Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Background

Tuberculosis (TB) is caused by and is one of the most contagious and fatal human pathogens which necessitates the development of modified existing drugs or derivatives with action against novel targets.

Aims and Objectives

In the present work, we have explored a few, 2-(5-(substituted)-4H-1,2,4-triazole-2-ylthio)-N-(substituted) phenyl acetamide (-) derivatives as anti-TB.

Materials and Methods

On the basis of SAR were synthesized and screened against H37Rv using MABA assay. Their ADME properties were also checked.

Results

ADME analysis showed results comparable with standard drug (rifampicin). Derivative turned out to be the most active amongst all the derivatives with MIC of 0.8μg/ml, comparable to standard drugs like rifampicin(0.8μg/ml) and streptomycin(0.8μg/ml).

Conclusion

All five compounds have shown excellent inhibitory activity (1.6µg/ml) against the H37Rv strain. Compound shows a promising activity (0.8µg/ml) as compared to standard drugs and also it has shown the highest docking score. Literature search has revealed the presence of 1,2,4-triazole derivatives linked to aromatic link and possessing amide linkage and the presence of Sulphur atom in the most active derivatives, which supports our designed compounds. Based on these findings, further derivatives would be synthesized and explored for their role in tuberculosis.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X239429231026060353
2023-01-01
2025-10-03
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E2210299X239429.html?itemId=/content/journals/cis/10.2174/012210299X239429231026060353&mimeType=html&fmt=ahah

References

  1. Available from: https://www.who.int/teams/global-tuberculosis- programme/tb-reports/global-tuberculosis-report-2022 (Accessed on: 10/11/2022).
  2. HardingE. WHO global progress report on tuberculosis elimination.Lancet Respir. Med.2020811910.1016/S2213‑2600(19)30418‑731706931
    [Google Scholar]
  3. JeremiahC. PetersenE. NantandaR. MungaiB.N. MiglioriG.B. AmanullahF. LunguP. NtoumiF. KumarasamyN. MaeurerM. ZumlaA. The WHO Global Tuberculosis 2021 Report-notso good news and turning the tide back to End TB.Int. J. Infect. Dis.2022
    [Google Scholar]
  4. RodriguesL. CravoP. ViveirosM. Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: A new strategy to revisit mycobacterial targets and repurpose old drugs.Expert Rev. Anti Infect. Ther.202018874175710.1080/14787210.2020.176084532434397
    [Google Scholar]
  5. TaghipourA. AzimiT. JavanmardE. PormohammadA. OlfatifarM. RostamiA. TabarsiP. SohrabiM.R. MirjalaliH. HaghighiA. Immunocompromised patients with pulmonary tuberculosis; a susceptible group to intestinal parasites.Gastroenterol. Hepatol. Bed Bench201811Suppl. 1S134S13930774820
    [Google Scholar]
  6. SeungK.J. KeshavjeeS. RichM.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis.Cold Spring Harb. Perspect. Med.201559a01786310.1101/cshperspect.a01786325918181
    [Google Scholar]
  7. SarkarD 1,2,4-triazole, 1,3,4-oxadiazole, and 1,3,4-thiadiazole derivatives and their antimycobacterial activity WIPO PCT.WO 2016/108249 A12016
  8. SarkarS. SwamiS. SoniS.K. HolienJ.K. KhanA. KorwarA.M. LikhiteA.P. JoshiR.A. JoshiR.R. SarkarD. Detection of a target protein (GroEl2) in Mycobacterium tuberculosis using a derivative of 1,2,4-triazolethiols.Mol. Divers.20222652535254810.1007/s11030‑021‑10351‑y34822095
    [Google Scholar]
  9. KarczmarzykZ. Swatko-OssorM. WysockiW. DrozdM. GinalskaG. Pachuta-StecA. PituchaM. New application of 1,2,4-Triazole derivatives as antitubercular agents. Structure, in vitro screening and docking studies.Molecules20202524603310.3390/molecules2524603333352814
    [Google Scholar]
  10. GaneshN. SA.K. SinghM. ChandrashekarV.M. PujarG.V. Antitubercular potential of novel isoxazole encompassed 1, 2, 4- Triazoles: Design, synthesis, molecular docking study and evaluation of antitubercular activity.Antiinfect. Agents202119214716110.2174/2211352518999200711163714
    [Google Scholar]
  11. SeelamN. ShrivastavaS.P. SP. GuptaS. Synthesis and in vitro study of some fused 1,2,4-triazole derivatives as antimycobacterial agents.J. Saudi Chem. Soc.201620441141810.1016/j.jscs.2012.11.011
    [Google Scholar]
  12. VenugopalaK.N. KandeelM. PillayM. DebP.K. AbdallahH.H. MahomoodallyM.F. ChopraD. Anti-Tubercular properties of 4-Amino-5-(4-Fluoro-3- Phenoxyphenyl)-4H-1,2,4-Triazole-3-Thiol and its schiff bases: Computational input and molecular dynamics.Antibiotics20209955910.3390/antibiotics909055932878018
    [Google Scholar]
  13. ZabiullaS. Al-OstootF.; S, A. Al-GhorbaniM. KhanumS. Recent investigation on heterocycles with one nitrogen [piperidine, pyridine and quinoline], two nitrogen [1,3,4-thiadiazole and pyrazole] and threenitrogen [1,2,4-triazole]: A review.J. Iran. Chem. Soc.2021132
    [Google Scholar]
  14. MandewaleM.C. ThoratB. NividY. JadhavR. NagarsekarA. YamgarR. Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn(II) complexes.J. Saudi Chem. Soc.201822221822810.1016/j.jscs.2016.04.003
    [Google Scholar]
  15. KarabanovichG. DušekJ. SavkováK. PavlišO. PávkováI. KorábečnýJ. KučeraT. Kočová VlčkováH. HuszárS. KonyarikováZ. KonečnáK. Jand’ourekO. StolaříkováJ. KordulákováJ. VávrováK. PávekP. KlimešováV. HrabálekA. MikušováK. RohJ. Development of 3,5-Dinitrophenyl-Containing 1,2,4-Triazoles and their Trifluoromethyl analogues as highly efficient antitubercular agents inhibiting Decaprenylphosphoryl-β- d -ribofuranose 2′-Oxidase.J. Med. Chem.201962178115813910.1021/acs.jmedchem.9b0091231393122
    [Google Scholar]
  16. SomagondS.M. KambleR.R. BayannavarP.K. ShaikhS.K.J. JoshiS.D. KumbarV.M. NesaragiA.R. KariduraganavarM.Y. Click chemistry based regioselective one‐pot synthesis of coumarin‐3‐yl‐methyl‐1,2,3‐triazolyl‐1,2,4‐triazol‐3(4 H )‐ones as newer potent antitubercular agents.Arch. Pharm.201935210190001310.1002/ardp.20190001331397503
    [Google Scholar]
  17. AmadoP.S.M. WoodleyC. CristianoM.L.S. O’NeillP.M. Recent advances of DprE1 inhibitors against Mycobacterium tuberculosis : Computational analysis of physicochemical and ADMET properties.ACS Omega2022745406594068110.1021/acsomega.2c0530736406587
    [Google Scholar]
  18. Ganesh KumarT.N.V. Gautham ShenoyG. KarS.S. ShenoyV. BairyI. Design, synthesis and evaluation of antitubercular activity of novel 1,2,4-Triazoles against MDR strain of mycobacterium tuberculosis.Pharm. Chem. J.2018511090791710.1007/s11094‑018‑1714‑8
    [Google Scholar]
  19. SonawaneA.D. RodeN.D. NawaleL. JoshiR.R. JoshiR.A. LikhiteA.P. SarkarD. Synthesis and biological evaluation of 1,2,4‐triazole‐3‐thione and 1,3,4‐oxadiazole‐2‐thione as antimycobacterial agents.Chem. Biol. Drug Des.201790220020910.1111/cbdd.1293928083914
    [Google Scholar]
  20. YanM. XuL. WangY. WanJ. LiuT. LiuW. WanY. ZhangB. WangR. LiQ. Opportunities and challenges of using five‐membered ring compounds as promising antitubercular agents.Drug Dev. Res.202081440241810.1002/ddr.2163831904877
    [Google Scholar]
  21. VoraD. UpadhyayN. TilekarK. JainV. RamaaC.S. Development of 1,2,4-Triazole-5-Thione derivatives as potential inhibitors of Enoyl Acyl Carrier Protein Reductase (InhA) in Tuberculosis.Iran. J. Pharm. Res.20191841742175832184843
    [Google Scholar]
  22. ZhangS. XuZ. GaoC. RenQ.C. ChangL. LvZ.S. FengL.S. Triazole derivatives and their anti-tubercular activity.Eur. J. Med. Chem.201713850151310.1016/j.ejmech.2017.06.05128692915
    [Google Scholar]
  23. HosangadiB.D. DaveR.H. An efficient general method for esterification of aromatic carboxylic acids.Tetrahedron Lett.199637356375637810.1016/0040‑4039(96)01351‑2
    [Google Scholar]
  24. ChenZ. XuW. LiuK. YangS. FanH. BhaduryP.S. HuangD-Y. ZhangY. Synthesis and antiviral activity of 5‑(4‑chlorophenyl)-1,3,4-thiadiazole sulfonamides.Molecules201015129046905610.3390/molecules1512904621150824
    [Google Scholar]
  25. KumarP. NarasimhanB. YogeeswariP. SriramD. Synthesis and antitubercular activities of substituted benzoic acid N′-(substituted benzylidene/furan-2-ylmethylene)-N-(pyridine-3-carbonyl)-hydrazides.Eur. J. Med. Chem.201045126085608910.1016/j.ejmech.2010.08.03020828886
    [Google Scholar]
  26. KosteckaM. Synthesis of a new group of aliphatic hydrazide derivatives and the correlations between their molecular structure and biological activity.Molecules20121735603573
    [Google Scholar]
  27. MaliR. SomaniR. MpT. MaliK. PpN. PyS. Synthesis of some Antifungal and Anti-tubercular 1, 2, 4-Triazole Analogues.Int. J. Chemtech Res.20091168173
    [Google Scholar]
  28. ParikhK. JoshiD. Synthesis and evaluation of 2-(5-(aryl)-1,3,4-oxadiazol-2-ylthio)-N-(3-(trifluoromethyl)phenyl)acetamides and N-(4-chloro-3-fluorophenyl)-2-(5-(aryl)-1,3,4-oxadiazol-2-ylthio)acetamides as antimicrobial agents.J. Chem. Sci.2014126382783510.1007/s12039‑014‑0625‑9
    [Google Scholar]
  29. NafeesaK. Aziz-ur-Rehman AbbasiM. ZahraS. RasoolS. ShahS.A. Synthesis, characterization and pharmacological evaluation of different 1,3,4-oxadiazole and acetamide derivatives of ethyl nipecotate.Bull. Fac. Pharm. Cairo Univ.201755
    [Google Scholar]
  30. SiddiquiS.Z. AbbasiM.A. RehmanA. AshrafM. MirzaB. IsmailH. Synthesis of 2-[(5-benzyl-1,3,4-oxadiazole-2yl)sulfanyl]-N-(arylated/arenylated) acetamides as antibacterial and acetyl cholinesterase inhibitors.Pak. J. Pharm. Sci.20173051743175129084697
    [Google Scholar]
  31. Available from:https://molsoft.com/mprop/
  32. SrivastavaR. Theoretical studies on the molecular properties, toxicity, and biological efficacy of 21 new chemical entities.ACS Omega2021638248912490110.1021/acsomega.1c0373634604670
    [Google Scholar]
  33. LourençoM.C.S. SouzaM.V.N. PinheiroA.C. FerreiraM.L. GonçalvesR.S.B. NogueiraT.C.M. PeraltaM.A. NogueiraC. PeraltaM. Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues.ARKIVOC200720071518119110.3998/ark.5550190.0008.f18
    [Google Scholar]
/content/journals/cis/10.2174/012210299X239429231026060353
Loading
/content/journals/cis/10.2174/012210299X239429231026060353
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ADME; Drugs; MABA; Mycobacterium tuberculosis H37Rv; Tuberculosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test