Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

“Huntington's disease” (HD) is an autosomal dominant hereditary neurodegenerative disease characterized by defects in efferent striatal neurons, cortical neurons, and the basal ganglia. The pathogenesis of HD is still unclear, and there is currently no curative therapy for this disorder. This review emphasizes the potential beneficial effects of various neurotrophic factors in HD. PubMed, Web of Science, Embase, and google scholar databases were used to search for all studies on the efficacy of neurotrophic factors in HD. Several gene therapy strategies have been employed to treat HD, including gene therapy with a variety of neuroprotective factors. Moreover, a wide variability of gene therapy approaches such as a neurotrophin, has shown promising results for both prevention and neuroprotection in HD, which may be due to their potential to prevent neuronal cell death or decrease neurodegeneration, thereby promoting the growth of innovative axons, dendrites, and synapses leading to improvement of HD. Neurotrophic factors may be suitable as neuroprotective therapy agents in HD. Therefore, substantial research on gene therapy should be conducted to provide better treatment options for HD in the future.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232348486241025084202
2025-01-01
2025-10-04
Loading full text...

Full text loading...

References

  1. MedinaA. MahjoubY. ShaverL. PringsheimT. Prevalence and incidence of Huntington’s disease: An updated systematic review and meta-analysis.Mov. Disord.202237122327233510.1002/mds.2922836161673
    [Google Scholar]
  2. StrongM. QuarrellO.W. Prevalence and incidence of Huntington’s Disease.Mov. Disord.20233881570157210.1002/mds.2953237565397
    [Google Scholar]
  3. AnilM. MasonS.L. BarkerR.A. The clinical features and progression of late-onset versus younger-onset in an adult cohort of huntington’s disease patients.J. Huntingtons Dis.20209327528210.3233/JHD‑20040432675419
    [Google Scholar]
  4. García-GonzálezX. CuboE. Simón-VicenteL. MariscalN. AlcarazR. AguadoL. Rivadeneyra-PosadasJ. Sanz-SolasA. Saiz-RodríguezM. Pharmacogenetics in the treatment of Huntington’s disease: Review and future perspectives.J. Pers. Med.202313338510.3390/jpm1303038536983567
    [Google Scholar]
  5. DashD. MestreT.A. Therapeutic update on Huntington’s disease: Symptomatic treatments and emerging disease-modifying therapies.Neurotherapeutics20201741645165910.1007/s13311‑020‑00891‑w32705582
    [Google Scholar]
  6. CiosiM. MaxwellA. CummingS.A. Hensman MossD.J. AlshammariA.M. FlowerM.D. DurrA. LeavittB.R. RoosR.A.C. HolmansP. JonesL. LangbehnD.R. KwakS. TabriziS.J. MoncktonD.G. A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes.EBioMedicine20194856858010.1016/j.ebiom.2019.09.02031607598
    [Google Scholar]
  7. SariY. Huntington’s disease: From mutant huntingtin protein to neurotrophic factor therapy.Int. J. Biomed. Sci.2011728910010.59566/IJBS.2011.708921841917
    [Google Scholar]
  8. ReinerA. DragatsisI. DietrichP. Genetics and neuropathology of Huntington’s disease.Int. Rev. Neurobiol.20119832537210.1016/B978‑0‑12‑381328‑2.00014‑621907094
    [Google Scholar]
  9. Sagor Kumar RoyX.L. Emerging concepts of pathogenesis and comprehensive therapeutic strategies for spinocerebellar ataxia type 3.Neurosci. Med.202112122243
    [Google Scholar]
  10. PaulsenJ.S. Early detection of Huntington’s disease.Future Neurol.2009518510410.2217/fnl.09.7824348095
    [Google Scholar]
  11. AlberchJ. Pérez-NavarroE. CanalsJ.M. Neurotrophic factors in Huntington’s disease.Prog. Brain Res.200414619722910.1016/S0079‑6123(03)46014‑714699966
    [Google Scholar]
  12. GauthierL.R. CharrinB.C. Borrell-PagèsM. DompierreJ.P. RangoneH. CordelièresF.P. De MeyJ. MacDonaldM.E. LeßmannV. HumbertS. SaudouF. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules.Cell2004118112713810.1016/j.cell.2004.06.01815242649
    [Google Scholar]
  13. HarjesP. WankerE.E. The hunt for huntingtin function: Interaction partners tell many different stories.Trends Biochem. Sci.200328842543310.1016/S0968‑0004(03)00168‑312932731
    [Google Scholar]
  14. ZuccatoC. CiammolaA. RigamontiD. LeavittB.R. GoffredoD. ContiL. MacDonaldM.E. FriedlanderR.M. SilaniV. HaydenM.R. TimmuskT. SipioneS. CattaneoE. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease.Science2001293552949349810.1126/science.105958111408619
    [Google Scholar]
  15. ZuccatoC. TartariM. CrottiA. GoffredoD. ValenzaM. ContiL. CataudellaT. LeavittB.R. HaydenM.R. TimmuskT. RigamontiD. CattaneoE. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes.Nat. Genet.2003351768310.1038/ng121912881722
    [Google Scholar]
  16. SouthwellA.L. PattersonP.H. Gene therapy in mouse models of huntington disease.Neuroscientist201117215316210.1177/107385841038623621489966
    [Google Scholar]
  17. RamaswamyS. McBrideJ.L. HerzogC.D. BrandonE. GasmiM. BartusR.T. KordowerJ.H. Neurturin gene therapy improves motor function and prevents death of striatal neurons in a 3-nitropropionic acid rat model of Huntington’s disease.Neurobiol. Dis.200726237538410.1016/j.nbd.2007.01.00317336076
    [Google Scholar]
  18. McBrideJ.L. KordowerJ.H. Neuroprotection for Parkinson’s disease using viral vector-mediated delivery of GDNF.Prog. Brain Res.200213842143210.1016/S0079‑6123(02)38091‑912432782
    [Google Scholar]
  19. EmerichD.F. LindnerM.D. WinnS.R. ChenE.Y. FrydelB.R. KordowerJ.H. Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington’s disease.J. Neurosci.199616165168518110.1523/JNEUROSCI.16‑16‑05168.19968756445
    [Google Scholar]
  20. Pérez-NavarroE. ArenasE. ReirizJ. CalvoN. AlberchJ. Glial cell line-derived neurotrophic factor protects striatal calbindin-immunoreactive neurons from excitotoxic damage.Neuroscience199675234535210.1016/0306‑4522(96)00336‑38931001
    [Google Scholar]
  21. ViewegJ. Basic principles of gene therapy.Urologe A199635537838910.1007/s0012000500398999628
    [Google Scholar]
  22. Van TendelooV.F.I. Van BroeckhovenC. BernemanZ.N. Gene therapy: Principles and applications to hematopoietic cells.Leukemia200115452354410.1038/sj.leu.240208511368355
    [Google Scholar]
  23. MammenB. RamakrishnanT. SudhakarU. Principles of gene therapy.Indian J. Dent. Res.200718419620010.4103/0970‑9290.35832
    [Google Scholar]
  24. EmerichD. ThanosC. Intracompartmental delivery of CNTF as therapy for Huntington’s disease and retinitis pigmentosa.Curr. Gene Ther.20066114715910.2174/15665230677551554716475952
    [Google Scholar]
  25. Bachoud-LéviA.C. DéglonN. NguyenJ.P. BlochJ. BourdetC. WinkelL. RémyP. GoddardM. LefaucheurJ.P. BrugièresP. BaudicS. CesaroP. PeschanskiM. AebischerP. Neuroprotective gene therapy for Huntington’s disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF.Hum. Gene Ther.200011121723172910.1089/1043034005011137710954906
    [Google Scholar]
  26. EmerichD.F. BruhnS. ChuY. KordowerJ.H. Cellular delivery of CNTF but not NT-4/5 prevents degeneration of striatal neurons in a rodent model of Huntington’s disease.Cell Transplant.19987221322510.1177/0963689798007002159588602
    [Google Scholar]
  27. Martínez-SerranoA. BjörklundA. Protection of the neostriatum against excitotoxic damage by neurotrophin-producing, genetically modified neural stem cells.J. Neurosci.199616154604461610.1523/JNEUROSCI.16‑15‑04604.19968764649
    [Google Scholar]
  28. EmerichD.F. CainC.K. GrecoC. SaydoffJ.A. HuZ.Y. LiuH. LindnerM.D. Cellular delivery of human CNTF prevents motor and cognitive dysfunction in a rodent model of Huntington’s disease.Cell Transplant.19976324926610.1177/0963689797006003089171158
    [Google Scholar]
  29. HofferB.J. HoffmanA. BowenkampK. HuettlP. HudsonJ. MartinD. LinL.F.H. GerhardtG.A. Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo.Neurosci. Lett.1994182110711110.1016/0304‑3940(94)90218‑67891873
    [Google Scholar]
  30. WatabeK. OhashiT. SakamotoT. KawazoeY. TakeshimaT. OyanagiK. InoueK. EtoY. KimS.U. Rescue of lesioned adult rat spinal motoneurons by adenoviral gene transfer of glial cell line-derived neurotrophic factor.J. Neurosci. Res.200060451151910797554
    [Google Scholar]
  31. KellsA.P. FongD.M. DragunowM. DuringM.J. YoungD. ConnorB. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease.Mol. Ther.200495682-68868810.1016/j.ymthe.2004.02.01615120329
    [Google Scholar]
  32. AlberchJ. Pérez-NavarroE. CanalsJ.M. Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington’s disease.Brain Res. Bull.200257681782210.1016/S0361‑9230(01)00775‑412031278
    [Google Scholar]
  33. PinedaJ.R. RubioN. AkerudP. UrbánN. BadimonL. ArenasE. AlberchJ. BlancoJ. CanalsJ.M. Neuroprotection by GDNF-secreting stem cells in a Huntington’s disease model: Optical neuroimage tracking of brain-grafted cells.Gene Ther.200714211812810.1038/sj.gt.330284716943855
    [Google Scholar]
  34. AltarC.A. CaiN. BlivenT. JuhaszM. ConnerJ.M. AchesonA.L. LindsayR.M. WiegandS.J. Anterograde transport of brain-derived neurotrophic factor and its role in the brain.Nature1997389665385686010.1038/398859349818
    [Google Scholar]
  35. LynchG. KramarE.A. RexC.S. JiaY. ChappasD. GallC.M. SimmonsD.A. Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease.J. Neurosci.200727164424443410.1523/JNEUROSCI.5113‑06.200717442827
    [Google Scholar]
  36. PinedaJ.R. CanalsJ.M. BoschM. AdellA. MengodG. ArtigasF. ErnforsP. AlberchJ. Brain-derived neurotrophic factor modulates dopaminergic deficits in a transgenic mouse model of Huntington’s disease.J. Neurochem.20059351057106810.1111/j.1471‑4159.2005.03047.x15934928
    [Google Scholar]
  37. SpeidellA. Bin AbidN. YanoH. Brain-derived neurotrophic factor dysregulation as an essential pathological feature in Huntington’s disease: Mechanisms and potential therapeutics.Biomedicines2023118227510.3390/biomedicines1108227537626771
    [Google Scholar]
  38. BraggR.M. CoffeyS.R. CantleJ.P. HuS. SinghS. LeggS.R.W. McHughC.A. ToorA. ZeitlinS.O. KwakS. HowlandD. VogtT.F. MongaS.P. CarrollJ.B. Huntingtin loss in hepatocytes is associated with altered metabolism, adhesion, and liver zonation.Life Sci. Alliance2023611e20230209810.26508/lsa.20230209837684045
    [Google Scholar]
  39. GiampàC. MontagnaE. DatoC. MeloneM.A.B. BernardiG. FuscoF.R. Correction: Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of huntington’s disease.PLoS One20161111e016610210.1371/journal.pone.016610227880782
    [Google Scholar]
  40. IbrahimA.M. ChauhanL. BhardwajA. SharmaA. FayazF. KumarB. AlhashmiM. AlHajriN. AlamM.S. PottooF.H. Brain-derived neurotropic factor in neurodegenerative disorders.Biomedicines2022105114310.3390/biomedicines1005114335625880
    [Google Scholar]
  41. AutryA.E. MonteggiaL.M. Brain-derived neurotrophic factor and neuropsychiatric disorders.Pharmacol. Rev.201264223825810.1124/pr.111.00510822407616
    [Google Scholar]
  42. GiampàC. MontagnaE. DatoC. MeloneM.A.B. BernardiG. FuscoF.R. Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease.PLoS One201385e6403710.1371/journal.pone.006403723700454
    [Google Scholar]
  43. PaldinoE. BalducciC. La VitolaP. ArtioliL. D’AngeloV. GiampàC. ArtusoV. ForloniG. FuscoF.R. Neuroprotective effects of doxycycline in the R6/2 mouse model of huntington’s disease.Mol. Neurobiol.20205741889190310.1007/s12035‑019‑01847‑831879858
    [Google Scholar]
  44. RamaswamyS. McBrideJ.L. HanI. Berry-KravisE.M. ZhouL. HerzogC.D. GasmiM. BartusR.T. KordowerJ.H. Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington’s disease.Neurobiol. Dis.2009341405010.1016/j.nbd.2008.12.00519150499
    [Google Scholar]
  45. GratacòsE. Pérez-NavarroE. TolosaE. ArenasE. AlberchJ. Neuroprotection of striatal neurons against kainate excitotoxicity by neurotrophins and GDNF family members.J. Neurochem.20017861287129610.1046/j.1471‑4159.2001.00538.x11579137
    [Google Scholar]
  46. RosenbladC. KirikD. DevauxB. MoffatB. PhillipsH.S. BjörklundA. Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson’s disease after administration into the striatum or the lateral ventricle.Eur. J. Neurosci.19991151554156610.1046/j.1460‑9568.1999.00566.x10215908
    [Google Scholar]
  47. LebherzC. AuricchioA. MaguireA.M. RiveraV.M. TangW. GrantR.L. ClacksonT. BennettJ. WilsonJ.M. Long-term inducible gene expression in the eye via adeno-associated virus gene transfer in nonhuman primates.Hum. Gene Ther.200516217818610.1089/hum.2005.16.17815761258
    [Google Scholar]
  48. Pérez-NavarroE. ÅkerudP. MarcoS. CanalsJ.M. TolosaE. ArenasE. AlberchJ. Neurturin protects striatal projection neurons but not interneurons in a rat model of Huntington’s disease.Neuroscience2000981899610.1016/S0306‑4522(00)00074‑910858615
    [Google Scholar]
  49. AlbinR.L. ReinerA. AndersonK.D. DureL.S. HandelinB. BalfourR. WhetsellW.O. PenneyJ.B. YoungA.B. Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease.Ann. Neurol.199231442543010.1002/ana.4103104121375014
    [Google Scholar]
  50. ReinerA. AlbinR.L. AndersonK.D. D’AmatoC.J. PenneyJ.B. YoungA.B. Differential loss of striatal projection neurons in Huntington disease.Proc. Natl. Acad. Sci. USA198885155733573710.1073/pnas.85.15.57332456581
    [Google Scholar]
  51. HaqueN.S.K. IsacsonO. Neurotrophic factors NGF and FGF-2 alter levels of huntingtin (IT15) in striatal neuronal cell cultures.Cell Transplant.20009562362710.1177/09636897000090050711144959
    [Google Scholar]
  52. WangL. GuS. GanJ. TianY. ZhangF. ZhaoH. LeiD. Neural stem cells overexpressing nerve growth factor improve functional recovery in rats following spinal cord injury via modulating microenvironment and enhancing endogenous neurogenesis.Front. Cell. Neurosci.20211577337510.3389/fncel.2021.77337534924958
    [Google Scholar]
  53. DeyN.D. BombardM.C. RolandB.P. DavidsonS. LuM. RossignolJ. SandstromM.I. SkeelR.L. LescaudronL. DunbarG.L. Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease.Behav. Brain Res.2010214219320010.1016/j.bbr.2010.05.02320493905
    [Google Scholar]
  54. LindholmP. VoutilainenM.H. LaurénJ. PeränenJ. LeppänenV.M. AndressooJ.O. LindahlM. JanhunenS. KalkkinenN. TimmuskT. TuominenR.K. SaarmaM. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo.Nature20074487149737710.1038/nature0595717611540
    [Google Scholar]
  55. ParkashV. GoldmanA. Comparison of GFL–GFRα complexes: Further evidence relating GFL bend angle to RET signalling.Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.200965655155810.1107/S174430910901772219478429
    [Google Scholar]
  56. VoutilainenM.H. De LorenzoF. StepanovaP. BäckS. YuL.Y. LindholmP. PörstiE. SaarmaM. MännistöP.T. TuominenR.K. Evidence for an additive neurorestorative effect of simultaneously administered CDNF and GDNF in hemiparkinsonian rats: Implications for different mechanism of action.eNeuro20174110.1523/ENEURO.0117‑16.201728303260
    [Google Scholar]
  57. NadellaR. VoutilainenM.H. SaarmaM. Gonzalez-BarriosJ.A. Leon-ChavezB.A. JiménezJ.M.D. JiménezS.H.D. EscobedoL. Martinez-FongD. Transient transfection of human CDNF gene reduces the 6-hydroxydopamine-induced neuroinflammation in the rat substantia nigra.J. Neuroinflammation201411120910.1186/s12974‑014‑0209‑025511018
    [Google Scholar]
  58. PakarinenE. LindholmP. CDNF and MANF in the brain dopamine system and their potential as treatment for Parkinson’s disease.Front. Psychiatry202314118869710.3389/fpsyt.2023.118869737555005
    [Google Scholar]
  59. StepanovaP. SrinivasanV. LindholmD. VoutilainenM.H. Cerebral dopamine neurotrophic factor (CDNF) protects against quinolinic acid-induced toxicity in in vitro and in vivo models of Huntington’s disease.Sci. Rep.20201011904510.1038/s41598‑020‑75439‑133154393
    [Google Scholar]
  60. TattersfieldA.S. CroonR.J. LiuY.W. KellsA.P. FaullR.L.M. ConnorB. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington’s disease.Neuroscience2004127231933210.1016/j.neuroscience.2004.04.06115262322
    [Google Scholar]
  61. StepanovaP. KumarD. CavoniusK. KorpikoskiJ. SirjalaJ. LindholmD. VoutilainenM.H. Beneficial behavioral effects of chronic cerebral dopamine neurotrophic factor (CDNF) infusion in the N171-82Q transgenic model of Huntington’s disease.Sci. Rep.2023131295310.1038/s41598‑023‑28798‑436807563
    [Google Scholar]
  62. MarubuchiS. OkudaT. TagawaK. EnokidoY. HoriuchiD. ShimokawaR. TamuraT. QiM.L. EishiY. WatabeK. ShibataM. NakagawaM. OkazawaH. Hepatoma-derived growth factor, a new trophic factor for motor neurons, is up-regulated in the spinal cord of PQBP-1 transgenic mice before onset of degeneration.J. Neurochem.2006991708310.1111/j.1471‑4159.2006.04021.x16987236
    [Google Scholar]
  63. ZhouZ. YamamotoY. SugaiF. YoshidaK. KishimaY. SumiH. NakamuraH. SakodaS. Hepatoma-derived growth factor is a neurotrophic factor harbored in the nucleus.J. Biol. Chem.200427926273202732610.1074/jbc.M30865020015140875
    [Google Scholar]
  64. HollanderA. D’OnofrioP.M. MaghariousM.M. LyskoM.D. KoeberleP.D. Quantitative retinal protein analysis after optic nerve transection reveals a neuroprotective role for hepatoma-derived growth factor on injured retinal ganglion cells.Invest. Ophthalmol. Vis. Sci.20125373973398910.1167/iovs.11‑835022531700
    [Google Scholar]
  65. BaiB. VanderwallD. LiY. WangX. PoudelS. WangH. DeyK.K. ChenP.C. YangK. PengJ. Proteomic landscape of Alzheimer’s Disease: Novel insights into pathogenesis and biomarker discovery.Mol. Neurodegener.20211615510.1186/s13024‑021‑00474‑z34384464
    [Google Scholar]
  66. RoyS.K. WangJ. XuY. Effects of exercise interventions in Alzheimer’s disease: A meta-analysis.Brain Behav.2023137e305110.1002/brb3.305137334441
    [Google Scholar]
  67. WangJ.J. RoyS.K. XuY.M. Spatiotemporal expression and coexpression patterns of SRPK1 in the human brain: A neurodevelopmental perspective.Brain Behav.141e3341202310.1002/brb3.334138376036
    [Google Scholar]
  68. VoelklK. Gutiérrez-ÁngelS. KeelingS. KoyuncuS. da Silva PadilhaM. FeigenbutzD. ArzbergerT. VilchezD. KleinR. DudanovaI. Neuroprotective effects of hepatoma-derived growth factor in models of Huntington’s disease.Life Sci. Alliance2023611e20230201810.26508/lsa.20230201837580082
    [Google Scholar]
  69. St-CyrS. SmithA.R. DavidsonB.L. Temporal phenotypic changes in Huntington’s disease models for preclinical studies.J. Huntingtons Dis.2022111355710.3233/JHD‑21051535213386
    [Google Scholar]
  70. SchmidtW.E. SiegelE.G. CreutzfeldtW. Glucagon-like peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets.Diabetologia198528970470710.1007/BF002919803905480
    [Google Scholar]
  71. YangJ.L. ChenW.Y. ChenS.D. The emerging role of GLP-1 receptors in DNA repair: Implications in neurological disorders.Int. J. Mol. Sci.2017189186110.3390/ijms1809186128846606
    [Google Scholar]
  72. AlvarezE. MartínezM.D. RonceroI. ChowenJ.A. García-CuarteroB. GispertJ.D. SanzC. VázquezP. MaldonadoA. De CáceresJ. DescoM. PozoM.A. BlázquezE. The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem.J. Neurochem.200592479880610.1111/j.1471‑4159.2004.02914.x15686481
    [Google Scholar]
  73. CorkS.C. RichardsJ.E. HoltM.K. GribbleF.M. ReimannF. TrappS. Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain.Mol. Metab.201541071873110.1016/j.molmet.2015.07.00826500843
    [Google Scholar]
  74. SalcedoI. TweedieD. LiY. GreigN.H. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: An emerging opportunity to treat neurodegenerative and cerebrovascular disorders.Br. J. Pharmacol.201216651586159910.1111/j.1476‑5381.2012.01971.x22519295
    [Google Scholar]
  75. BelshamD.D. FickL.J. DalviP.S. CentenoM.L. ChalmersJ.A. LeeP.K.P. WangY. DruckerD.J. KoletarM.M. Ciliary neurotrophic factor recruitment of glucagon-like peptide-1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons.FASEB J.200923124256426510.1096/fj.09‑13345419703933
    [Google Scholar]
  76. MartinB. ChadwickW. CongW. PantaleoN. DaimonC.M. GoldenE.J. BeckerK.G. WoodW.H. CarlsonO.D. EganJ.M. MaudsleyS. Euglycemic agent-mediated hypothalamic transcriptomic manipulation in the N171-82Q model of Huntington disease is related to their physiological efficacy.J. Biol. Chem.201228738317663178210.1074/jbc.M112.38731622822065
    [Google Scholar]
  77. MartinB. GoldenE. CarlsonO.D. PistellP. ZhouJ. KimW. FrankB.P. ThomasS. ChadwickW.A. GreigN.H. BatesG.P. SathasivamK. BernierM. MaudsleyS. MattsonM.P. EganJ.M. Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington’s disease.Diabetes200958231832810.2337/db08‑079918984744
    [Google Scholar]
  78. FaivreE. GaultV.A. ThorensB. HölscherC. Glucose-dependent insulinotropic polypeptide receptor knockout mice are impaired in learning, synaptic plasticity, and neurogenesis.J. Neurophysiol.201110541574158010.1152/jn.00866.201021273318
    [Google Scholar]
  79. FaivreE. HamiltonA. HölscherC. Effects of acute and chronic administration of GIP analogues on cognition, synaptic plasticity and neurogenesis in mice.Eur. J. Pharmacol.20126742-329430610.1016/j.ejphar.2011.11.00722115896
    [Google Scholar]
  80. NybergJ. AndersonM.F. MeisterB. AlbornA.M. StrömA.K. BrederlauA. IllerskogA.C. NilssonO. KiefferT.J. HietalaM.A. RickstenA. ErikssonP.S. Glucose-dependent insulinotropic polypeptide is expressed in adult hippocampus and induces progenitor cell proliferation.J. Neurosci.20052571816182510.1523/JNEUROSCI.4920‑04.200515716418
    [Google Scholar]
  81. NybergJ. JacobssonC. AndersonM.F. ErikssonP.S. Immunohistochemical distribution of glucose-dependent insulinotropic polypeptide in the adult rat brain.J. Neurosci. Res.200785102099211910.1002/jnr.2134917510976
    [Google Scholar]
  82. SpielmanL.J. GibsonD.L. KlegerisA. Incretin hormones regulate microglia oxidative stress, survival and expression of trophic factors.Eur. J. Cell Biol.201796324025310.1016/j.ejcb.2017.03.00428336086
    [Google Scholar]
  83. VermaM.K. GoelR. NandakumarK. NemmaniK.V.S. Bilateral quinolinic acid-induced lipid peroxidation, decreased striatal monoamine levels and neurobehavioral deficits are ameliorated by GIP receptor agonist D-Ala2 GIP in rat model of Huntington’s disease.Eur. J. Pharmacol.2018828314110.1016/j.ejphar.2018.03.03429577894
    [Google Scholar]
  84. LiY. LiuW. LiL. HölscherC. D-Ala2-GIP-glu-PAL is neuroprotective in a chronic Parkinson’s disease mouse model and increases BNDF expression while reducing neuroinflammation and lipid peroxidation.Eur. J. Pharmacol.201779716217210.1016/j.ejphar.2016.11.05027913104
    [Google Scholar]
  85. VermaM.K. GoelR. NandakumarK. NemmaniK.V.S. Effect of D-Ala2 GIP, a stable GIP receptor agonist on MPTP-induced neuronal impairments in mice.Eur. J. Pharmacol.2017804384510.1016/j.ejphar.2017.03.05928366809
    [Google Scholar]
  86. SaudouF. FinkbeinerS. DevysD. GreenbergM.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions.Cell1998951556610.1016/S0092‑8674(00)81782‑19778247
    [Google Scholar]
  87. PasquinS. SharmaM. GauchatJ.F. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies.Cytokine Growth Factor Rev.201526550751510.1016/j.cytogfr.2015.07.00726187860
    [Google Scholar]
  88. JiaQ. LiS. LiX.J. YinP. Neuroinflammation in Huntington’s disease: From animal models to clinical therapeutics.Front. Immunol.202213108812410.3389/fimmu.2022.108812436618375
    [Google Scholar]
  89. PöyhönenS. ErS. DomanskyiA. AiravaaraM. Effects of neurotrophic factors in glial cells in the central nervous system: Expression and properties in neurodegeneration and injury.Front. Physiol.20191048610.3389/fphys.2019.0048631105589
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232348486241025084202
Loading
/content/journals/cgt/10.2174/0115665232348486241025084202
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test