Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Dementia is a comprehensive term that refers to illnesses characterized by a decline in cognitive memory and other cognitive functions, affecting a person's overall ability to operate. The exact causes of dementia are unknown to this day. The heterogeneity of Alzheimer's indicates the contribution of genetic polymorphism to this disease. This disease is the most prevalent and damaging illness. Studies indicate that the global prevalence of Alzheimer's disease (AD) exceeds 26 million individuals. Investigation of variations in many genes indicates that these variations may be linked to the susceptibility to AD. Additional genetic factors could potentially influence AD. Analysis of several single-nucleotide polymorphisms in this context reveals a correlation between certain variants and AD. Regardless, Alzheimer's disease is always influenced by a particular APOE gene allele. The study's findings indicate that risk of Alzheimer's disease (AD) is linked to polymorphisms in the following genes: BDNF, presenilin-1 (PS-1), presenilin-2 (PS-2), LRP, APP, CTSD,5-6HT, TREM2, TNF-α, LPL, Clusterin (CLU), SORL1 (Sortilin-Related Receptor), PICALM, Complement Receptor 1 (CR1), and APOE genes.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232338503241227111640
2025-01-07
2025-10-04
Loading full text...

Full text loading...

References

  1. MayeuxR. Epidemiology of neurodegeneration.Annu. Rev. Neurosci.20032618110410.1146/annurev.neuro.26.043002.094919 12574495
    [Google Scholar]
  2. FerriC.P. PrinceM. BrayneC. Global prevalence of dementia: A Delphi consensus study.Lancet200536695032112211710.1016/S0140‑6736(05)67889‑0 16360788
    [Google Scholar]
  3. BirdT.D. Genetic aspects of Alzheimer disease.Genet. Med.200810423123910.1097/GIM.0b013e31816b64dc 18414205
    [Google Scholar]
  4. ReitzC. BrayneC. MayeuxR. Epidemiology of Alzheimer disease.Nat. Rev. Neurol.20117313715210.1038/nrneurol.2011.2 21304480
    [Google Scholar]
  5. TomlinsonB.E. BlessedG. RothM. Observations on the brains of non-demented old people.J. Neurol. Sci.19687233135610.1016/0022‑510x(68)90154‑8 5707082
    [Google Scholar]
  6. PetersenR.C. How early can we diagnose Alzheimer disease (and is it sufficient)? The 2017 Wartenberg lecture.Neurology201891939540210.1212/WNL.0000000000006088 30089620
    [Google Scholar]
  7. NelsonP.T. HeadE. SchmittF.A. Alzheimer’s disease is not “brain aging”: Neuropathological, genetic, and epidemiological human studies.Acta Neuropathol.2011121557158710.1007/s00401‑011‑0826‑y 21516511
    [Google Scholar]
  8. BoyleP.A. YuL. WilsonR.S. LeurgansS.E. SchneiderJ.A. BennettD.A. Person-specific contribution of neuropathologies to cognitive loss in old age.Ann. Neurol.2018831748310.1002/ana.25123 29244218
    [Google Scholar]
  9. KapasiA. DeCarliC. SchneiderJ.A. Impact of multiple pathologies on the threshold for clinically overt dementia.Acta Neuropathol.2017134217118610.1007/s00401‑017‑1717‑7 28488154
    [Google Scholar]
  10. KaranthS. NelsonP.T. KatsumataY. Prevalence and clinical phenotype of quadruple misfolded proteins in older adults.JAMA Neurol.202077101299130710.1001/jamaneurol.2020.1741 32568358
    [Google Scholar]
  11. BrodatyH. BretelerM.M. DekoskyS.T. The world of dementia beyond 2020.J. Am. Geriatr. Soc.201159592392710.1111/j.1532‑5415.2011.03365.x 21488846
    [Google Scholar]
  12. WuY-T. BeiserA.S. BretelerM.M.B. The changing prevalence and incidence of dementia over time - current evidence.Nat. Rev. Neurol.201713632733910.1038/nrneurol.2017.63 28497805
    [Google Scholar]
  13. SatizabalC.L. BeiserA.S. ChourakiV. ChêneG. DufouilC. SeshadriS. Incidence of dementia over three decades in the framingham heart study.N. Engl. J. Med.2016374652353210.1056/NEJMoa1504327 26863354
    [Google Scholar]
  14. SternY. Cognitive reserve in ageing and Alzheimer’s disease.Lancet Neurol.201211111006101210.1016/S1474‑4422(12)70191‑6 23079557
    [Google Scholar]
  15. TomS.E. PhadkeM. HubbardR.A. CraneP.K. SternY. LarsonE.B. Association of demographic and early-life socioeconomic factors by birth cohort with dementia incidence among US adults born between 1893 and 1949.JAMA Netw. Open202037e201109410.1001/jamanetworkopen.2020.11094 32716513
    [Google Scholar]
  16. KnopmanD.S. AmievaH. PetersenR.C. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y 33986301
    [Google Scholar]
  17. PetersenR.C. RobertsR.O. KnopmanD.S. Prevalence of mild cognitive impairment is higher in men.Neurology2010751088989710.1212/WNL.0b013e3181f11d85 20820000
    [Google Scholar]
  18. MielkeM.M. VemuriP. RoccaW.A. Clinical epidemiology of Alzheimer’s disease: Assessing sex and gender differences.Clin. Epidemiol.20146374810.2147/CLEP.S37929 24470773
    [Google Scholar]
  19. ThambisettyM AnY TanakaT Alzheimer's disease risk genes and the age-at-onset phenotype. Neurobiology of Aging201334112696.e1-5510.1016/j.neurobiolaging.2013.05.028 23870418
    [Google Scholar]
  20. HaassC. KaetherC. ThinakaranG. SisodiaS. Trafficking and proteolytic processing of APP.Cold Spring Harb. Perspect. Med.201225a00627010.1101/cshperspect.a006270 22553493
    [Google Scholar]
  21. JonssonT. AtwalJ.K. SteinbergS. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline.Nature20124887409969910.1038/nature11283 22801501
    [Google Scholar]
  22. JackC.R.Jr BennettD.A. BlennowK. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease.Alzheimers Dement.201814453556210.1016/j.jalz.2018.02.018 29653606
    [Google Scholar]
  23. ChételatG. ArbizuJ. BarthelH. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias.Lancet Neurol.2020191195196210.1016/S1474‑4422(20)30314‑8 33098804
    [Google Scholar]
  24. HanssonO. LehmannS. OttoM. ZetterbergH. LewczukP. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s Disease.Alzheimers Res. Ther.20191113410.1186/s13195‑019‑0485‑0 31010420
    [Google Scholar]
  25. WestT. KirmessK.M. MeyerM.R. A blood-based diagnostic test incorporating plasma Aβ42/40 ratio, ApoE proteotype, and age accurately identifies brain amyloid status: Findings from a multi cohort validity analysis.Mol. Neurodegener.20211613010.1186/s13024‑021‑00451‑6 33933117
    [Google Scholar]
  26. VisserP.J. ReusL.M. GobomJ. Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer’s disease.Mol. Neurodegener.20221712710.1186/s13024‑022‑00521‑3 35346299
    [Google Scholar]
  27. MendesA.J. RibaldiF. LathuiliereA. Head-to-head study of diagnostic accuracy of plasma and cerebrospinal fluid p-tau217 versus p-tau181 and p-tau231 in a memory clinic cohort.J. Neurol.202427142053206610.1007/s00415‑023‑12148‑5 38195896
    [Google Scholar]
  28. WooM.S. TissotC. Lantero-RodriguezJ. Plasma pTau-217 and N-terminal tau (NTA) enhance sensitivity to identify tau PET positivity in amyloid-β positive individuals.Alzheimers Dement.20242021166117410.1002/alz.13528 37920945
    [Google Scholar]
  29. AlirezaeiZ. PourhanifehM.H. BorranS. NejatiM. MirzaeiH. HamblinM.R. Neurofilament light chain as a biomarker, and correlation with magnetic resonance imaging in diagnosis of cns-related disorders.Mol. Neurobiol.202057146949110.1007/s12035‑019‑01698‑3 31385229
    [Google Scholar]
  30. YuanA. NixonR.A. Neurofilament proteins as biomarkers to monitor neurological diseases and the efficacy of therapies.Front. Neurosci.202115689938 34646114
    [Google Scholar]
  31. JurasovaV. AndelR. KatonovaA. CSF neurogranin levels as a biomarker in Alzheimer’s disease and frontotemporal lobar degeneration: A cross-sectional analysis.Alzheimers Res. Ther.202416119910.1186/s13195‑024‑01566‑w 39242539
    [Google Scholar]
  32. AgnelloL. GambinoC.M. Lo SassoB. Neurogranin as a novel biomarker in Alzheimer’s disease.Lab. Med.202152218819610.1093/labmed/lmaa062 32926148
    [Google Scholar]
  33. NagaharaA.H. MerrillD.A. CoppolaG. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease.Nat. Med.200915333133710.1038/nm.1912 19198615
    [Google Scholar]
  34. CaccamoA. MajumderS. RichardsonA. StrongR. OddoS. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: Effects on cognitive impairments.J. Biol. Chem.201028517131071312010.1074/jbc.M110.100420 20178983
    [Google Scholar]
  35. TavassolyO. SatoT. TavassolyI. Inhibition of brain epidermal growth factor receptor activation: A novel target in neurodegenerative diseases and brain injuries.Mol. Pharmacol.2020981132210.1124/mol.120.119909 32350120
    [Google Scholar]
  36. KlunkW.E. EnglerH. NordbergA. Imaging brain amyloid in Alzheimer’s disease with pittsburgh compound-B.Ann. Neurol.200455330631910.1002/ana.20009 14991808
    [Google Scholar]
  37. JackC.R.Jr AlbertM.S. KnopmanD.S. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.Alzheimers Dement.20117325726210.1016/j.jalz.2011.03.004 21514247
    [Google Scholar]
  38. KnopmanD.S. JackC.R.Jr WisteH.J. Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia.Neurology201687769169810.1212/WNL.0000000000002979 27421543
    [Google Scholar]
  39. SchröderJ. PantelJ. Neuroimaging of hippocampal atrophy in early recognition of Alzheimer’s disease a critical appraisal after two decades of research.Psychiatry Res. Neuroimaging2016247717810.1016/j.pscychresns.2015.08.014 26774855
    [Google Scholar]
  40. MurrayM.E. Graff-RadfordN.R. RossO.A. PetersenR.C. DuaraR. DicksonD.W. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: A retrospective study.Lancet Neurol.201110978579610.1016/S1474‑4422(11)70156‑9 21802369
    [Google Scholar]
  41. PetersenC. NolanA.L. de Paula França ResendeE. Alzheimer’s disease clinical variants show distinct regional patterns of neurofibrillary tangle accumulation.Acta Neuropathol.2019138459761210.1007/s00401‑019‑02036‑6 31250152
    [Google Scholar]
  42. RidhaB.H. BarnesJ. BartlettJ.W. Tracking atrophy progression in familial Alzheimer’s disease: A serial MRI study.Lancet Neurol.200651082883410.1016/S1474‑4422(06)70550‑6 16987729
    [Google Scholar]
  43. Graff-RadfordJ. BothaH. RabinsteinA.A. Cerebral microbleeds: Prevalence and relationship to amyloid burden.Neurology2019923e253e26210.1212/WNL.0000000000006780 30568001
    [Google Scholar]
  44. Saint-AubertL. LemoineL. ChiotisK. LeuzyA. Rodriguez-VieitezE. NordbergA. Tau PET imaging: Present and future directions.Mol. Neurodegener.20171211910.1186/s13024‑017‑0162‑3 28219440
    [Google Scholar]
  45. WagatsumaK. MiwaK. AkamatsuG. Toward standardization of tau PET imaging corresponding to various tau PET tracers: A multicenter phantom study.Ann. Nucl. Med.202337949450310.1007/s12149‑023‑01847‑8 37243882
    [Google Scholar]
  46. HofmanM.S. HicksR.J. How we read oncologic FDG PET/CT.Cancer Imaging20161613510.1186/s40644‑016‑0091‑3 27756360
    [Google Scholar]
  47. CohenB.M. SonntagK.C. Identifying the earliest-occurring clinically targetable precursors of late-onset Alzheimer’s disease.EBioMedicine202410610523810.1016/j.ebiom.2024.105238 39002387
    [Google Scholar]
  48. HippiusH. NeundörferG. The discovery of Alzheimer’s disease.Dialogues Clin. Neurosci.200351101108 22034141
    [Google Scholar]
  49. AgingN.I.O. Alzheimer’s Disease Genetics Fact Sheet.2024Available from: https://www.nia.nih.gov/health/alzheimers-causes-and-risk-factors/alzheimers-disease-genetics-fact-sheet (Accessed on: 01-03-2024).
    [Google Scholar]
  50. KovacsD.M. FausettH.J. PageK.J. Alzheimer-associated presenilins 1 and 2: Neuronal expression in brain and localization to intracellular membranes in mammalian cells.Nat. Med.19962222422910.1038/nm0296‑224 8574969
    [Google Scholar]
  51. CitronM. Secretases as targets for the treatment of Alzheimer’s disease.Mol. Med. Today200061039239710.1016/s1357‑4310(00)01759‑7 11006528
    [Google Scholar]
  52. WolfeM.S. XiaW. OstaszewskiB.L. DiehlT.S. KimberlyW.T. SelkoeD.J. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity.Nature1999398672751351710.1038/19077 10206644
    [Google Scholar]
  53. KabirM.T. UddinM.S. SetuJ.R. AshrafG.M. Bin-JumahM.N. Abdel-DaimM.M. Exploring the role of PSEN mutations in the pathogenesis of Alzheimer’s disease.Neurotox. Res.202038483384910.1007/s12640‑020‑00232‑x 32556937
    [Google Scholar]
  54. DuncanR.S. SongB. KoulenP. Presenilins as drug targets for Alzheimer’s disease-recent insights from cell biology and electrophysiology as novel opportunities in drug development.Int. J. Mol. Sci.2018196162110.3390/ijms19061621 29857474
    [Google Scholar]
  55. Hernández-ZimbrónL.F. Rivas-ArancibiaS. Oxidative stress caused by ozone exposure induces β-amyloid 1-42 overproduction and mitochondrial accumulation by activating the amyloidogenic pathway.Neuroscience201530434034810.1016/j.neuroscience.2015.07.011 26197225
    [Google Scholar]
  56. NikolakopoulouA.M. GeorgakopoulosA. RobakisN.K. Presenilin 1 promotes trypsin-induced neuroprotection via the PAR2/ERK signaling pathway. Effects of presenilin 1 FAD mutations.Neurobiol. Aging201642414910.1016/j.neurobiolaging.2016.02.028 27143420
    [Google Scholar]
  57. P MojdehH Alipour F, B Haghighi M. Alzheimer’s disease: Background, current and future aspects.Neuroscience Journal of Shefaye Khatam201643708010.18869/acadpub.shefa.4.3.70
    [Google Scholar]
  58. ZhaoY. BhattacharjeeS. JonesB.M. Beta-amyloid precursor protein (βAPP) processing in Alzheimer’s disease (AD) and age-related macular degeneration (AMD).Mol. Neurobiol.201552153354410.1007/s12035‑014‑8886‑3 25204496
    [Google Scholar]
  59. HaddadiM. NongthombaU. JahromiS.R. RameshS.R. Transgenic Drosophila model to study apolipoprotein E4-induced neurodegeneration.Behav. Brain Res.2016301101810.1016/j.bbr.2015.12.022 26706888
    [Google Scholar]
  60. LyallD.M. HarrisS.E. BastinM.E. Alzheimer’s disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936.Neurobiol. Aging201435615113.e25-3310.1016/j.neurobiolaging.2014.01.006 24508314
    [Google Scholar]
  61. PordelA. HaddadiM. LashkaripourM. Evaluation of APOE isoforms frequency and its association with some paraclinical factors among elderlies of sistan suffering from age-related dementia.Mod Gene J2018124505516
    [Google Scholar]
  62. ChenQ. RazzaghiH. DemirciF.Y. KambohM.I. Functional significance of lipoprotein lipase HindIII polymorphism associated with the risk of coronary artery disease.Atherosclerosis2008200110210810.1016/j.atherosclerosis.2007.12.011 18242618
    [Google Scholar]
  63. NuñezM. Peinado-OnsurbeJ. VilaróS. LloberaM. Lipoprotein lipase activity in developing rat brain areas.Biol. Neonate199568211912710.1159/000244227 8534771
    [Google Scholar]
  64. ChuiD. ZhouT. YangH. Implication of lipid metabolism disturbance and Alzheimer’s disease: Focus on the lipoprotein lipase plays an important role in learning and memory function.Mol. Neurodegener.201271S1S0910.1186/1750‑1326‑7‑S1‑09
    [Google Scholar]
  65. TarkowskiE. BlennowK. WallinA. TarkowskiA. Intracerebral production of tumor necrosis factor-α, a local neuroprotective agent, in Alzheimer disease and vascular dementia.J. Clin. Immunol.199919422323010.1023/a:1020568013953 10471976
    [Google Scholar]
  66. NainiN.S. KamaliK. MomeniS. Association study between apoe and TNF-α gene variations and sporadic Alzheimer’s disease in iranian population.Salmand Iran. J. Ageing201273711
    [Google Scholar]
  67. ZhengC. ZhouX-W. WangJ-Z. The dual roles of cytokines in Alzheimer’s disease: Update on interleukins, TNF-α, TGF-β and IFN-γ.Transl. Neurodegener.201651710.1186/s40035‑016‑0054‑4 27054030
    [Google Scholar]
  68. BunkJ. P HuarcayaS. DrobnyA. Cathepsin D variants associated with neurodegenerative diseases show dysregulated functionality and modified α-synuclein degradation properties.Front. Cell Dev. Biol.2021958180510.3389/fcell.2021.581805 33681191
    [Google Scholar]
  69. MarianiE. SeripaD. IngegniT. Interaction of CTSD and A2M polymorphisms in the risk for Alzheimer’s disease.J. Neurol. Sci.2006247218719110.1016/j.jns.2006.05.043 16784755
    [Google Scholar]
  70. DavidsonY. GibbonsL. PritchardA. Genetic associations between cathepsin D exon 2 C-->T polymorphism and Alzheimer’s disease, and pathological correlations with genotype.J. Neurol. Neurosurg. Psychiatry200677451551710.1136/jnnp.2005.063917 16543533
    [Google Scholar]
  71. KingM.V. MarsdenC.A. FoneK.C. A role for the 5-HT(1A), 5-HT4 and 5-HT6 receptors in learning and memory.Trends Pharmacol. Sci.200829948249210.1016/j.tips.2008.07.001 19086256
    [Google Scholar]
  72. KanR. WangB. ZhangC. Association of the HTR6 polymorphism C267T with late-onset Alzheimer’s disease in Chinese.Neurosci. Lett.20043721-2272910.1016/j.neulet.2004.09.007 15531082
    [Google Scholar]
  73. TsaiS.J. LiuH.C. LiuT.Y. WangY.C. HongC.J. Association analysis of the 5-HT6 receptor polymorphism C267T in Alzheimer’s disease.Neurosci. Lett.1999276213813910.1016/s0304‑3940(99)00802‑2 10624811
    [Google Scholar]
  74. HerzJ. StricklandD.K. LRP: A multifunctional scavenger and signaling receptor.J. Clin. Invest.2001108677978410.1172/JCI13992 11560943
    [Google Scholar]
  75. HatanakaY. KaminoK. FukuoK. Low density lipoprotein receptor-related protein gene polymorphisms and risk for late-onset Alzheimer’s disease in a Japanese population.Clin. Genet.200058431932310.1034/j.1399‑0004.2000.580410.x 11076057
    [Google Scholar]
  76. MehdizadehE. Khalaj-KondoriM. Shaghaghi-TarakdariZ. Sadigh-EteghadS. TalebiM. AndalibS. Association of MS4A6A, CD33, and TREM2 gene polymorphisms with the late-onset Alzheimer’s disease.Bioimpacts20199421922510.15171/bi.2019.27 31799158
    [Google Scholar]
  77. ThuV.T.A. HoangT.X. KimJ.Y. 1,25-dihydroxy vitamin D3 facilitates the M2 polarization and β-amyloid uptake by human microglia in a TREM2-dependent manner.BioMed Res. Int.20232023348341110.1155/2023/3483411 37274074
    [Google Scholar]
  78. Hall-RobertsH. AgarwalD. ObstJ. TREM2 Alzheimer’s variant R47H causes similar transcriptional dysregulation to knockout, yet only subtle functional phenotypes in human iPSC-derived macrophages.Alzheimers Res. Ther.202012115110.1186/s13195‑020‑00709‑z 33198789
    [Google Scholar]
  79. FosterE.M. Dangla-VallsA. LovestoneS. RibeE.M. BuckleyN.J. Clusterin in Alzheimer’s disease: Mechanisms, genetics, and lessons from other pathologies.Front. Neurosci.20191316410.3389/fnins.2019.00164 30872998
    [Google Scholar]
  80. PalihatiN. TangY. YinY. Clusterin is a potential therapeutic target in Alzheimer’s disease.Mol. Neurobiol.20246173836385010.1007/s12035‑023‑03801‑1 38017342
    [Google Scholar]
  81. YuJ.T. TanL. The role of clusterin in Alzheimer’s disease: Pathways, pathogenesis, and therapy.Mol. Neurobiol.201245231432610.1007/s12035‑012‑8237‑1 22274961
    [Google Scholar]
  82. YinR.H. YuJ.T. TanL. The role of SORL1 in Alzheimer’s disease.Mol. Neurobiol.201551390991810.1007/s12035‑014‑8742‑5 24833601
    [Google Scholar]
  83. MishraS. KnuppA. SzaboM.P. The Alzheimer’s gene SORL1 is a regulator of endosomal traffic and recycling in human neurons.Cell. Mol. Life Sci.202279316210.1007/s00018‑022‑04182‑9 35226190
    [Google Scholar]
  84. AndersenO.M. RudolphI-M. WillnowT.E. Risk factor SORL1: From genetic association to functional validation in Alzheimer’s disease.Acta Neuropathol.2016132565366510.1007/s00401‑016‑1615‑4 27638701
    [Google Scholar]
  85. AndoK. NagarajS. KüçükaliF. PICALM and Alzheimer’s disease: An update and perspectives.Cells20221124399410.3390/cells11243994 36552756
    [Google Scholar]
  86. XuW. TanL. YuJ.T. The role of PICALM in Alzheimer’s disease.Mol. Neurobiol.201552139941310.1007/s12035‑014‑8878‑3 25186232
    [Google Scholar]
  87. ZhuX-C. YuJ.T. JiangT. WangP. CaoL. TanL. CR1 in Alzheimer’s disease.Mol. Neurobiol.201551275376510.1007/s12035‑014‑8723‑8 24794147
    [Google Scholar]
  88. VeteleanuA. Stevenson-HoareJ. KeatS. Alzheimer’s disease-associated complement gene variants influence plasma complement protein levels.J. Neuroinflammation202320116910.1186/s12974‑023‑02850‑6 37480051
    [Google Scholar]
  89. ChashmpooshM. RazaeiH.B. DehmordiR.M. MohammadiA. The Association between G/A (rs34011) Polymorphism of the FGF1 Gene and Alzheimer’s Disease.J. Mazandaran Univ. Med. Sci.2016251348997
    [Google Scholar]
  90. LeeJ.H. BarralS. ReitzC. The neuronal sortilin-related receptor gene SORL1 and late-onset Alzheimer’s disease.Curr. Neurol. Neurosci. Rep.20088538439110.1007/s11910‑008‑0060‑8 18713574
    [Google Scholar]
  91. JonssonT. StefanssonH. SteinbergS. Variant of TREM2 associated with the risk of Alzheimer’s disease.N. Engl. J. Med.2013368210711610.1056/NEJMoa1211103 23150908
    [Google Scholar]
  92. CibulkaM. BrodnanovaM. GrendarM. Alzheimer’s disease-associated SNP rs708727 in SLC41A1 may increase risk for Parkinson’s disease: Report from enlarged slovak study.Int. J. Mol. Sci.2022233160410.3390/ijms23031604 35163527
    [Google Scholar]
  93. LaiE.C. TamB. RubinG.M. Pervasive regulation of drosophila notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs.Genes Dev.20051991067108010.1101/gad.1291905 15833912
    [Google Scholar]
  94. MasoodiT.A. Al ShammariS.A. Al-MuammarM.N. AlhamdanA.A. Screening and evaluation of deleterious SNPs in APOE gene of Alzheimer’s disease.Neurol. Res. Int.2012201248060910.1155/2012/480609 22530123
    [Google Scholar]
  95. KouX. ChenD. ChenN. The regulation of microRNAs in Alzheimer’s disease.Front. Neurol.20201128810.3389/fneur.2020.00288 32362867
    [Google Scholar]
  96. NguyenT.P.N. KumarM. FedeleE. BonannoG. BonifacinoT. MicroRNA alteration, application as biomarkers, and therapeutic approaches in neurodegenerative diseases.Int. J. Mol. Sci.2022239471810.3390/ijms23094718 35563107
    [Google Scholar]
  97. SmithA.L. IwanagaR. DrasinD.J. The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer.Oncogene201231505162517110.1038/onc.2012.11 22286770
    [Google Scholar]
  98. WeiW. WangZ.Y. MaL.N. ZhangT.T. CaoY. LiH. MicroRNAs in Alzheimer’s disease: Function and potential applications as diagnostic biomarkers.Front. Mol. Neurosci.20201316010.3389/fnmol.2020.00160 32973449
    [Google Scholar]
  99. ChenW. WuL. HuY. MicroRNA-107 ameliorates damage in a cell model of Alzheimer’s disease by mediating the FGF7/FGFR2/PI3K/akt pathway.J. Mol. Neurosci.202070101589159710.1007/s12031‑020‑01600‑0 32472396
    [Google Scholar]
  100. ChaD.J. MengelD. MustapicM. miR-212 and miR-132 are downregulated in neurally derived plasma exosomes of Alzheimer’s patients.Front. Neurosci.201913120810.3389/fnins.2019.01208 31849573
    [Google Scholar]
  101. SabryR. El SharkawyR.E. GadN.M. MiRNA -483-5p as a potential noninvasive biomarker for early detection of Alzheimer’s disease.Egypt. J. Immunol.20202725972 33548978
    [Google Scholar]
  102. Cosín-TomásM. AntonellA. LladóA. Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimer’s Disease: Potential and limitations.Mol. Neurobiol.20175475550556210.1007/s12035‑016‑0088‑8 27631879
    [Google Scholar]
  103. BarbagalloC. MostileG. BaglieriG. Specific signatures of serum miRNAs as potential biomarkers to discriminate clinically similar neurodegenerative and vascular-related diseases.Cell. Mol. Neurobiol.202040453154610.1007/s10571‑019‑00751‑y 31691877
    [Google Scholar]
  104. DongZ. GuH. GuoQ. Profiling of serum exosome MiRNA reveals the potential of a MiRNA panel as diagnostic biomarker for Alzheimer’s disease.Mol. Neurobiol.20215873084309410.1007/s12035‑021‑02323‑y 33629272
    [Google Scholar]
  105. VassarR. BennettB.D. Babu-KhanS. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE.Science1999286544073574110.1126/science.286.5440.735 10531052
    [Google Scholar]
  106. FaghihiM.A. ModarresiF. KhalilA.M. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase.Nat. Med.200814772373010.1038/nm1784 18587408
    [Google Scholar]
  107. KhodayiM. Khalaj-KondoriM. H Feizi MA, Jabarpour Bonyadi M, Talebi M. Plasma lncRNA profiling identified BC200 and NEAT1 lncRNAs as potential blood-based biomarkers for late-onset Alzheimer’s disease.EXCLI J.20222177278510.17179/excli2022‑4764 35949493
    [Google Scholar]
  108. HaoY. XieB. FuX. XuR. YangY. New Insights into lncRNAs in Aβ cascade hypothesis of Alzheimer’s disease.Biomolecules20221212180210.3390/biom12121802 36551230
    [Google Scholar]
  109. FaghihiM.A. ZhangM. HuangJ. Evidence for natural antisense transcript-mediated inhibition of microRNA function.Genome Biol.2010115R5610.1186/gb‑2010‑11‑5‑r56 20507594
    [Google Scholar]
  110. FotuhiS.N. Khalaj-KondoriM. H Feizi MA, Talebi M. Long Non-coding RNA BACE1-AS may serve as an Alzheimer’s disease blood-based biomarker.J. Mol. Neurosci.201969335135910.1007/s12031‑019‑01364‑2 31264051
    [Google Scholar]
  111. LiuT. HuangY. ChenJ. Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1 AS expression.Mol. Med. Rep.20141031275128110.3892/mmr.2014.2351 24970022
    [Google Scholar]
  112. BooyE.P. McRaeE.K. HowardR. RNA helicase associated with AU-rich element (RHAU/DHX36) interacts with the 3′-Tail of the Long Non-coding RNA BC200 (BCYRN1).J. Biol. Chem.2016291105355537210.1074/jbc.M115.711499 26740632
    [Google Scholar]
  113. LiH. ZhengL. JiangA. MoY. GongQ. Identification of the biological affection of long noncoding RNA BC200 in Alzheimer’s disease.Neuroreport2018291310611067 29979260
    [Google Scholar]
  114. Khodayi-ShahrakM. Khalaj-KondoriM. H FeiziM.A. TalebiM. Insights into the mechanisms of non-coding RNAs’ implication in the pathogenesis of Alzheimer’s disease.EXCLI J.20222192194010.17179/excli2022‑5006 36110561
    [Google Scholar]
  115. PaganoA. CastelnuovoM. TortelliF. FerrariR. DieciG. CanceddaR. New small nuclear RNA gene-like transcriptional units as sources of regulatory transcripts.PLoS Genet.200732e110.1371/journal.pgen.0030001 17274687
    [Google Scholar]
  116. MassoneS. CiarloE. VellaS. NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid β secretion.Biochim. Biophys. Acta2012182371170117710.1016/j.bbamcr.2012.05.001 22580042
    [Google Scholar]
  117. PatapoutianA. ReichardtL.F. Trk receptors: Mediators of neurotrophin action.Curr. Opin. Neurobiol.200111327228010.1016/s0959‑4388(00)00208‑7 11399424
    [Google Scholar]
  118. AghaliR.A. KhalajM. ZeinalzadehN. FeiziM.A.H. Comparison between the plasma levels of long noncoding RNA BDNF-AS in patients with Alzheimer’s disease and healthy subjects.Babol-Jbums2018204242910.18869/acadpub.jbums.20.4.24
    [Google Scholar]
  119. LiuQ.R. WaltherD. DrgonT. Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson’s Disease.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2005134B19310310.1002/ajmg.b.30109 15666411
    [Google Scholar]
  120. DingY. LuanW. ShenX. WangZ. CaoY. LncRNA BDNF-AS as ceRNA regulates the miR-9-5p/BACE1 pathway affecting neurotoxicity in Alzheimer’s disease.Arch. Gerontol. Geriatr.20229910461410.1016/j.archger.2021.104614 34990931
    [Google Scholar]
  121. BrunoE. QuattrocchiG. NicolettiA. Lack of interaction between LRP1 and A2M polymorphisms for the risk of Alzheimer disease.Neurosci. Lett.2010482211211610.1016/j.neulet.2010.07.012 20637261
    [Google Scholar]
  122. MatsuiT. IngelssonM. FukumotoH. Expression of APP pathway mRNAs and proteins in Alzheimer’s disease.Brain Res.2007116111612310.1016/j.brainres.2007.05.050 17586478
    [Google Scholar]
  123. YamanakaY. FaghihiM.A. MagistriM. Alvarez-GarciaO. LotzM. WahlestedtC. Antisense RNA controls LRP1 Sense transcript expression through interaction with a chromatin-associated protein, HMGB2.Cell Rep.201511696797610.1016/j.celrep.2015.04.011 25937287
    [Google Scholar]
  124. ZhouH. MangelsdorfM. LiuJ. ZhuL. WuJ.Y. RNA-binding proteins in neurological diseases.Sci. China Life Sci.201457443244410.1007/s11427‑014‑4647‑9 24658850
    [Google Scholar]
  125. GavazzoP. VassalliM. CostaD. PaganoA. Novel ncRNAs transcribed by Pol III and elucidation of their functional relevance by biophysical approaches.Front. Cell. Neurosci.2013720310.3389/fncel.2013.00203 24223537
    [Google Scholar]
  126. MassoneS. VassalloI. FiorinoG. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease.Neurobiol. Dis.201141230831710.1016/j.nbd.2010.09.019 20888417
    [Google Scholar]
  127. RaposoA.C. CasanovaM. GendrelA.V. da RochaS.T. The tandem repeat modules of Xist lncRNA: A swiss army knife for the control of X-chromosome inactivation.Biochem. Soc. Trans.20214962549256010.1042/BST20210253 34882219
    [Google Scholar]
  128. YanX-W. LiuH.J. HongY.X. MengT. DuJ. ChangC. lncRNA XIST induces Aβ accumulation and neuroinflammation by the epigenetic repression of NEP in Alzheimer’s disease.J. Neurogenet.2022361112010.1080/01677063.2022.2028784 35098860
    [Google Scholar]
  129. YangH. WangH. ShangH. Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer’s disease.Cell Cycle201918182197221410.1080/15384101.2019.1629773 31373242
    [Google Scholar]
  130. ZhangY. ZhaoY. LiuY. WangM. YuW. ZhangL. Exploring the regulatory roles of circular RNAs in Alzheimer’s disease.Transl. Neurodegener.2020913510.1186/s40035‑020‑00216‑z 32951610
    [Google Scholar]
  131. ShiZ. ChenT. YaoQ. The circular RNA ciRS-7 promotes APP and BACE1 degradation in an NF-κB-dependent manner.FEBS J.201728471096110910.1111/febs.14045 28296235
    [Google Scholar]
  132. LuY. TanL. WangX. Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s disease.Neurosci. Bull.201935587788810.1007/s12264‑019‑00361‑0 30887246
    [Google Scholar]
  133. ZhangY. YuF. BaoS. SunJ. Systematic characterization of circular RNA-associated CeRNA network identified novel circRNA biomarkers in Alzheimer’s disease.Front. Bioeng. Biotechnol.2019722210.3389/fbioe.2019.00222 31572720
    [Google Scholar]
  134. PereiraP.A. TomásJ.F. QueirozJ.A. FigueirasA.R. SousaF. Recombinant pre-miR-29b for Alzheimer’s disease therapeutics.Sci. Rep.201661994610.1038/srep19946 26818210
    [Google Scholar]
  135. LongJ.M. LahiriD.K. MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially expressed.Biochem. Biophys. Res. Commun.2011404488989510.1016/j.bbrc.2010.12.053 21172309
    [Google Scholar]
  136. HébertS.S. HorréK. NicolaïL. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression.Proc. Natl. Acad. Sci. USA2008105176415642010.1073/pnas.0710263105 18434550
    [Google Scholar]
  137. HaassC. SchlossmacherM.G. HungA.Y. Amyloid β-peptide is produced by cultured cells during normal metabolism.Nature1992359639332232510.1038/359322a0 1383826
    [Google Scholar]
  138. ShojiM. GoldeT.E. GhisoJ. Production of the Alzheimer amyloid β protein by normal proteolytic processing.Science1992258507912612910.1126/science.1439760 1439760
    [Google Scholar]
  139. WalshD.M. SelkoeD.J. Deciphering the molecular basis of memory failure in Alzheimer’s disease.Neuron200444118119310.1016/j.neuron.2004.09.010 15450169
    [Google Scholar]
  140. XiaW. ZhangJ. KholodenkoD. Enhanced production and oligomerization of the 42-residue amyloid β-protein by Chinese hamster ovary cells stably expressing mutant presenilins.J. Biol. Chem.1997272127977798210.1074/jbc.272.12.7977 9065468
    [Google Scholar]
  141. HuttonM. Molecular genetics of chromosome 17 tauopathies.Ann. N. Y. Acad. Sci.20009201637310.1111/j.1749‑6632.2000.tb06906.x 11193178
    [Google Scholar]
  142. RosenbergR.N. Lambracht-WashingtonD. YuG. XiaW. Genomics of Alzheimer disease: A review.JAMA Neurol.201673786787410.1001/jamaneurol.2016.0301 27135718
    [Google Scholar]
  143. KambohM.I. A brief synopsis on the genetics of Alzheimer’s disease.Curr. Genet. Med. Rep.20186413313510.1007/s40142‑018‑0155‑8 30460168
    [Google Scholar]
  144. GuerreiroR. WojtasA. BrasJ. Alzheimer genetic analysis group TREM2 variants in Alzheimer’s disease.N. Engl. J. Med.2013368211712710.1056/NEJMoa1211851 23150934
    [Google Scholar]
  145. GriciucA. Serrano-PozoA. ParradoA.R. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta.Neuron201378463164310.1016/j.neuron.2013.04.014 23623698
    [Google Scholar]
  146. BradshawE.M. ChibnikL.B. KeenanB.T. Alzheimer disease neuroimaging initiative CD33 Alzheimer’s disease locus: Altered monocyte function and amyloid biology.Nat. Neurosci.201316784885010.1038/nn.3435 23708142
    [Google Scholar]
  147. RathoreN. RamaniS.R. PantuaH. Paired immunoglobulin-like type 2 receptor alpha g78r variant alters ligand binding and confers protection to Alzheimer’s disease.PLoS Genet.20181411e100742710.1371/journal.pgen.1007427 30388101
    [Google Scholar]
  148. LiJ-T. ZhangY. TREM2 regulates innate immunity in Alzheimer’s disease.J. Neuroinflammation201815110710.1186/s12974‑018‑1148‑y 29655369
    [Google Scholar]
  149. ZhengH. ChengB. LiY. LiX. ChenX. ZhangY.W. TREM2 in Alzheimer’s disease: Microglial survival and energy metabolism.Front. Aging Neurosci.20181039510.3389/fnagi.2018.00395 30532704
    [Google Scholar]
  150. ZhongL. ChenX.F. WangT. Soluble TREM2 induces inflammatory responses and enhances microglial survival.J. Exp. Med.2017214359760710.1084/jem.20160844 28209725
    [Google Scholar]
  151. HickmanS.E. El KhouryJ. TREM2 and the neuroimmunology of Alzheimer’s disease.Biochem. Pharmacol.201488449549810.1016/j.bcp.2013.11.021 24355566
    [Google Scholar]
  152. CalderonD. BhaskarA. KnowlesD.A. Inferring relevant cell types for complex traits by using single-cell gene expression.Am. J. Hum. Genet.2017101568669910.1016/j.ajhg.2017.09.009 29106824
    [Google Scholar]
  153. ZhangB. GaiteriC. BodeaL.G. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease.Cell2013153370772010.1016/j.cell.2013.03.030 23622250
    [Google Scholar]
  154. GriciucA PatelS FedericoAN TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease. Neuron20191035820-835.e710.1016/j.neuron.2019.06.01031301936
    [Google Scholar]
  155. HampelH. CaraciF. CuelloA.C. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease.Front. Immunol.20201145610.3389/fimmu.2020.00456 32296418
    [Google Scholar]
  156. BolósM. Llorens-MartínM. PereaJ.R. Absence of CX3CR1 impairs the internalization of Tau by microglia.Mol. Neurodegener.20171215910.1186/s13024‑017‑0200‑1 28810892
    [Google Scholar]
  157. BolósM. PereaJ.R. Terreros-RoncalJ. Absence of microglial CX3CR1 impairs the synaptic integration of adult-born hippocampal granule neurons.Brain Behav. Immun.201868768910.1016/j.bbi.2017.10.002 29017970
    [Google Scholar]
  158. PereaJ.R. LleóA. AlcoleaD. ForteaJ. ÁvilaJ. BolósM. Decreased CX3CL1 levels in the cerebrospinal fluid of patients with Alzheimer’s disease.Front. Neurosci.20181260910.3389/fnins.2018.00609 30245615
    [Google Scholar]
  159. OosterhofN. ChangI.J. KarimianiE.G. Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia.Am. J. Hum. Genet.2019104593694710.1016/j.ajhg.2019.03.010 30982608
    [Google Scholar]
  160. GuoL. BertolaD.R. TakanohashiA. Bi-allelic CSF1R mutations cause skeletal dysplasia of dysosteosclerosis-pyle disease spectrum and degenerative encephalopathy with brain malformation.Am. J. Hum. Genet.2019104592593510.1016/j.ajhg.2019.03.004 30982609
    [Google Scholar]
  161. BirdT.D. Alzheimer’s Disease Fact Sheet.Alzheimer disease overview.GeneReviews2018
    [Google Scholar]
  162. DuboisB. FeldmanH.H. JacovaC. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria.Lancet Neurol.201413661462910.1016/s1474‑4422(14)70090‑0 24849862
    [Google Scholar]
  163. MattssonN. SmithR. StrandbergO. Comparing 18F-AV-1451 with CSF t-tau and p-tau for diagnosis of Alzheimer disease.Neurology2018905e388e39510.1212/WNL.0000000000004887 29321235
    [Google Scholar]
  164. ZimmermannJ. PerryA. BreakspearM. Differentiation of Alzheimer’s disease based on local and global parameters in personalized virtual brain models.Neuroimage Clin.20181924025110.1016/j.nicl.2018.04.017 30035018
    [Google Scholar]
  165. FuX. ChuC. PangY. CaiH. RenZ. JiaL. A blood mRNA panel that differentiates Alzheimer’s disease from other dementia types.J. Neurol.202327042117212710.1007/s00415‑023‑11558‑9 36611114
    [Google Scholar]
  166. KarantzoulisS. GalvinJ.E. Distinguishing Alzheimer’s disease from other major forms of dementia.Expert Rev. Neurother.201111111579159110.1586/ern.11.155 22014137
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232338503241227111640
Loading
/content/journals/cgt/10.2174/0115665232338503241227111640
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alzheimer’s disease; biomarker; Dementia; gene; polymorphism; SNP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test