Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

The 5,000 to 8,000 monogenic diseases are inherited disorders leading to mutations in a single gene. These diseases usually appear in childhood and sometimes lead to morbidity or premature death. Although treatments for such diseases exist, gene therapy is considered an effective and targeted method and has been used in clinics for monogenic diseases since 1989. Monogenic diseases are good candidates for novel therapeutic technologies like gene editing approaches to repair gene mutations. Clustered regularly interspaced short palindromic repeats (CRISPR)-based systems, the pioneer and effective gene editing tool, are utilized for and treatment of monogenic diseases. The current review provides an overview of recent therapeutic applications of CRISPR-based gene editing in monogenic diseases in and models. Furthermore, this review consolidates strategies aimed at providing new treatment options with gene therapy, thereby serving as a valuable reference for advancing the treatment landscape for patients with monogenic disorders.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232345516241119070150
2025-01-07
2025-12-28
Loading full text...

Full text loading...

References

  1. ShamsF. PourjabbarB. HashemiN. Current progress in engineered and nano-engineered mesenchymal stem cells for cancer: From mechanisms to therapy.Biomed. Pharmacother.202316711550510.1016/j.biopha.2023.115505 37716113
    [Google Scholar]
  2. ImW. MoonJ. KimM. Applications of CRISPR/Cas9 for gene editing in hereditary movement disorders.J. Mov. Disord.20169313614310.14802/jmd.16029 27667185
    [Google Scholar]
  3. GajT. GersbachC.A. BarbasC.F.III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering.Trends Biotechnol.201331739740510.1016/j.tibtech.2013.04.004 23664777
    [Google Scholar]
  4. SongG. JiaM. ChenK. CRISPR/Cas9: A powerful tool for crop genome editing.Crop J.201642758210.1016/j.cj.2015.12.002
    [Google Scholar]
  5. CongL. RanF.A. CoxD. Multiplex genome engineering using CRISPR/Cas systems.Science2013339612181982310.1126/science.1231143 23287718
    [Google Scholar]
  6. MaliP. YangL. EsveltK.M. RNA-guided human genome engineering via Cas9.Science2013339612182382610.1126/science.1232033 23287722
    [Google Scholar]
  7. ShamsF. MoravvejH. HosseinzadehS. KazemiB. RajabibazlM. RahimpourA. Evaluation of in vitro fibroblast migration by electrospun triple-layered PU-CA/gelatin.PRGF/PU-CA scaffold using an AAVS1 targeted EGFP reporter cell line.Bioimpacts202112321923110.34172/bi.2021.43 35677672
    [Google Scholar]
  8. LiH. 2019Design and specificity of long ssDNA donors for CRISPR-based knock-in.bioRxiv17890510.1101/178905
    [Google Scholar]
  9. ChiruvellaK.K. LiangZ. WilsonT.E. Repair of double-strand breaks by end joining.Cold Spring Harb. Perspect. Biol.201355a01275710.1101/cshperspect.a012757 23637284
    [Google Scholar]
  10. DasguptaI. FlotteT.R. KeelerA.M. CRISPR/Cas-dependent and nuclease-free in vivo therapeutic gene editing.Hum. Gene Ther.2021325-627529310.1089/hum.2021.013 33750221
    [Google Scholar]
  11. BikardD. JiangW. SamaiP. HochschildA. ZhangF. MarraffiniL.A. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system.Nucleic Acids Res.201341157429743710.1093/nar/gkt520 23761437
    [Google Scholar]
  12. KomorA.C. KimY.B. PackerM.S. ZurisJ.A. LiuD.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.Nature2016533760342042410.1038/nature17946 27096365
    [Google Scholar]
  13. QiL.S. LarsonM.H. GilbertL.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.Cell201315251173118310.1016/j.cell.2013.02.022 23452860
    [Google Scholar]
  14. XuY. LiZ. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy.Comput. Struct. Biotechnol. J.2020182401241510.1016/j.csbj.2020.08.031 33005303
    [Google Scholar]
  15. AliZ. MahasA. MahfouzM. CRISPR/Cas13 as a tool for RNA interference.Trends Plant Sci.201823537437810.1016/j.tplants.2018.03.003 29605099
    [Google Scholar]
  16. GaudelliN.M. KomorA.C. ReesH.A. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage.Nature2017551768146447110.1038/nature24644 29160308
    [Google Scholar]
  17. AnzaloneA.V. RandolphP.B. DavisJ.R. Search-and-replace genome editing without double-strand breaks or donor DNA.Nature2019576778514915710.1038/s41586‑019‑1711‑4 31634902
    [Google Scholar]
  18. FujiiW. OnumaA. SugiuraK. NaitoK. Efficient generation of genome-modified mice via offset-nicking by CRISPR/Cas system.Biochem. Biophys. Res. Commun.2014445479179410.1016/j.bbrc.2014.01.141 24491566
    [Google Scholar]
  19. PavanE. OrmazabalM. PeruzzoP. VaenaE. RozenfeldP. DardisA. CRISPR/Cas9 editing for gaucher disease modelling.Int. J. Mol. Sci.2020219326810.3390/ijms21093268 32380730
    [Google Scholar]
  20. TheinS.L. The molecular basis of β-thalassemia.Cold Spring Harb. Perspect. Med.201335a01170010.1101/cshperspect.a011700 23637309
    [Google Scholar]
  21. YinH. SongC.Q. SureshS. Partial DNA-guided Cas9 enables genome editing with reduced off-target activity.Nat. Chem. Biol.201814331131610.1038/nchembio.2559 29377001
    [Google Scholar]
  22. LiH.L. FujimotoN. SasakawaN. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9.Stem Cell Reports20154114315410.1016/j.stemcr.2014.10.013 25434822
    [Google Scholar]
  23. LonghurstH. FijenL. LindsayK. In vivo crispr/cas9 editing of klkb1 in patients with hereditary angioedema: a first-in-human study.Ann. Allergy Asthma Immunol.20221295Suppl.S10S1110.1016/j.anai.2022.08.536
    [Google Scholar]
  24. LyuC. ShenJ. WangR. Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system.Stem Cell Res. Ther.2018919210.1186/s13287‑018‑0839‑8 29625575
    [Google Scholar]
  25. SürünD. SchwäbleJ. TomasovicA. High efficiency gene correction in hematopoietic cells by donor-template-free CRISPR/Cas9 genome editing.Mol. Ther. Nucleic Acids2018101810.1016/j.omtn.2017.11.001 29499925
    [Google Scholar]
  26. ParkS.H. BaoG. CRISPR/Cas9 gene editing for curing sickle cell disease.Transfus. Apheresis Sci.202160110306010.1016/j.transci.2021.103060 33455878
    [Google Scholar]
  27. ChangC.W. LaiY.S. WestinE. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting.Cell Rep.201512101668167710.1016/j.celrep.2015.08.013 26321643
    [Google Scholar]
  28. LiY. GlassZ. HuangM. ChenZ.Y. XuQ. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications.Biomaterials2020234119711-110.1016/j.biomaterials.2019.119711 31945616
    [Google Scholar]
  29. HowdenS.E. MaufortJ.P. DuffinB.M. ElefantyA.G. StanleyE.G. ThomsonJ.A. Simultaneous reprogramming and gene correction of patient fibroblasts.Stem Cell Reports2015561109111810.1016/j.stemcr.2015.10.009 26584543
    [Google Scholar]
  30. BoothC. GasparH.B. ThrasherA.J. Treating immunodeficiency through HSC gene therapy.Trends Mol. Med.201622431732710.1016/j.molmed.2016.02.002 26993219
    [Google Scholar]
  31. RaiR. RomitoM. RiversE. Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott - Aldrich Syndrome.Nat. Commun.2020111403410.1038/s41467‑020‑17626‑2 32788576
    [Google Scholar]
  32. IyerS. SureshS. GuoD. Precise therapeutic gene correction by a simple nuclease-induced double-stranded break.Nature2019568775356156510.1038/s41586‑019‑1076‑8 30944467
    [Google Scholar]
  33. ZhaoH. LiY. HeL. In vivo AAV-CRISPR/Cas9–mediated gene editing ameliorates atherosclerosis in familial hypercholesterolemia.Circulation20201411677910.1161/CIRCULATIONAHA.119.042476 31779484
    [Google Scholar]
  34. KimY.K. YuJ.H. MinS.H. ParkS.W. Generation of a GLA knock-out human-induced pluripotent stem cell line, KSBCi002-A-1, using CRISPR/Cas9.Stem Cell Res. (Amst.)20204210167610.1016/j.scr.2019.101676 31841972
    [Google Scholar]
  35. PereiraE.M. LabilloyA. EshbachM.L. Characterization and phosphoproteomic analysis of a human immortalized podocyte model of Fabry disease generated using CRISPR/Cas9 technology.Am. J. Physiol. Renal Physiol.20163115F1015F102410.1152/ajprenal.00283.2016 27681560
    [Google Scholar]
  36. BenatiD. MiselliF. CocchiarellaF. CRISPR/Cas9-mediated in situ correction of LAMB3 gene in keratinocytes derived from a junctional epidermolysis bullosa patient.Mol. Ther.201826112592260310.1016/j.ymthe.2018.07.024 30122422
    [Google Scholar]
  37. LiY. SongY.H. LiuB. YuX.Y. The potential application and challenge of powerful CRISPR/Cas9 system in cardiovascular research.Int. J. Cardiol.201722719119310.1016/j.ijcard.2016.11.177 27847153
    [Google Scholar]
  38. FangB. RenX. WangY. Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs.Dis. Model. Mech.20181110dmm03663210.1242/dmm.036632 30305304
    [Google Scholar]
  39. GuoX. GaoM. WangY. LDL receptor gene-ablated hamsters: A rodent model of familial hypercholesterolemia with dominant inheritance and diet-induced coronary atherosclerosis.EBioMedicine20182721422410.1016/j.ebiom.2017.12.013 29289533
    [Google Scholar]
  40. SimS.W. ParkT.S. KimS.J. Aberrant proliferation and differentiation of glycogen storage disease type Ib mesenchymal stem cells.FEBS Lett.2018592216217110.1002/1873‑3468.12939 29238966
    [Google Scholar]
  41. ArnaoutovaI. ZhangL. ChenH.D. MansfieldB.C. ChouJ.Y. Correction of metabolic abnormalities in a mouse model of glycogen storage disease type Ia by CRISPR/Cas9-based gene editing.Mol. Ther.20212941602161010.1016/j.ymthe.2020.12.027 33359667
    [Google Scholar]
  42. HuangJ.Y. KanS.H. SandfeldE.K. CRISPR-Cas9 generated Pompe knock-in murine model exhibits early-onset hypertrophic cardiomyopathy and skeletal muscle weakness.Sci. Rep.20201011032110.1038/s41598‑020‑65259‑8 32587263
    [Google Scholar]
  43. OuL. PrzybillaM.J. TăbăranA.F. A novel gene editing system to treat both Tay–Sachs and Sandhoff diseases.Gene Ther.202027522623610.1038/s41434‑019‑0120‑5 31896760
    [Google Scholar]
  44. ShenS. SanchezM.E. BlomenkampK. Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice.Hum. Gene Ther.201829886187310.1089/hum.2017.227 29641323
    [Google Scholar]
  45. BjursellM. PorrittM.J. EricsonE. Therapeutic genome editing with CRISPR/Cas9 in a humanized mouse model ameliorates α1-antitrypsin deficiency phenotype.EBioMedicine20182910411110.1016/j.ebiom.2018.02.015 29500128
    [Google Scholar]
  46. GinnS.L. AmayaA.K. LiaoS.H.Y. Efficient in vivo editing of OTC-deficient patient-derived primary human hepatocytes.JHEP Reports20202110006510.1016/j.jhepr.2019.100065 32039406
    [Google Scholar]
  47. YangY. WangL. BellP. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice.Nat. Biotechnol.201634333433810.1038/nbt.3469 26829317
    [Google Scholar]
  48. ZhangQ.S. TiyaboonchaiA. NygaardS. Induced liver regeneration enhances CRISPR/Cas9-mediated gene repair in tyrosinemia type 1.Hum. Gene Ther.2021325-629430110.1089/hum.2020.042 32729326
    [Google Scholar]
  49. EstèveJ. BlouinJ.M. LalanneM. Targeted gene therapy in human-induced pluripotent stem cells from a patient with primary hyperoxaluria type 1 using CRISPR/Cas9 technology.Biochem. Biophys. Res. Commun.2019517467768310.1016/j.bbrc.2019.07.109 31402115
    [Google Scholar]
  50. LelieveldL.T. MirzaianM. KuoC.L. Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish.J. Lipid Res.201960111851186710.1194/jlr.RA119000154 31562193
    [Google Scholar]
  51. GentnerB. Ex-vivo gene therapy for Hurler disease: initial results from a phase I/II clinical study.In: Molecular Therap.Cell Press2019
    [Google Scholar]
  52. MuenzerJ. PradaC.E. BurtonB. CHAMPIONS: A phase 1/2 clinical trial with dose escalation of SB-913 ZFN-mediated in vivo human genome editing for treatment of MPS II (Hunter syndrome).Mol. Genet. Metab.20191262S10410.1016/j.ymgme.2018.12.263
    [Google Scholar]
  53. TsengW.C. LoebH.E. PeiW. Modeling Niemann-Pick disease type C1 in zebrafish: a robust platform for in vivo screening of candidate therapeutic compounds.Dis. Model. Mech.2018119dmm03416510.1242/dmm.034165 30135069
    [Google Scholar]
  54. RebiaiR. RueE. ZalduaS. CRISPR-Cas9 knock-in of T513M and G41S mutations in the murine β–galactosyl-ceramidase gene re-capitulates early-onset and adult-onset forms of Krabbe disease.Front. Mol. Neurosci.20221589631410.3389/fnmol.2022.896314 35620447
    [Google Scholar]
  55. PrzybillaM.J. OuL. TăbăranA.F. Comprehensive behavioral and biochemical outcomes of novel murine models of GM1-gangliosidosis and Morquio syndrome type B.Mol. Genet. Metab.2019126213915010.1016/j.ymgme.2018.11.002 30528226
    [Google Scholar]
  56. ZhangH. ShiJ. HachetM.A. CRISPR/Cas9-mediated gene editing in human iPSC-derived macrophage reveals lysosomal acid lipase function in human macrophages—Brief report.Arterioscler. Thromb. Vasc. Biol.201737112156216010.1161/ATVBAHA.117.310023 28882870
    [Google Scholar]
  57. TsaiY.T. WuW.H. LeeT.T. Clustered regularly interspaced short palindromic repeats-based genome surgery for the treatment of autosomal dominant retinitis pigmentosa.Ophthalmology201812591421143010.1016/j.ophtha.2018.04.001 29759820
    [Google Scholar]
  58. LinQ. LvJ.N. WuK.C. ZhangC.J. LiuQ. JinZ.B. Generation of nonhuman primate model of cone dysfunction through in situ AAV-mediated CNGB3 ablation.Mol. Ther. Methods Clin. Dev.20201886987910.1016/j.omtm.2020.08.007 32953936
    [Google Scholar]
  59. JoD.H. SongD.W. ChoC.S. CRISPR-Cas9–mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis.Sci. Adv.2019510eaax121010.1126/sciadv.aax1210 31692906
    [Google Scholar]
  60. ChouS.J. YangP. BanQ. Dual supramolecular nanoparticle vectors enable CRISPR/Cas9‐mediated knockin of retinoschisin 1 gene—A potential nonviral therapeutic solution for X‐linked juvenile retinoschisis.Adv. Sci. (Weinh.)2020710190343210.1002/advs.201903432 32440478
    [Google Scholar]
  61. Fuster-GarcíaC. García-GarcíaG. González-RomeroE. USH2A gene editing using the CRISPR system.Mol. Ther. Nucleic Acids2017852954110.1016/j.omtn.2017.08.003 28918053
    [Google Scholar]
  62. Sanjurjo SorianoC. CRISPR/Cas9-mediated correction of the most recurrent USH2A mutation in patient iPSC.Invest. Ophthalmol. Vis. Sci.201960949433
    [Google Scholar]
  63. TrapaniI. Somatic or germline ABCA4 editing to generate a pig model of Stargardt disease type 1.Invest. Ophthalmol. Vis. Sci.201960942300
    [Google Scholar]
  64. MaldonadoR. JalilS. KeskinenT. CRISPR correction of the Finnish ornithine delta-aminotransferase mutation restores metabolic homeostasis in iPSC from patients with gyrate atrophy.Mol. Genet. Metab. Rep.20223110086310.1016/j.ymgmr.2022.100863 35782600
    [Google Scholar]
  65. BonafontJ. MencíaA. Chacón-SolanoE. Correction of recessive dystrophic epidermolysis bullosa by homology-directed repair-mediated genome editing.Mol. Ther.20212962008201810.1016/j.ymthe.2021.02.019 33609734
    [Google Scholar]
  66. GillmoreJ.D. GaneE. TaubelJ. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis.N. Engl. J. Med.2021385649350210.1056/NEJMoa2107454 34215024
    [Google Scholar]
  67. ZhouZ.P. YangL.L. CaoH. In vitro validation of a CRISPR-mediated CFTR correction strategy for preclinical translation in pigs.Hum. Gene Ther.20193091101111610.1089/hum.2019.074 31099266
    [Google Scholar]
  68. WuJ. TangY. ZhangC.L. Targeting N-terminal huntingtin with a dual-sgRNA strategy by CRISPR/Cas9.BioMed Res. Int.2019201911010.1155/2019/1039623 31828084
    [Google Scholar]
  69. AzevedoA. KovalenkoM. AndrewM. Identification of genetic modifiers of somatic CAG instability in Huntington’s Disease by in vivo CRISPR – Cas9 genome editing.Porto Biomed. J.20172520921010.1016/j.pbj.2017.07.083 32258693
    [Google Scholar]
  70. ShinJ.W. KimK.H. ChaoM.J. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9.Hum. Mol. Genet.20162520ddw28610.1093/hmg/ddw286 28172889
    [Google Scholar]
  71. EkmanF.K. OjalaD.S. AdilM.M. LopezP.A. SchafferD.V. GajT. CRISPR-cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model.Mol. Ther. Nucleic Acids20191782983910.1016/j.omtn.2019.07.009 31465962
    [Google Scholar]
  72. DabrowskaM. JuzwaW. KrzyzosiakW.J. OlejniczakM. Precise excision of the CAG tract from the Huntingtin gene by Cas9 nickases.Front. Neurosci.2018127510.3389/fnins.2018.00075 29535594
    [Google Scholar]
  73. MerienneN. VacheyG. de LongprezL. The self-inactivating KamiCas9 system for the editing of CNS disease genes.Cell Rep.201720122980299110.1016/j.celrep.2017.08.075 28930690
    [Google Scholar]
  74. AliG. TariqM.A. ShahidK. AhmadF.J. AkramJ. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment.Gene Ther.2021281-261510.1038/s41434‑020‑0153‑9 32355226
    [Google Scholar]
  75. AjamiM. AtashiA. KavianiS. KianiJ. SoleimaniM. Generation of an in vitro model of β‐thalassemia using the CRISPR/Cas9 genome editing system.J. Cell. Biochem.202012121420143010.1002/jcb.29377 31596028
    [Google Scholar]
  76. SongB. FanY. HeW. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.Stem Cells Dev.20152491053106510.1089/scd.2014.0347 25517294
    [Google Scholar]
  77. GabrH. El GhamrawyM.K. AlmaeenA.H. AbdelhafizA.S. HassanA.O.S. El SissyM.H. CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation.Stem Cell Res. Ther.202011139010.1186/s13287‑020‑01876‑4 32912325
    [Google Scholar]
  78. MettanandaS. Genetic and epigenetic therapies for β-thalassaemia by altering the expression of α-globin gene.Frontiers in Genome Editing2021375227810.3389/fgeed.2021.752278 34713267
    [Google Scholar]
  79. DemirciS. UchidaN. TisdaleJ.F. Gene therapy for sickle cell disease: An update.Cytotherapy201820789991010.1016/j.jcyt.2018.04.003 29859773
    [Google Scholar]
  80. ParkS.H. LeeC.M. DeverD.P. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease.Nucleic Acids Res.201947157955797210.1093/nar/gkz475 31147717
    [Google Scholar]
  81. AnurogoD. Yuli Prasetyo BudiN. Thi NgoM.H. HuangY.H. PawitanJ.A. Cell and gene therapy for anemia: Hematopoietic stem cells and gene editing.Int. J. Mol. Sci.20212212627510.3390/ijms22126275 34200975
    [Google Scholar]
  82. Skvarova KramarzovaK. OsbornM. WebberB. CRISPR/Cas9-mediated correction of the FANCD1 gene in primary patient cells.Int. J. Mol. Sci.2017186126910.3390/ijms18061269 28613254
    [Google Scholar]
  83. OsbornM.J. GabrielR. WebberB.R. Fanconi anemia gene editing by the CRISPR/Cas9 system.Hum. Gene Ther.201526211412610.1089/hum.2014.111 25545896
    [Google Scholar]
  84. BerntorpE. ShapiroA.D. Modern haemophilia care.Lancet201237998241447145610.1016/S0140‑6736(11)61139‑2 22456059
    [Google Scholar]
  85. MorishigeS. MizunoS. OzawaH. CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs.Int. J. Hematol.2020111222523310.1007/s12185‑019‑02765‑0 31664646
    [Google Scholar]
  86. ParkC.Y. SungJ.J. ChoS.R. KimJ. KimD.W. Universal correction of blood coagulation factor VIII in patient-derived induced pluripotent stem cells using CRISPR/Cas9.Stem Cell Reports20191261242124910.1016/j.stemcr.2019.04.016 31105049
    [Google Scholar]
  87. FlynnR. GrundmannA. RenzP. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells.Exp. Hematol.20154310838848.e310.1016/j.exphem.2015.06.002 26101162
    [Google Scholar]
  88. KlattD. ChengE. HoffmannD. Differential transgene silencing of myeloid-specific promoters in the AAVS1 safe harbor locus of induced pluripotent stem cell-derived myeloid cells.Hum. Gene Ther.2020313-419921010.1089/hum.2019.194 31773990
    [Google Scholar]
  89. De RavinS.S. LiL. WuX. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease.Sci. Transl. Med.20179372eaah348010.1126/scitranslmed.aah3480 28077679
    [Google Scholar]
  90. KlattD. ChengE. PhilippF. Targeted repair of p47-CGD in iPSCs by CRISPR/Cas9: Functional correction without cleavage in the highly homologous pseudogenes.Stem Cell Reports201913459059810.1016/j.stemcr.2019.08.008 31543470
    [Google Scholar]
  91. SweeneyC.L. MerlingR.K. De RavinS.S. ChoiU. MalechH.L. Gene editing in chronic granulomatous disease.Methods Mol. Biol.2019198262366510.1007/978‑1‑4939‑9424‑3_36 31172498
    [Google Scholar]
  92. SweeneyC.L. ZouJ. ChoiU. Targeted repair of CYBB in X-CGD iPSCs requires retention of intronic sequences for expression and functional correction.Mol. Ther.201725232133010.1016/j.ymthe.2016.11.012 28153086
    [Google Scholar]
  93. WronaD. PastukhovO. PritchardR.S. CRISPR-directed therapeutic correction at the NCF1 locus is challenged by frequent incidence of chromosomal deletions.Mol. Ther. Methods Clin. Dev.20201793694310.1016/j.omtm.2020.04.015 32420407
    [Google Scholar]
  94. Gutierrez-GuerreroA. Sanchez-HernandezS. GalvaniG. Comparison of zinc finger nucleases versus CRISPR-specific nucleases for genome editing of the Wiskott-aldrich syndrome locus.Hum. Gene Ther.201829336638010.1089/hum.2017.047 28922955
    [Google Scholar]
  95. FijenL.M. PetersenR.S. LeviM. LakemanP. HennemanL. CohnD.M. Patient perspectives on reproductive options for hereditary angioedema: A cross-sectional survey study.J. Allergy Clin. Immunol. Pract.202210924832486.e110.1016/j.jaip.2022.05.030 35690368
    [Google Scholar]
  96. NicolaS. RollaG. BrussinoL. Breakthroughs in hereditary angioedema management: a systematic review of approved drugs and those under research.Drugs Context2019811110.7573/dic.212605 31645881
    [Google Scholar]
  97. BetschelS.D. BanerjiA. BusseP.J. CohnD.M. MagerlM. Hereditary angioedema: A review of the current and evolving treatment landscape.J. Allergy Clin. Immunol. Pract.20231182315232510.1016/j.jaip.2023.04.017 37116793
    [Google Scholar]
  98. AsleshT. MaruyamaR. YokotaT. Skipping multiple exons to treat DMD—Promises and challenges.Biomedicines201861110.3390/biomedicines6010001 29301272
    [Google Scholar]
  99. LattanziA. DuguezS. MoianiA. Correction of the exon 2 duplication in DMD myoblasts by a single CRISPR/Cas9 system.Mol. Ther. Nucleic Acids20177111910.1016/j.omtn.2017.02.004 28624187
    [Google Scholar]
  100. KyrychenkoV. KyrychenkoS. TiburcyM. Functional correction of dystrophin actin binding domain mutations by genome editing.JCI Insight2017218e9591810.1172/jci.insight.95918 28931764
    [Google Scholar]
  101. YuanJ. MaY. HuangT. Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase.Mol. Cell2018722380394.e710.1016/j.molcel.2018.09.002 30293782
    [Google Scholar]
  102. SenguptaK. MishraM.K. LoroE. SpencerM.J. PyleA.D. KhuranaT.S. Genome editing-mediated utrophin upregulation in duchenne muscular dystrophy stem cells.Mol. Ther. Nucleic Acids20202250050910.1016/j.omtn.2020.08.031 33230452
    [Google Scholar]
  103. CottaA. PaimJ.F. da-Cunha-JuniorA.L. Limb girdle muscular dystrophy type 2G with myopathic-neurogenic motor unit potentials and a novel muscle image pattern.BMC Clin. Pathol.20141414110.1186/1472‑6890‑14‑41 25298746
    [Google Scholar]
  104. NigroV. AurinoS. PilusoG. Limb girdle muscular dystrophies.Curr. Opin. Neurol.201124542943610.1097/WCO.0b013e32834aa38d 21825984
    [Google Scholar]
  105. BertzM. WilmannsM. RiefM. The titin-telethonin complex is a directed, superstable molecular bond in the muscle Z-disk.Proc. Natl. Acad. Sci. USA2009106321330713331010.1073/pnas.0902312106 19622741
    [Google Scholar]
  106. ShamsF. BayatH. MohammadianO. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems.Bioimpacts202212437139110.34172/bi.2022.23871 35975201
    [Google Scholar]
  107. DoH.S. ParkS.W. ImI. Enhanced thrombospondin-1 causes dysfunction of vascular endothelial cells derived from Fabry disease-induced pluripotent stem cells.EBioMedicine20205210263310.1016/j.ebiom.2020.102633 31981984
    [Google Scholar]
  108. BorgesJ.B. OliveiraV.F. FerreiraG.M. Genomics, epigenomics and pharmacogenomics of familial hypercholesterolemia (FHBGEP): A study protocol.Res. Social Adm. Pharm.20211771347135510.1016/j.sapharm.2020.10.007 33129683
    [Google Scholar]
  109. OkadaH. NakanishiC. YoshidaS. Function and immunogenicity of gene-corrected iPSC-derived hepatocyte-like cells in restoring low density lipoprotein uptake in homozygous familial hypercholesterolemia.Sci. Rep.201991469510.1038/s41598‑019‑41056‑w 30886174
    [Google Scholar]
  110. LuR. YuanT. WangY. Spontaneous severe hypercholesterolemia and atherosclerosis lesions in rabbits with deficiency of low-density lipoprotein receptor (LDLR) on exon 7.EBioMedicine201836293810.1016/j.ebiom.2018.09.020 30243490
    [Google Scholar]
  111. PalmerR.E. AmartinoH.M. NiizawaG. BlancoM. PomponioR.J. ChamolesN.A. Pompe disease (glycogen storage disease type II) in Argentineans: Clinical manifestations and identification of 9 novel mutations.Neuromuscul. Disord.2007171162210.1016/j.nmd.2006.09.004 17056254
    [Google Scholar]
  112. KishnaniP.S. HowellR.R. Pompe disease in infants and children.J. Pediatr.20041445Suppl.S35S4310.1016/j.jpeds.2004.01.053 15126982
    [Google Scholar]
  113. BibiF. UllahA. BourinarisT. Tay-sachs disease: Two novel rare HEXA mutations from Pakistan and Morocco.Klin. Padiatr.2021233522623010.1055/a‑1371‑1561 33831955
    [Google Scholar]
  114. SantosR. AmaralO. Advances in sphingolipidoses: CRISPR-Cas9 editing as an option for modelling and therapy.Int. J. Mol. Sci.20192023589710.3390/ijms20235897 31771289
    [Google Scholar]
  115. JanciauskieneS.M. BalsR. KoczullaR. VogelmeierC. KöhnleinT. WelteT. The discovery of α1-antitrypsin and its role in health and disease.Respir. Med.201110581129113910.1016/j.rmed.2011.02.002 21367592
    [Google Scholar]
  116. BorelF. SunH. ZiegerM. Editing out five Serpina1 paralogs to create a mouse model of genetic emphysema.Proc. Natl. Acad. Sci. USA2018115112788279310.1073/pnas.1713689115 29453277
    [Google Scholar]
  117. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)).Method. Methods200125440240810.1006/meth.2001.1262 11846609
    [Google Scholar]
  118. SchnellerJ.L. LeeC.M. BaoG. VendittiC.P. Genome editing for inborn errors of metabolism: advancing towards the clinic.BMC Med.20171514310.1186/s12916‑017‑0798‑4 28238287
    [Google Scholar]
  119. WangL. YangY. BretonC. A mutation-independent CRISPR-Cas9–mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency.Sci. Adv.202067eaax570110.1126/sciadv.aax5701 32095520
    [Google Scholar]
  120. MorrowG. TanguayR.M. Biochemical and clinical aspects of hereditary tyrosinemia Type 1.Adv. Exp. Med. Biol.201795992110.1007/978‑3‑319‑55780‑9_2 28755181
    [Google Scholar]
  121. ChenY. The metabolic and molecular bases of inherited disease.JAMA200128618232910.1001/jama.286.18.2329
    [Google Scholar]
  122. KonishiC.T. LongC. Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases.J Biomed Res202135214816210.7555/JBR.34.20200105 33402545
    [Google Scholar]
  123. ZabaletaN. BarberiaM. Martin-HiguerasC. CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I.Nat. Commun.201891545410.1038/s41467‑018‑07827‑1 30575740
    [Google Scholar]
  124. SalidoE. PeyA.L. RodriguezR. LorenzoV. Primary hyperoxalurias: Disorders of glyoxylate detoxification.Biochim. Biophys. Acta Mol. Basis Dis.2012182291453146410.1016/j.bbadis.2012.03.004 22446032
    [Google Scholar]
  125. ZhengR. FangX. ChenX. Knockdown of lactate dehydrogenase by adeno‐associated virus‐delivered CRISPR/Cas9 system alleviates primary hyperoxaluria type 1.Clin. Transl. Med.2020108e26110.1002/ctm2.261 33377632
    [Google Scholar]
  126. SavilleJ.T. McDermottB.K. ChinS.J. FletcherJ.M. FullerM. Expanding the clinical utility of glucosylsphingosine for Gaucher disease.J. Inherit. Metab. Dis.202043355856310.1002/jimd.12192 31707742
    [Google Scholar]
  127. GiuglianiR. Mucopolysacccharidoses: from understanding to treatment, a century of discoveries.Genet. Mol. Biol.2012354Suppl. 192493110.1590/S1415‑47572012000600006 23411665
    [Google Scholar]
  128. GiuglianiR. FederhenA. Muñoz RojasM.V. Mucopolysaccharidosis I, II, and VI: brief review and guidelines for treatment.Genet. Mol. Biol.201033458960410.1590/S1415‑47572010005000093 21637564
    [Google Scholar]
  129. HollakC.E.M. WijburgF.A. Treatment of lysosomal storage disorders: successes and challenges.J. Inherit. Metab. Dis.201437458759810.1007/s10545‑014‑9718‑3 24820227
    [Google Scholar]
  130. PatelP. SuzukiY. TanakaA. Impact of enzyme replacement therapy and hematopoietic stem cell therapy on growth in patients with Hunter syndrome.Mol. Genet. Metab. Rep.2014118419610.1016/j.ymgmr.2014.04.001 25061571
    [Google Scholar]
  131. SchuhR.S. de CarvalhoT.G. GiuglianiR. MatteU. BaldoG. TeixeiraH.F. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers.Eur. J. Pharm. Biopharm.201812215816610.1016/j.ejpb.2017.10.017 29122734
    [Google Scholar]
  132. SettembreC. FraldiA. MedinaD.L. BallabioA. Signals from the lysosome: a control centre for cellular clearance and energy metabolism.Nat. Rev. Mol. Cell Biol.201314528329610.1038/nrm3565 23609508
    [Google Scholar]
  133. MartinR. BeckM. EngC. Recognition and diagnosis of mucopolysaccharidosis II (Hunter syndrome).Pediatrics20081212e377e38610.1542/peds.2007‑1350 18245410
    [Google Scholar]
  134. D’AvanzoF. RigonL. ZanettiA. TomaninR. Mucopolysaccharidosis type II: One hundred years of research, diagnosis, and treatment.Int. J. Mol. Sci.2020214125810.3390/ijms21041258 32070051
    [Google Scholar]
  135. LaoharaweeK. Podetz-PedersenK.M. NguyenT.T. Prevention of Neurocognitive Deficiency in Mucopolysaccharidosis Type II Mice by Central Nervous System–Directed, AAV9-Mediated Iduronate Sulfatase Gene Transfer.Hum. Gene Ther.201728862663810.1089/hum.2016.184 28478695
    [Google Scholar]
  136. BellessoS. SalvalaioM. LualdiS. FGF signaling deregulation is associated with early developmental skeletal defects in animal models for mucopolysaccharidosis type II (MPSII).Hum. Mol. Genet.201827132262227510.1093/hmg/ddy131 29648648
    [Google Scholar]
  137. KempS. PujolA. WaterhamH.R. ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: Role in diagnosis and clinical correlations.Hum. Mutat.200118649951510.1002/humu.1227 11748843
    [Google Scholar]
  138. KempS. HuffnagelI.C. LinthorstG.E. WandersR.J. EngelenM. Adrenoleukodystrophy – neuroendocrine pathogenesis and redefinition of natural history.Nat. Rev. Endocrinol.2016121060661510.1038/nrendo.2016.90 27312864
    [Google Scholar]
  139. RaymondG.V. AubourgP. PakerA. Survival and functional outcomes in boys with cerebral adrenoleukodystrophy with and without hematopoietic stem cell transplantation.Biol. Blood Marrow Transplant.201925353854810.1016/j.bbmt.2018.09.036 30292747
    [Google Scholar]
  140. JungE.S. 2020Successful correction of ALD patient-derived iPSCs using CRISPR/Cas9.bioRxiv10.1101/2020.02.23.962118
    [Google Scholar]
  141. DuX. LukmantaraI. YangH. CRISPR/Cas9-mediated generation of Niemann–Pick C1 knockout cell line.Methods Mol. Biol.20171583738310.1007/978‑1‑4939‑6875‑6_7 28205168
    [Google Scholar]
  142. LatourY.L. YoonR. ThomasS.E. Human GLB1 knockout cerebral organoids: A model system for testing AAV9-mediated GLB1 gene therapy for reducing GM1 ganglioside storage in GM1 gangliosidosis.Mol. Genet. Metab. Rep.20192110051310.1016/j.ymgmr.2019.100513 31534909
    [Google Scholar]
  143. PrzybillaM.J. Models and gene therapy for gm1-gangliosidosis and morquio syndrome Type B.Thesis, University Digital Conservancy,2018
    [Google Scholar]
  144. PavaniG. LaurentM. FabianoA. Ex vivo editing of human hematopoietic stem cells for erythroid expression of therapeutic proteins.Nat. Commun.2020111377810.1038/s41467‑020‑17552‑3 32728076
    [Google Scholar]
  145. HartongD.T. BersonE.L. DryjaT.P. Retinitis pigmentosa.Lancet200636895491795180910.1016/S0140‑6736(06)69740‑7 17113430
    [Google Scholar]
  146. GorbatyukM.S. GorbatyukO.S. LaVailM.M. LinJ.H. HauswirthW.W. LewinA.S. Functional rescue of P23H rhodopsin photoreceptors by gene delivery.Adv. Exp. Med. Biol.201272319119710.1007/978‑1‑4614‑0631‑0_26 22183333
    [Google Scholar]
  147. LewinA.S. RossmillerB. MaoH. Gene augmentation for adRP mutations in RHO.Cold Spring Harb. Perspect. Med.201449a01740010.1101/cshperspect.a017400 25037104
    [Google Scholar]
  148. Millington-WardS. ChaddertonN. O’ReillyM. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa.Mol. Ther.201119464264910.1038/mt.2010.293 21224835
    [Google Scholar]
  149. GorbatyukM. JustilienV. LiuJ. HauswirthW.W. LewinA.S. Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme.Exp. Eye Res.2007841445210.1016/j.exer.2006.08.014 17083931
    [Google Scholar]
  150. GorbatyukM.S. PangJ.J. ThomasJ.Jr HauswirthW.W. LewinA.S. Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach.Mol. Vis.200511648656 16145542
    [Google Scholar]
  151. MaoH. GorbatyukM.S. RossmillerB. HauswirthW.W. LewinA.S. Long-term rescue of retinal structure and function by rhodopsin RNA replacement with a single adeno-associated viral vector in P23H RHO transgenic mice.Hum. Gene Ther.201223435636610.1089/hum.2011.213 22289036
    [Google Scholar]
  152. MayerA.K. CauwenberghC. RotherC. CNGB3 mutation spectrum including copy number variations in 552 achromatopsia patients.Hum. Mutat.201738111579159110.1002/humu.2331128795510
    [Google Scholar]
  153. HassallM.M. BarnardA.R. MacLarenR.E. Gene therapy for color blindness.Yale J. Biol. Med.2017904543551 29259520
    [Google Scholar]
  154. AhmadiS. RabieeN. FatahiY. Controlled gene delivery systems: Nanomaterials and chemical approaches.J. Biomed. Nanotechnol.202016555358210.1166/jbn.2020.2927 32919478
    [Google Scholar]
  155. VarnumM.D. Generation of a zebrafish model of achromatopsia using CRISPR/Cas9 genome editing.Invest. Ophthalmol. Vis. Sci.20165712811
    [Google Scholar]
  156. den HollanderA.I. RoepmanR. KoenekoopR.K. CremersF.P.M. Leber congenital amaurosis: Genes, proteins and disease mechanisms.Prog. Retin. Eye Res.200827439141910.1016/j.preteyeres.2008.05.003 18632300
    [Google Scholar]
  157. ZhongH. ChenY. LiY. ChenR. MardonG. CRISPR-engineered mosaicism rapidly reveals that loss of Kcnj13 function in mice mimics human disease phenotypes.Sci. Rep.201551836610.1038/srep08366 25666713
    [Google Scholar]
  158. SchackerM. SeimetzD. From fiction to science: clinical potentials and regulatory considerations of gene editing.Clin. Transl. Med.201981e2710.1186/s40169‑019‑0244‑7 31637541
    [Google Scholar]
  159. SauerC.G. GehrigA. Warneke-WittstockR. Positional cloning of the gene associated with X-linked juvenile retinoschisis.Nat. Genet.199717216417010.1038/ng1097‑164 9326935
    [Google Scholar]
  160. TantriA. VrabecT.R. Cu-UnjiengA. FrostA. AnnesleyW.H.Jr DonosoL.A. X-linked retinoschisis: A clinical and molecular genetic review.Surv. Ophthalmol.200449221423010.1016/j.survophthal.2003.12.00714998693
    [Google Scholar]
  161. LiX. MaX. TaoY. Clinical features of X linked juvenile retinoschisis in Chinese families associated with novel mutations in the RS1 gene.Mol. Vis.200713804812 17615541
    [Google Scholar]
  162. WuW.W.H. MoldayR.S. Defective discoidin domain structure, subunit assembly, and endoplasmic reticulum processing of retinoschisin are primary mechanisms responsible for X-linked retinoschisis.J. Biol. Chem.200327830281392814610.1074/jbc.M30246420012746437
    [Google Scholar]
  163. RodriguesG.A. ShalaevE. KaramiT.K. CunninghamJ. SlaterN.K.H. RiversH.M. Pharmaceutical development of AAV-based gene therapy products for the eye.Pharm. Res.20193622910.1007/s11095‑018‑2554‑7 30591984
    [Google Scholar]
  164. YangT.C. ChangC.Y. YarmishynA.A. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina.Acta Biomater.202010148449410.1016/j.actbio.2019.10.037 31672582
    [Google Scholar]
  165. FrenchL.S. MelloughC.B. ChenF.K. CarvalhoL.S. A review of gene, drug and cell-based therapies for usher syndrome.Front. Cell. Neurosci.202014183310.3389/fncel.2020.00183 32733204
    [Google Scholar]
  166. TomsM. PagarkarW. MoosajeeM. Usher syndrome: clinical features, molecular genetics and advancing therapeutics.Ther. Adv. Ophthalmol.202012251584142095219410.1177/2515841420952194 32995707
    [Google Scholar]
  167. OverlackN. GoldmannT. WolfrumU. Nagel-WolfrumK. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.Invest. Ophthalmol. Vis. Sci.20125374140414610.1167/iovs.12‑9812 22661463
    [Google Scholar]
  168. ZouJ. LuoL. ShenZ. Whirlin replacement restores the formation of the USH2 protein complex in whirlin knockout photoreceptors.Invest. Ophthalmol. Vis. Sci.20115252343235110.1167/iovs.10‑6141 21212183
    [Google Scholar]
  169. SlijkermanR.W.N. VachéC. DonaM. Antisense oligonucleotide-based splice correction for USH2A-associated retinal degeneration caused by a frequent deep-intronic mutation.Mol. Ther. Nucleic Acids2016510e38110.1038/mtna.2016.89 27802265
    [Google Scholar]
  170. ZallocchiM. BinleyK. LadY. EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat.PLoS One201494e9427210.1371/journal.pone.0094272 24705452
    [Google Scholar]
  171. SunD. SunW. GaoS.Q. Formulation and efficacy of ECO/pRHO-ABCA4-SV40 nanoparticles for nonviral gene therapy of Stargardt disease in a mouse model.J. Control. Release202133032934010.1016/j.jconrel.2020.12.01033358976
    [Google Scholar]
  172. SimellO. TakkiK. Raised plasma-ornithine and gyrate atrophy of the choroid and retina.Lancet197330178111031103310.1016/S0140‑6736(73)90667‑3 4122112
    [Google Scholar]
  173. StreckerH.J. HammarU.B. VolpeP. Methionine toxicity and ornithine delta-aminotransferase in Chang’s liver cells.J. Biol. Chem.1970245133328333410.1016/S0021‑9258(18)62999‑0 5459637
    [Google Scholar]
  174. MontioliR. Molecular and cellular basis of ornithine δ-aminotransferase deficiency caused by the V332M mutation associated with gyrate atrophy of the choroid and retina.Biochimica et Biophysica Acta (BBA)201818643629363810.1016/j.bbadis.2018.08.032
    [Google Scholar]
  175. ShamsF. RahimpourA. VahidnezhadH. The utility of dermal fibroblasts in treatment of skin disorders: A paradigm of recessive dystrophic epidermolysis bullosa.Dermatol. Ther.2021344e1502810.1111/dth.15028 34145697
    [Google Scholar]
  176. WoodleyD.T. AthaT. HuangY. Normal and gene-corrected dystrophic epidermolysis bullosa fibroblasts alone can produce type VII collagen at the basement membrane zone.J. Invest. Dermatol.200312151021102810.1046/j.1523‑1747.2003.12571.x 14708601
    [Google Scholar]
  177. FineJ.D. Inherited epidermolysis bullosa.Orphanet J. Rare Dis.2010511210.1186/1750‑1172‑5‑12 20507631
    [Google Scholar]
  178. JackówJ. GuoZ. HansenC. CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells.Proc. Natl. Acad. Sci. USA201911652268462685210.1073/pnas.1907081116 31818947
    [Google Scholar]
  179. ShamsF. MoravvejH. HosseinzadehS. Overexpression of VEGF in dermal fibroblast cells accelerates the angiogenesis and wound healing function: in vitro and in vivo studies.Sci. Rep.20221211852910.1038/s41598‑022‑23304‑8 36323953
    [Google Scholar]
  180. GrahamC. HartS. CRISPR/Cas9 gene editing therapies for cystic fibrosis.Expert Opin. Biol. Ther.202121676778010.1080/14712598.2021.1869208 33412935
    [Google Scholar]
  181. FirthA.L. MenonT. ParkerG.S. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs.Cell Rep.20151291385139010.1016/j.celrep.2015.07.062 26299960
    [Google Scholar]
  182. UrnovF. An ode to gene edits that prevent deafness.Nature2018553768716216310.1038/d41586‑017‑08645‑z
    [Google Scholar]
  183. GaoX. TaoY. LamasV. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents.Nature2018553768721722110.1038/nature25164 29258297
    [Google Scholar]
  184. KirschnerJ. CathomenT. Gene therapy for monogenic inherited disorders: Opportunities and challenges.Dtsch. Arztebl. Int.202011751-5287888510.3238/arztebl.2020.0878 33637169
    [Google Scholar]
  185. UddinF. RudinC.M. SenT. CRISPR gene therapy: Applications, limitations, and implications for the future.Front. Oncol.202010138710.3389/fonc.2020.01387 32850447
    [Google Scholar]
  186. FrangoulH. AltshulerD. CappelliniM.D. CRISPR-cas9 gene editing for sickle cell disease and β-thalassemia.N. Engl. J. Med.2021384325226010.1056/NEJMoa2031054 33283989
    [Google Scholar]
  187. ModaraiS.R. KandaS. BlohK. OpdenakerL.M. KmiecE.B. Precise and error-prone CRISPR-directed gene editing activity in human CD34+ cells varies widely among patient samples.Gene Ther.2021281-210511310.1038/s41434‑020‑00192‑z 32873924
    [Google Scholar]
  188. BrussonM. MiccioA. Genome editing approaches to β-hemoglobinopathies.Prog. Mol. Biol. Transl. Sci.202118215318310.1016/bs.pmbts.2021.01.025 34175041
    [Google Scholar]
  189. HarveyJ.P. SladenP.E. Yu-Wai-ManP. CheethamM.E. Induced pluripotent stem cells for inherited optic neuropathies—disease modeling and therapeutic development.J. Neuroophthalmol.2022421354410.1097/WNO.0000000000001375 34629400
    [Google Scholar]
  190. ZhangX. ZhangD. ThompsonJ.A. Gene correction of the CLN3 c.175G>A variant in patient‐derived induced pluripotent stem cells prevents pathological changes in retinal organoids.Mol. Genet. Genomic Med.202193e160110.1002/mgg3.1601 33497524
    [Google Scholar]
  191. AnlikerB. ChildsL. RauJ. Regulatory considerations for clinical trial applications with CRISPR-based medicinal products.CRISPR J.20225336437610.1089/crispr.2021.0148 35452274
    [Google Scholar]
  192. GuoC. MaX. GaoF. GuoY. Off-target effects in CRISPR/Cas9 gene editing.Front. Bioeng. Biotechnol.202311114315710.3389/fbioe.2023.1143157 36970624
    [Google Scholar]
  193. ZhangG. LuoY. DaiX. DaiZ. Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities.Brief. Bioinform.2023246bbad33310.1093/bib/bbad333 37775147
    [Google Scholar]
  194. González CastroN.G. BjelicJ. MalhotraG. HuangC. AlsaffarS.H. Comparison of the feasibility, efficiency, and safety of genome editing technologies.Int. J. Mol. Sci.202122191035510.3390/ijms221910355 34638696
    [Google Scholar]
  195. ZhangL. ZurisJ.A. ViswanathanR. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines.Nat. Commun.2021121390810.1038/s41467‑021‑24017‑8 34162850
    [Google Scholar]
  196. ZarghamianP. KlermundJ. CathomenT. Clinical genome editing to treat sickle cell disease—A brief update.Front. Med. (Lausanne)20239106537710.3389/fmed.2022.1065377 36698803
    [Google Scholar]
  197. FuY. SanderJ.D. ReyonD. CascioV.M. JoungJ.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.Nat. Biotechnol.201432327928410.1038/nbt.2808 24463574
    [Google Scholar]
  198. LennoxK.A. BehlkeM.A. Chemical modifications in RNA interference and CRISPR/Cas genome editing reagents.Methods Mol. Biol.20202115235510.1007/978‑1‑0716‑0290‑4_2 32006393
    [Google Scholar]
  199. LuX. ZhangM. LiG. Applications and research advances in the delivery of CRISPR/Cas9 systems for the treatment of inherited diseases.Int. J. Mol. Sci.202324171320210.3390/ijms241713202 37686009
    [Google Scholar]
  200. AntoniouP. MiccioA. BrussonM. Base and prime editing technologies for blood disorders.Front. Genome Editing2021361840610.3389/fgeed.2021.618406 34713251
    [Google Scholar]
  201. LiuM. RehmanS. TangX. Methodologies for Improving HDR Efficiency.Front. Genet.2019969110.3389/fgene.2018.00691 30687381
    [Google Scholar]
  202. TabassumT. PietrograndeG. HealyM. WolvetangE.J. CRISPR-Cas9 direct fusions for improved genome editing via enhanced homologous recombination.Int. J. Mol. Sci.202324191470110.3390/ijms241914701 37834150
    [Google Scholar]
  203. KosickiM. TombergK. BradleyA. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements.Nat. Biotechnol.201836876577110.1038/nbt.4192 30010673
    [Google Scholar]
  204. ZhangS. ShenJ. LiD. ChengY. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing.Theranostics202111261464810.7150/thno.47007 33391496
    [Google Scholar]
  205. KhoshandamM. SoltaninejadH. MousazadehM. HamidiehA.A. HosseinkhaniS. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine.Genes Dis.202411126828210.1016/j.gendis.2023.02.027 37588217
    [Google Scholar]
  206. CromerM.K. VaidyanathanS. RyanD.E. Global transcriptional response to CRISPR/Cas9-AAV6-based genome editing in CD34+ hematopoietic stem and progenitor cells.Mol. Ther.201826102431244210.1016/j.ymthe.2018.06.002 30005866
    [Google Scholar]
  207. HuangY.Y. ZhangX.Y. ZhuP. JiL. Development of clustered regularly interspaced short palindromic repeats/CRISPR-associated technology for potential clinical applications.World J. Clin. Cases202210185934594510.12998/wjcc.v10.i18.5934 35949837
    [Google Scholar]
  208. SethiY. MahtaniA.U. KhehraN. Gene editing as the future of cardiac amyloidosis therapeutics.Curr. Probl. Cardiol.202348810174110.1016/j.cpcardiol.2023.101741 37059345
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232345516241119070150
Loading
/content/journals/cgt/10.2174/0115665232345516241119070150
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test