Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Background

Metabolic disorders are significant risk factors for liver cancer, particularly Hepatocellular Carcinoma (HCC). However, the molecular genetic basis of metabolic reprogramming in the liver remains largely uncertain.

Objective

This study aimed to investigate some novel prognostic biomarkers in HCC by using proteogenomic and transcriptomic analysis and explore the potential role of specific prognostic genes in HCC.

Methods

Here, we have presented a proteogenomic analysis of 10 pairs of HCC. Protein co-expression and pathway analysis were performed to investigate the biological characteristics of HCC. Protein and mRNA expression profiles of multi-cohorts were integrated to detect novel prognostic protein markers of HCC. The carcinogenic roles of candidate prognostic markers were further evaluated by MTS assay, colony formation, monolayer wound healing assay, and xenograft models.

Results

A total of 2086 proteins with significantly different expressions were detected in HCC. Pathways related to oncogenic signaling and insulin-related metabolism have been found to be dysregulated and differentially regulated in HCC. We have identified the novel prognostic biomarkers, KIF5B, involved in liver metabolic reprogramming. The biomarkers were identified using multivariable COX regression analysis from two independent proteomic datasets (Fudan Cohort and our recruited cohort) and the TCGA mRNA database. Both the protein and mRNA up-regulation of KIF5B have been found to be associated with a poor clinical outcome in HCC. Insulin activated the protein expression of KIF5B in HCC. Knocking out KIF5B expression by sgRNA decreased the protein expression of FASN and SCD1 and the intracellular triglyceride concentration. Silencing KIF5B suppressed HCC cell proliferation and colony formation , as well as HCC growth in xenograft models.

Conclusion

Our findings have suggested KIF5B protein to function as a novel prognostic biomarker in HCC. KIF5B expression has been found to activate the AKT/mTOR pathway and reprogram triglyceride metabolism, leading to HCC development. Targeting KIF5B may be an effective strategy in the clinical treatment of HCC.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232308821240826075513
2024-09-06
2025-09-02
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. KramerJ.R. NatarajanY. DaiJ. YuX. LiL. El-SeragH.B. KanwalF. Effect of diabetes medications and glycemic control on risk of hepatocellular cancer in patients with nonalcoholic fatty liver disease.Hepatology20227561420142810.1002/hep.3224434779535
    [Google Scholar]
  3. XiaB. PengJ. EnricoD.T. LuK. CheungE.C. KuoZ. HeQ. TangY. LiuA. FanD. ZhangC. HeY. PanY. YuanJ. Metabolic syndrome and its component traits present gender-specific association with liver cancer risk: A prospective cohort study.BMC Cancer2021211108410.1186/s12885‑021‑08760‑134620113
    [Google Scholar]
  4. LeeY.T. WangJ.J. LuuM. TsengH.R. RichN.E. LuS.C. NissenN.N. NoureddinM. SingalA.G. YangJ.D. State-level HCC Incidence and association with obesity and physical activity in the United States.Hepatology202174313841394
    [Google Scholar]
  5. LiuQ. LiJ. ZhangW. XiaoC. ZhangS. NianC. LiJ. SuD. ChenL. ZhaoQ. ShaoH. ZhaoH. ChenQ. LiY. GengJ. HongL. LinS. WuQ. DengX. KeR. DingJ. JohnsonR.L. LiuX. ChenL. ZhouD. Glycogen accumulation and phase separation drives liver tumor initiation.Cell20211842255595576.e1910.1016/j.cell.2021.10.00134678143
    [Google Scholar]
  6. KimG.W. ImamH. KhanM. MirS.A. KimS.J. YoonS.K. HurW. SiddiquiA. HBV-induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC.Hepatology202173253354710.1002/hep.3131332394474
    [Google Scholar]
  7. ZhuY. GuL. LinX. ZhouX. LuB. LiuC. LiY. ProchownikE.V. KarinM. WangF. LiY. P53 deficiency affects cholesterol esterification to exacerbate hepatocarcinogenesis.Hepatology20237751499151110.1002/hep.3251835398929
    [Google Scholar]
  8. MoonS.H. HuangC.H. HoulihanS.L. RegunathK. Freed-PastorW.A. MorrisJ.P.IV TschaharganehD.F. KastenhuberE.R. BarsottiA.M. Culp-HillR. XueW. HoY.J. BaslanT. LiX. MayleA. de StanchinaE. ZenderL. TongD.R. D’AlessandroA. LoweS.W. PrivesC. p53 represses the mevalonate pathway to mediate tumor suppression.Cell20191763564580.e1910.1016/j.cell.2018.11.01130580964
    [Google Scholar]
  9. LiuF. LiaoZ. QinL. ZhangZ. ZhangQ. HanS. ZengW. ZhangH. LiuY. SongJ. ChenW. ZhuH. LiangH. ChenX. ZhangB. ZhangZ. Targeting VPS72 inhibits ACTL6A/MYC axis activity in HCC progression.Hepatology20237851384140110.1097/HEP.000000000000026836631007
    [Google Scholar]
  10. WongA.M. DingX. WongA.M. XuM. ZhangL. LeungH.H.W. ChanA.W.H. SongQ.X. KwongJ. ChanL.K.Y. ManM. HeM. ChenJ. ZhangZ. YouW. LauC. YuA. WeiY. YuanY. LaiP.B.S. ZhaoJ. ManK. YuJ. KahnM. WongN. Unique molecular characteristics of NAFLD-associated liver cancer accentuate β-catenin/TNFRSF19-mediated immune evasion.J. Hepatol.202277241042310.1016/j.jhep.2022.03.01535351523
    [Google Scholar]
  11. FagesA. Duarte-SallesT. StepienM. FerrariP. FedirkoV. PontoizeauC. TrichopoulouA. AleksandrovaK. TjønnelandA. OlsenA. Clavel-ChapelonF. Boutron-RuaultM.C. SeveriG. KaaksR. KuhnT. FloegelA. BoeingH. LagiouP. BamiaC. TrichopoulosD. PalliD. PalaV. PanicoS. TuminoR. VineisP. Bueno-de-MesquitaH.B. PeetersP.H. WeiderpassE. AgudoA. Molina-MontesE. HuertaJ.M. ArdanazE. DorronsoroM. SjöbergK. OhlssonB. KhawK.T. WarehamN. TravisR.C. SchmidtJ.A. CrossA. GunterM. RiboliE. ScalbertA. RomieuI. Elena-HerrmannB. JenabM. Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort.BMC Med.201513124210.1186/s12916‑015‑0462‑926399231
    [Google Scholar]
  12. GaoQ. ZhuH. DongL. ShiW. ChenR. SongZ. HuangC. LiJ. DongX. ZhouY. LiuQ. MaL. WangX. ZhouJ. LiuY. BojaE. RoblesA.I. MaW. WangP. LiY. DingL. WenB. ZhangB. RodriguezH. GaoD. ZhouH. FanJ. Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma.Cell20191792561577.e2210.1016/j.cell.2019.08.05231585088
    [Google Scholar]
  13. LiuD. WongC.C. FuL. ChenH. ZhaoL. LiC. ZhouY. ZhangY. XuW. YangY. WuB. ChengG. LaiP.B.S. WongN. SungJ.J.Y. YuJ. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target.Sci. Transl. Med.201810437eaap984010.1126/scitranslmed.aap984029669855
    [Google Scholar]
  14. LiuD. WongC.C. ZhouY. LiC. ChenH. JiF. GoM.Y.Y. WangF. SuH. WeiH. CaiZ. WongN. WongV.W.S. YuJ. Squalene epoxidase induces nonalcoholic steatohepatitis via binding to carbonic anhydrase III and is a therapeutic target.Gastroenterology2021160724672482.e310.1053/j.gastro.2021.02.05133647280
    [Google Scholar]
  15. AllyA. BalasundaramM. CarlsenR. ChuahE. ClarkeA. DhallaN. HoltR.A. JonesS.J.M. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. CheungD. WongT. BrooksD. RobertsonA.G. BowlbyR. MungallK. SadeghiS. XiL. CovingtonK. ShinbrotE. WheelerD.A. GibbsR.A. DonehowerL.A. WangL. BowenJ. Gastier-FosterJ.M. GerkenM. HelselC. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. GabrielS.B. MeyersonM. CibulskisC. MurrayB.A. ShihJ. BeroukhimR. CherniackA.D. SchumacherS.E. SaksenaG. PedamalluC.S. ChinL. GetzG. NobleM. ZhangH. HeimanD. ChoJ. GehlenborgN. SaksenaG. VoetD. LinP. FrazerS. DefreitasT. MeierS. LawrenceM. KimJ. CreightonC.J. MuznyD. DoddapaneniH.V. HuJ. WangM. MortonD. KorchinaV. HanY. DinhH. LewisL. BellairM. LiuX. SantibanezJ. GlennR. LeeS. HaleW. ParkerJ.S. WilkersonM.D. HayesD.N. ReynoldsS.M. ShmulevichI. ZhangW. LiuY. IypeL. MakhloufH. TorbensonM.S. KakarS. YehM.M. JainD. KleinerD.E. JainD. DhanasekaranR. El-SeragH.B. YimS.Y. WeinsteinJ.N. MishraL. ZhangJ. AkbaniR. LingS. JuZ. SuX. HegdeA.M. MillsG.B. LuY. ChenJ. LeeJ-S. SohnB.H. ShimJ.J. TongP. AburataniH. YamamotoS. TatsunoK. LiW. XiaZ. StranskyN. SeiserE. InnocentiF. GaoJ. KundraR. ZhangH. HeinsZ. OchoaA. SanderC. LadanyiM. ShenR. AroraA. Sanchez-VegaF. SchultzN. KasaianK. RadenbaughA. BissigK-D. MooreD.D. TotokiY. NakamuraH. ShibataT. YauC. GraimK. StuartJ. HausslerD. SlagleB.L. OjesinaA.I. KatsonisP. KoireA. LichtargeO. HsuT-K. FergusonM.L. DemchokJ.A. FelauI. ShethM. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ. HutterC.M. SofiaH.J. VerhaakR.G.W. ZhengS. LangF. ChudamaniS. LiuJ. LollaL. WuY. NareshR. PihlT. SunC. WanY. BenzC. PerouA.H. ThorneL.B. BoiceL. HuangM. RathmellW.K. NoushmehrH. SaggioroF.P. TirapelliD.P.C. JuniorC.G.C. MenteE.D. SilvaO.C.Jr TrevisanF.A. KangK.J. AhnK.S. GiamaN.H. MoserC.D. GiordanoT.J. VincoM. WellingT.H. CrainD. CurleyE. GardnerJ. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. KelleyR. ParkJ-W. ChandanV.S. RobertsL.R. BatheO.F. HagedornC.H. AumanJ.T. O’BrienD.R. KocherJ-P.A. JonesC.D. MieczkowskiP.A. PerouC.M. SkellyT. TanD. VeluvoluU. BaluS. BodenheimerT. HoyleA.P. JefferysS.R. MengS. MoseL.E. ShiY. SimonsJ.V. SolowayM.G. RoachJ. HoadleyK.A. BaylinS.B. ShenH. HinoueT. BootwallaM.S. Van Den BergD.J. WeisenbergerD.J. LaiP.H. HolbrookA. BerriosM. LairdP.W. Comprehensive and integrative genomic characterization of hepatocellular carcinoma.Cell2017169713271341.e2310.1016/j.cell.2017.05.046
    [Google Scholar]
  16. TavassolyI. GoldfarbJ. IyengarR. Systems biology primer: The basic methods and approaches.Essays Biochem.201862448750010.1042/EBC2018000330287586
    [Google Scholar]
  17. LiuD. WangC. LiC. ZhangX. ZhangB. MiZ. AnX. TongY. Production and characterization of a humanized single-chain antibody against human integrin alphav beta3 protein.J. Biol. Chem.201128627245002450710.1074/jbc.M110.21184721606501
    [Google Scholar]
  18. LiuD. SiB. LiC. MiZ. AnX. QinC. LiuW. TongY. Prokaryotic expression and purification of HA1 and HA2 polypeptides for serological analysis of the 2009 pandemic H1N1 influenza virus.J. Virol. Methods20111721-2162110.1016/j.jviromet.2010.12.00721168444
    [Google Scholar]
  19. TomczakK. CzerwińskaP. WiznerowiczM. Review The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge.Contemp. Oncol. (Pozn.)20151A1A687710.5114/wo.2014.4713625691825
    [Google Scholar]
  20. ZingarielloM. SancilloL. MartelliF. CiaffoniF. MarraM. VarricchioL. RanaR.A. ZhaoC. CrispinoJ.D. MigliaccioA.R. The thrombopoietin/MPL axis is activated in the Gata1low mouse model of myelofibrosis and is associated with a defective RPS14 signature.Blood Cancer J.201776e57210.1038/bcj.2017.5128622305
    [Google Scholar]
  21. CastvenD. FischerM. BeckerD. HeinrichS. AndersenJ.B. StrandD. SprinzlM.F. StrandS. CzaudernaC. Heilmann-HeimbachS. RoesslerS. WeinmannA. WörnsM.A. ThorgeirssonS.S. GalleP.R. MatterM.S. LangH. MarquardtJ.U. Adverse genomic alterations and stemness features are induced by field cancerization in the microenvironment of hepatocellular carcinomas.Oncotarget2017830486884870010.18632/oncotarget.1623128415775
    [Google Scholar]
  22. FunkK. CzaudernaC. KlesseR. BeckerD. HajdukJ. OelgeklausA. ReichenbachF. Fimm-TodtF. LauterwasserJ. GalleP.R. MarquardtJ.U. EdlichF. BAX redistribution induces apoptosis resistance and selective stress sensitivity in human HCC.Cancers2020126143710.3390/cancers1206143732486514
    [Google Scholar]
  23. KanehisaM. GotoS. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  24. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  25. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  26. WuT. HuE. XuS. ChenM. GuoP. DaiZ. FengT. ZhouL. TangW. ZhanL. FuX. LiuS. BoX. YuG. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data.Innovation20212310014110.1016/j.xinn.2021.10014134557778
    [Google Scholar]
  27. HarringtonD.P. FlemingT.R. A class of rank test procedures for censored survival data.Biometrika198269355356610.1093/biomet/69.3.553
    [Google Scholar]
  28. BenjaminiY. HochbergY. Controlling the false discovery rate: A practical and powerful approach to multiple testing.J. R. Stat. Soc. Series B Stat. Methodol.199557128930010.1111/j.2517‑6161.1995.tb02031.x
    [Google Scholar]
  29. LuanY.J. XuY. CaiJ. DouY. YuW.J. WangK.T. LiuS.H. YangP.S. QuX. WeiF.C. Expression of Kif5b protein is significantly associated with the progression, recurrence and prognosis of oral squamous cell carcinoma.Eur. Rev. Med. Pharmacol. Sci.201822144542455030058692
    [Google Scholar]
  30. Costa e SilvaM. SucenaI. CirnesL. MachadoJ.C. CampainhaS. BarrosoA. KIF5B-MET fusion variant in non-small cell lung cancer.Pulmonology202228431531610.1016/j.pulmoe.2022.02.00135221262
    [Google Scholar]
  31. DasT.K. CaganR.L. KIF5B-RET oncoprotein signals through a multi-kinase signaling hub.Cell Rep.201720102368238310.1016/j.celrep.2017.08.03728877471
    [Google Scholar]
  32. Charles JacobH.K. SignorelliR. Charles RichardJ.L. KashuvT. LavaniaS. MiddletonA. GomezB.A. FerrantellaA. AmirianH. TaoJ. ErgonulA.B. BooneM.M. HadisuryaM. TaoW.A. IliukA. KashyapM.K. Garcia-BuitragoM. DawraR. SalujaA.K. Identification of novel early pancreatic cancer biomarkers KIF5B and SFRP2 from “first contact” interactions in the tumor microenvironment.J. Exp. Clin. Cancer Res.202241125810.1186/s13046‑022‑02425‑y36002889
    [Google Scholar]
  33. MattaM. HuybrechtsI. BiessyC. CasagrandeC. YammineS. FournierA. OlsenK.S. LukicM. GramI.T. ArdanazE. SánchezM.J. DossusL. FortnerR.T. SrourB. JannaschF. SchulzeM.B. AmianoP. AgudoA. Colorado-YoharS. QuirósJ.R. TuminoR. PanicoS. MasalaG. PalaV. SacerdoteC. TjønnelandA. OlsenA. DahmC.C. RosendahlA.H. BorgquistS. WennbergM. HeathA.K. AuneD. SchmidtJ. WeiderpassE. ChajesV. GunterM.J. MurphyN. Dietary intake of trans fatty acids and breast cancer risk in 9 European countries.BMC Med.20211918110.1186/s12916‑021‑01952‑333781249
    [Google Scholar]
  34. KoundourosN. PoulogiannisG. Reprogramming of fatty acid metabolism in cancer.Br. J. Cancer2020122142210.1038/s41416‑019‑0650‑z31819192
    [Google Scholar]
  35. MounierC. BouraouiL. RassartE. Lipogenesis in cancer progression (Review).Int. J. Oncol.201445248549210.3892/ijo.2014.244124827738
    [Google Scholar]
  36. DuD. LiuC. QinM. ZhangX. XiT. YuanS. HaoH. XiongJ. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma.Acta Pharm. Sin. B202212255858010.1016/j.apsb.2021.09.01935256934
    [Google Scholar]
  37. ChenH. WongC.C. LiuD. GoM.Y.Y. WuB. PengS. KuangM. WongN. YuJ. APLN promotes hepatocellular carcinoma through activating PI3K/Akt pathway and is a druggable target.Theranostics20199185246526010.7150/thno.3471331410213
    [Google Scholar]
  38. XuH. SunL. ZhengY. YuS. Ou-yangJ. HanH. DaiX. YuX. LiM. LanQ. GBP3 promotes glioma cell proliferation via SQSTM1/p62-ERK1/2 axis.Biochem. Biophys. Res. Commun.2018495144645310.1016/j.bbrc.2017.11.05029128363
    [Google Scholar]
  39. YuJ.S.L. CuiW. Proliferation, survival and metabolism: The role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination.Development2016143173050306010.1242/dev.13707527578176
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232308821240826075513
Loading
/content/journals/cgt/10.2174/0115665232308821240826075513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test