and compulsive disorders: A systematic review of neuroimaging studies.Front. Neurosci.20201460852010.3389/fnins.2020.60852033343291
    [Google Scholar]
  20. PineA. ShinerT. SeymourB. DolanR.J. Dopamine, time, and impulsivity in humans.J. Neurosci.201030268888889610.1523/JNEUROSCI.6028‑09.201020592211
    [Google Scholar]
  21. KooM.S. KimE.J. RohD. KimC.H. Role of dopamine in the pathophysiology and treatment of obsessive-compulsive disorder.Expert Rev. Neurother.201010227529010.1586/ern.09.14820136383
    [Google Scholar]
  22. SullivanR.M. TalangbayanH. EinatH. SzechtmanH. Effects of quinpirole on central dopamine systems in sensitized and non-sensitized rats.Neuroscience199883378178910.1016/S0306‑4522(97)00412‑09483561
    [Google Scholar]
  23. HarsányiA CsigóK DemeterG NemethA New approach to obsessive-compulsive disorder: Dopaminergic theories.Psychiatr. Hung.2007224248258
    [Google Scholar]
  24. ZorR. KerenH. HermeshH. SzechtmanH. MortJ. EilamD. Obsessive-compulsive disorder: A disorder of pessimal (non-functional) motor behavior.Acta Psychiatr. Scand.2009120428829810.1111/j.1600‑0447.2009.01370.x19291081
    [Google Scholar]
  25. BlochHM CoricV PittengerC New horizon in OCD Research and the potential importance glutamate. Can we develop treatment that work better and faster?Springer2009
    [Google Scholar]
  26. ZachmannM. TocciP. NyhanW.L. The occurrence of γ-aminobutyric acid in human tissues other than brain.J. Biol. Chem.196624161355135810.1016/S0021‑9258(18)96782‑74222879
    [Google Scholar]
  27. RussoAJ PietschSC Decreased hepatocyte growth factor (HGF) and gamma aminobutyric acid (GABA) in individuals with obsessive-compulsive disorder (OCD).Biomark Insights.2013810714
    [Google Scholar]
  28. OwensD.F. KriegsteinA.R. Is there more to gaba than synaptic inhibition?Nat. Rev. Neurosci.20023971572710.1038/nrn91912209120
    [Google Scholar]
  29. ChakrabartyK. BhattacharyyaS. ChristopherR. KhannaS. Glutamatergic dysfunction in OCD.Neuropsychopharmacology20053091735174010.1038/sj.npp.130073315841109
    [Google Scholar]
  30. Biomarkers Definitions Working Group.Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework.Clin. Pharmacol. Ther.2001693899510.1067/mcp.2001.11398911240971
    [Google Scholar]
  31. KoníčkováD. MenšíkováK. TučkováL. HénykováE. StrnadM. FriedeckýD. StejskalD. MatějR. KaňovskýP. Biomarkers of neurodegenerative diseases: Biology, taxonomy, clinical relevance, and current research status.Biomedicines2022107176010.3390/biomedicines1007176035885064
    [Google Scholar]
  32. BaldacciF. MazzucchiS. Della VecchiaA. GiampietriL. GianniniN. Koronyo-HamaouiM. CeravoloR. SicilianoG. BonuccelliU. ElahiF.M. VergalloA. ListaS. GiorgiF.S. HampelH. The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases.Expert Rev. Mol. Diagn.202020442144110.1080/14737159.2020.173130632066283
    [Google Scholar]
  33. Fusar-PoliP. RaduaJ. Ten simple rules for conducting umbrella reviews.Evid. Based Ment. Health20182139510010.1136/ebmental‑2018‑30001430006442
    [Google Scholar]
  34. FullanaM.A. AbramovitchA. ViaE. López-SolaC. GoldbergX. ReinaN. ForteaL. SolanesA. BuckleyM.J. Ramella-CravaroV. CarvalhoA.F. Tortella-FeliuM. VietaE. Soriano-MasC. LázaroL. SteinD.J. Fernández de la CruzL. Mataix-ColsD. RaduaJ. Diagnostic biomarkers for obsessive-compulsive disorder: A reasonable quest or ignis fatuus?Neurosci. Biobehav. Rev.202011850451310.1016/j.neubiorev.2020.08.00832866526
    [Google Scholar]
  35. AbramovitchA. AbramowitzJ.S. MittelmanA. The neuropsychology of adult obsessive-compulsive disorder: A meta-analysis.Clin. Psychol. Rev.20133381163117110.1016/j.cpr.2013.09.00424128603
    [Google Scholar]
  36. McKayD. SookmanD. NezirogluF. WilhelmS. SteinD.J. KyriosM. MatthewsK. VealeD. Efficacy of cognitive-behavioral therapy for obsessive-compulsive disorder.Psychiatry Res.2015225323624610.1016/j.psychres.2014.11.05825613661
    [Google Scholar]
  37. OlatunjiB.O. DavisM.L. PowersM.B. SmitsJ.A.J. Cognitive-behavioral therapy for obsessive-compulsive disorder: A meta-analysis of treatment outcome and moderators.J. Psychiatr. Res.2013471334110.1016/j.jpsychires.2012.08.02022999486
    [Google Scholar]
  38. SimpsonH.B. FoaE.B. LiebowitzM.R. LedleyD.R. HuppertJ.D. CahillS. VermesD. SchmidtA.B. HembreeE. FranklinM. CampeasR. HahnC.G. PetkovaE. A randomized, controlled trial of cognitive-behavioral therapy for augmenting pharmacotherapy in obsessive-compulsive disorder.Am. J. Psychiatry2008165562163010.1176/appi.ajp.2007.0709144018316422
    [Google Scholar]
  39. MoodyT.D. MorfiniF. ChengG. SheenC. TadayonnejadR. ReggenteN. O’NeillJ. FeusnerJ.D. Mechanisms of cognitive-behavioral therapy for obsessive-compulsive disorder involve robust and extensive increases in brain network connectivity.Transl. Psychiatry201779e123010.1038/tp.2017.19228872637
    [Google Scholar]
  40. FeusnerJ.D. MoodyT. LaiT.M. SheenC. KhalsaS. BrownJ. LevittJ. AlgerJ. O’NeillJ. Brain connectivity and prediction of relapse after cognitive-behavioral therapy in obsessive-compulsive disorder.Front. Psychiatry201567410.3389/fpsyt.2015.0007426042054
    [Google Scholar]
  41. KahnL. SuttonB. WinstonH.R. AboschA. ThompsonJ.A. DavisR.A. Deep brain stimulation for obsessive-compulsive disorder: Real world experience Post-FDA-Humanitarian use device approval.Front. Psychiatry20211256893210.3389/fpsyt.2021.56893233868034
    [Google Scholar]
  42. FoaE.B. FranklinM.E. MoserJ. Context in the clinic: How well do cognitive-behavioral therapies and medications work in combination?Biol. Psychiatry2002521098799710.1016/S0006‑3223(02)01552‑412437939
    [Google Scholar]
  43. VogelP.A. StilesT.C. GötestamK.G. Adding cognitive therapy elements to exposure therapy for obsessive compulsive disorder: A controlled study.Behav. Cogn. Psychother.200432327529010.1017/S1352465804001353
    [Google Scholar]
  44. WhittalM.L. WoodyS.R. McLeanP.D. RachmanS.J. RobichaudM. Treatment of obsessions: A randomized controlled trial.Behav. Res. Ther.201048429530310.1016/j.brat.2009.11.01019969286
    [Google Scholar]
  45. CalvocoressiL. LewisB. HarrisM. TrufanS.J. GoodmanW.K. McDougleC.J. PriceL.H. Family accommodation in obsessive-compulsive disorder.Am. J. Psychiatry1995152344144310.1176/ajp.152.3.4417864273
    [Google Scholar]
  46. BrownG.W. Rutter’M. The measurement of family activities and relationships: A methodological study.Hum. Relat.196619324126310.1177/001872676601900301
    [Google Scholar]
  47. TynesL.L. SalinsC. SkibaW. WinsteadD.K. A psychoeducational and support group for obsessive-compulsive disorder patients and their significant others.Compr. Psychiatry199233319720110.1016/0010‑440X(92)90030‑T1591912
    [Google Scholar]
  48. KroneK.P. HimleJ.A. NesseR.M. A standardized behavioral group treatment program for obsessive-compulsive disorder: Preliminary outcomes.Behav. Res. Ther.199129662763110.1016/0005‑7967(91)90012‑R1759961
    [Google Scholar]
  49. ReesC.S. van KoesveldK.E. An open trial of group metacognitive therapy for obsessive-compulsive disorder.J. Behav. Ther. Exp. Psychiatry200839445145810.1016/j.jbtep.2007.11.00418295186
    [Google Scholar]
  50. KohlS. SchönherrD.M. LuigjesJ. DenysD. MuellerU.J. LenartzD. Visser-VandewalleV. KuhnJ. Deep brain stimulation for treatment-refractory obsessive compulsive disorder: A systematic review.BMC Psychiatry201414121410.1186/s12888‑014‑0214‑y25085317
    [Google Scholar]
  51. HollandM.T. TrappN.T. McCormickL.M. JareczekF.J. ZanatyM. CloseL.N. BeeghlyJ. GreenleeJ.D.W. Deep brain stimulation for obsessive-compulsive disorder: A long term naturalistic follow up study in a single institution.Front. Psychiatry2020115510.3389/fpsyt.2020.0005532184741
    [Google Scholar]
  52. GreenbergB.D. PriceL.H. RauchS.L. FriehsG. NorenG. MaloneD. CarpenterL.L. RezaiA.R. RasmussenS.A. Neurosurgery for intractable obsessive-compulsive disorder and depression: critical issues.Neurosurg. Clin. N. Am.200314219921210.1016/S1042‑3680(03)00005‑612856488
    [Google Scholar]
  53. PepperJ. HarizM. ZrinzoL. Deep brain stimulation versus anterior capsulotomy for obsessive-compulsive disorder: A review of the literature.J. Neurosurg.201512251028103710.3171/2014.11.JNS13261825635480
    [Google Scholar]
  54. MianM.K. CamposM. ShethS.A. EskandarE.N. Deep brain stimulation for obsessive-compulsive disorder: Past, present, and future.Neurosurg. Focus2010292E1010.3171/2010.4.FOCUS1010720672912
    [Google Scholar]
  55. NuttinB. CosynsP. DemeulemeesterH. GybelsJ. MeyersonB. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder.Lancet19993549189152610.1016/S0140‑6736(99)02376‑410551504
    [Google Scholar]
  56. HaqI.U. FooteK.D. GoodmanW.G. WuS.S. SudhyadhomA. RicciutiN. SiddiquiM.S. BowersD. JacobsonC.E. WardH. OkunM.S. Smile and laughter induction and intraoperative predictors of response to deep brain stimulation for obsessive-compulsive disorder.Neuroimage201154Suppl. 1S247S25510.1016/j.neuroimage.2010.03.00920226259
    [Google Scholar]
  57. BlomstedtP. SjöbergR.L. HanssonM. BodlundO. HarizM.I. Deep brain stimulation in the treatment of obsessive-compulsive disorder.World Neurosurg.2013806e245e25310.1016/j.wneu.2012.10.00623044000
    [Google Scholar]
  58. FigeeM. LuigjesJ. SmoldersR. Valencia-AlfonsoC.E. van WingenG. de KwaastenietB. MantioneM. OomsP. de KoningP. VulinkN. LevarN. DrogeL. van den MunckhofP. SchuurmanP.R. NederveenA. van den BrinkW. MazaheriA. VinkM. DenysD. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder.Nat. Neurosci.201316438638710.1038/nn.334423434914
    [Google Scholar]
  59. LiebrandL.C. ZhutovskyP. TolmeijerE.K. GraatI. VulinkN. de KoningP. FigeeM. SchuurmanP.R. van den MunckhofP. CaanM.W.A. DenysD. van WingenG.A. Deep brain stimulation response in obsessive-compulsive disorder is associated with preoperative nucleus accumbens volume.Neuroimage Clin.20213010264010.1016/j.nicl.2021.10264033799272
    [Google Scholar]
  60. CoenenV.A. SajonzB. ReisertM. BostroemJ. BewernickB. UrbachH. JenknerC. ReinacherP.C. SchlaepferT.E. MädlerB. Tractography-assisted deep brain stimulation of the superolateral branch of the medial forebrain bundle (slMFB DBS) in major depression.Neuroimage Clin.20182058059310.1016/j.nicl.2018.08.02030186762
    [Google Scholar]
  61. CoenenV.A. SchlaepferT.E. GollP. ReinacherP.C. VoderholzerU. Tebartz van ElstL. UrbachH. FreyerT. The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder.CNS Spectr.201722328228910.1017/S109285291600028627268576
    [Google Scholar]
  62. FinebergN.A. BrownA. ReghunandananS. PampaloniI. Evidence-based pharmacotherapy of obsessive-compulsive disorder.Int. J. Neuropsychopharmacol.20121581173119110.1017/S146114571100182922226028
    [Google Scholar]
  63. PittengerC. Pharmacotherapeutic strategies and new targets in OCD.The Neurobiology and Treatment of OCD: Accelerating Progress.ChamSpringer2021493318410.1007/7854_2020_204
    [Google Scholar]
  64. ChouinardG. Sertraline in the treatment of obsessive compulsive disorder: Two double-blind, placebo-controlled studies.Int. Clin. Psychopharmacol.19927Suppl. 2374110.1097/00004850‑199210002‑000071484177
    [Google Scholar]
  65. KoponenH. LepolaU. LeinonenE. JokinenR. PenttinenJ. TurtonenJ. Citalopram in the treatment of obsessive-compulsive disorder: An open pilot study.Acta Psychiatr. Scand.199796534334610.1111/j.1600‑0447.1997.tb09927.x9395151
    [Google Scholar]
  66. HedgesD.W. WoonF.L. An emerging role for escitalopram in the treatment of obsessive-compulsive disorder.Neuropsychiatr. Dis. Treat.20073445546119300574
    [Google Scholar]
  67. GellerD.A. HoogS.L. HeiligensteinJ.H. RicardiR.K. TamuraR. KluszynskiS. JacobsonJ.G. Fluoxetine treatment for obsessive-compulsive disorder in children and adolescents: A placebo-controlled clinical trial.J. Am. Acad. Child Adolesc. Psychiatry200140777377910.1097/00004583‑200107000‑0001111437015
    [Google Scholar]
  68. HollanderE. FriedbergJ. WassermanS. AllenA. BirnbaumM. KoranL.M. Venlafaxine in treatment-resistant obsessive-compulsive disorder.J. Clin. Psychiatry200364554655010.4088/JCP.v64n050812755657
    [Google Scholar]
  69. KamijimaK. MurasakiM. AsaiM. HiguchiT. NakajimaT. TagaC. MatsunagaH. Paroxetine in the treatment of obsessive-compulsive disorder: Randomized, double-blind, placebo-controlled study in Japanese patients.Psychiatry Clin. Neurosci.200458442743310.1111/j.1440‑1819.2004.01278.x15298657
    [Google Scholar]
  70. WilsonM. TrippJ. Clomipramine.Treasure Island (FL)StatPearls2022
    [Google Scholar]
  71. Characterize the modulatory effects of dopamine D2/D3 receptor agonist and antagonist drugs on compulsive behaviorsPatent NCT004715882014
  72. ShekharA. Safety study of the drug RG1068 in patients with obsessive compulsive disorder.Patent NCT002162942006
  73. SwedoS. Riluzole to treat child and adolescent obsessive-compulsive disorder with or without autism spectrum disorders.Patent NCT002513032014
  74. HollanderE. Topiramate augmentation in the treatment of obsessive-compulsive disorder.Patent NCT002117442018
  75. Van AmeringenM. PattersonB. Topiramate augmentation in a patient with obsessive-compulsive disorder.J. Psychiatry Neurosci.2015405E31E3210.1503/jpn.15010026290064
    [Google Scholar]
  76. MowlaA. KhajeianA.M. SahraianA. ChohedriA.H. KashkoliF. Topiramate augmentation in resistant OCD: A double-blind placebo-controlled clinical trial.CNS Spectr.2010151161361710.1017/S109285291200006524726048
    [Google Scholar]
  77. FeusnerJ.D. KerwinL. SaxenaS. BystritskyA. Differential efficacy of memantine for obsessive-compulsive disorder vs. generalized anxiety disorder: An open-label trial.Psychopharmacol. Bull.2009421819319204653
    [Google Scholar]
  78. RodriguezC.I. LapidusK.A.B. ZwerlingJ. LevinsonA. MahnkeA. SteinmanS.A. KalanthroffE. SimpsonH.B. Challenges in testing intranasal ketamine in obsessive-compulsive disorder.J. Clin. Psychiatry201778446646710.4088/JCP.16cr1123428448699
    [Google Scholar]
  79. SimpsonH.B. Novel medication strategies targeting brain mechanisms in pediatric OCD.Patent NCT016952912019
  80. MurphyT.K. BrennanE.M. JohncoC. Parker-AthillE.C. MiladinovicB. StorchE.A. LewinA.B. A double-blind randomized placebo-controlled pilot study of azithromycin in youth with acute-onset obsessive-compulsive disorder.J. Child Adolesc. Psychopharmacol.201727764065110.1089/cap.2016.019028358599
    [Google Scholar]
  81. AyatiZ. SarrisJ. ChangD. EmamiS.A. RahimiR. Herbal medicines and phytochemicals for obsessive-compulsive disorder.Phytother. Res.20203481889190110.1002/ptr.665632124509
    [Google Scholar]
  82. BaratzadehF. ElyasiS. MohammadpourA.H. SalariS. SahebkarA. The role of antioxidants in the management of obsessive-compulsive disorder.Oxid. Med. Cell. Longev.2021202111510.1155/2021/6661514
    [Google Scholar]
  83. EsalatmaneshS. BiusehM. NoorbalaA.A. MostafaviS.A. RezaeiF. MesgarpourB. MohammadinejadP. AkhondzadehS. Comparison of saffron and fluvoxamine in the treatment of mild to moderate obsessive-compulsive disorder: A double blind randomized clinical trial.Iran. J. Psychiatry201712315416229062366
    [Google Scholar]
  84. GirdharS. WanjariM.M. PrajapatiS.K. GirdharA. Evaluation of anti-compulsive effect of methanolic extract of Benincasa hispida Cogn. fruit in mice.Acta Pol. Pharm.201067441742120635538
    [Google Scholar]
  85. SzejkoN. FremerC. Müller-VahlK.R. Cannabis improves obsessive-compulsive disorder-Case report and review of the literature.Front. Psychiatry20201168110.3389/fpsyt.2020.0068132848902
    [Google Scholar]
  86. VladR.A. HancuG. CiurbaA. AntonoaeaP. RédaiE.M. TodoranN. SilasiO. MunteanD.L. Cannabidiol - therapeutic and legal aspects.Pharmazie2020751046346933305718
    [Google Scholar]
  87. TaylorL.H. KobakK.A. An open-label trial of St. John’s Wort (Hypericum perforatum) in obsessive-compulsive disorder.J. Clin. Psychiatry200061857557810.4088/JCP.v61n080610982200
    [Google Scholar]
  88. KalariyaM. PrajapatiR. ParmarS.K. ShethN. Effect of hydroalcoholic extract of leaves of Colocasia esculenta on marble-burying behavior in mice: Implications for obsessive-compulsive disorder.Pharm. Biol.20155381239124210.3109/13880209.2015.101492325885941
    [Google Scholar]
  89. Lamanna-RamaN. Romero-MiguelD. DescoM. Soto-MontenegroM.L. An update on the exploratory use of curcumin in neuropsychiatric disorders.Antioxidants202211235310.3390/antiox1102035335204235
    [Google Scholar]
  90. JahanbakhshS.P. ManteghiA.A. EmamiS.A. MahyariS. GholampourB. MohammadpourA.H. SahebkarA. Evaluation of the efficacy of Withania somnifera (Ashwagandha) root extract in patients with obsessive-compulsive disorder: A randomized double-blind placebo-controlled trial.Complement. Ther. Med.201627252910.1016/j.ctim.2016.03.01827515872
    [Google Scholar]
  91. SianiNeha Clinical efficacy of Ashwagandha in obsessive compulsive disorder.Curr. Med. Drug Res.201822Article ID: 188
    [Google Scholar]
  92. PaksereshtS. BoostaniH. SayyahM. Extract of valerian root (Valeriana officinalis L.) vs. placebo in treatment of obsessive-compulsive disorder: A randomized double-blind study.J. Complement. Integr. Med.2011811553384010.2202/1553‑3840.146522718671
    [Google Scholar]
  93. JijiK. MuralidharanP. Neuropharmacological Potential of Clitoria ternatea Linn. - A Review.Res. J. Pharma. Technol.2020131154975502
    [Google Scholar]
  94. ShendeV. SahaneR.A. LawarM.A. HamdulayN.A. LangoteH.A. Evaluation of anti-compulsive effect of ethanolic extract of Clitoria ternatea in mice.Asian J. Pharm. Clin. Res.201253120123
    [Google Scholar]
  95. PrajapatiR.P. KalariaM.V. KarkareV.P. ParmarS.K. ShethN.R. Effect of methanolic extract of Lagenaria siceraria (Molina) Standley fruits on marble-burying behavior in mice: Implications for obsessive-compulsive disorder.Pharmacognosy Res.201131626610.4103/0974‑8490.7911821731398
    [Google Scholar]
  96. ChanchalR. BalasubramaniamA. NavinR. NadeemS. Tabernaemontana divaricata leaves extract exacerbate burying behavior in mice.Avicenna J. Phytomed.20155428228726445709
    [Google Scholar]
  97. SayyahM. BoostaniH. PaksereshtS. MalayeriA. Comparison of Silybum marianum (L.) Gaertn. with fluoxetine in the treatment of obsessive-compulsive disorder.Prog. Neuropsychopharmacol. Biol. Psychiatry201034236236510.1016/j.pnpbp.2009.12.01620035818
    [Google Scholar]
  98. GrantJ.E. OdlaugB.L. Silymarin treatment of obsessive-compulsive spectrum disorders.J. Clin. Psychopharmacol.201535334034210.1097/JCP.000000000000032725874918
    [Google Scholar]
/content/journals/cis/10.2174/012210299X256025231010053232
Loading
/content/journals/cis/10.2174/012210299X256025231010053232
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test