Skip to content
2000
image of Next-Generation Nucleic Acid Delivery: A Review of Nanobiosystemc Design and Applications

Abstract

The increasing approval of nucleic acid therapeutics has led to a significant advancement in medicines, demonstrating their potential to revolutionize the prevention and treatment of numerous diseases. However, challenges like nuclease degradation and difficult cellular delivery hinder their use as therapeutic agents. The rising demand for precise gene therapy delivery has positioned nanobiosystems as a groundbreaking solution, with their customizable properties enabling targeted and efficient delivery. Nucleic Acid therapeutics, encompassing antisense DNA, mRNA, small interfering RNA (siRNA), and microRNA (miRNA), have been rigorously investigated for their capacity to modulate gene expression. Notably, integrating these gene therapies with nanoscale delivery platforms has significantly broadened their scope, facilitating sophisticated advancements in bioanalysis, gene silencing, protein replacement therapies, and the development of vaccines. This review provides a thorough review of recent advancements in nanobiosystems for therapeutic nucleic acid delivery. We explore the unique characteristics of various nanobiosystems, including gene therapy-based delivery, nanoparticles, stimuli-responsive systems, smart nanocarriers, and extracellular vesicle-based delivery. We offer a detailed overview of their applications in nucleic acid delivery. Furthermore, we address biological barriers and strategies for the therapeutic delivery of nucleic acids. Ultimately, this review provides critical insights into the strategic development of next-generation delivery vectors for nucleic acid therapeutics.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232367377250519114910
2025-05-27
2025-08-17
Loading full text...

Full text loading...

References

  1. Tan X. Jia F. Wang P. Zhang K. Nucleic acid-based drug delivery strategies. J. Control. Release 2020 323 240 252 10.1016/j.jconrel.2020.03.040 32272123
    [Google Scholar]
  2. Patra J.K. Das G. Fraceto L.F. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  3. Hossen S. Hossain M.K. Basher M.K. Mia M.N.H. Rahman M.T. Uddin M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019 15 1 18 10.1016/j.jare.2018.06.005 30581608
    [Google Scholar]
  4. Senapati S. Mahanta A.K. Kumar S. Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018 3 1 7 10.1038/s41392‑017‑0004‑3 29560283
    [Google Scholar]
  5. Ansell S.M. Du X. Lipids and lipid nanoparticle formulations for delivery of nucleic acids. US 10166298B2 2019
  6. Ansell S.M. Du X. Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids. WO2017075531A1 2017
  7. Du X. Ansell S.M. Lipids and lipid nanoparticle formulations for delivery of nucleic acids. US 10221127B2 2019
  8. Antonio de Fougerolles Sayda M Elbashir Delivery and formulation of engineered nucleic acids. US 10,898,574 B2 2021
  9. Yaworski E. Lam K. Jeffs L. Palmer L. Maclachlan I. Lipid formulations for nucleic acid delivery. US 8058069B2 2011
  10. Yaworski E. Jeffs L.B. Palmer L.R. Non-liposomal systems for nucleic acid delivery. US 9404127B2 2016
  11. Thomas J. Webster Nanotubes as carriers of nucleic acids into cells. US Patent. US 10,364,440 B2 2011
  12. Akinc A. Maier M.A. Manoharan M. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 2019 14 12 1084 1087 10.1038/s41565‑019‑0591‑y 31802031
    [Google Scholar]
  13. Fattal E. Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv. Drug Deliv. Rev. 2021 175 113809 10.1016/j.addr.2021.05.019 34033819
    [Google Scholar]
  14. Lee Y. Kataoka K. Delivery of nucleic acid drugs. Nucleic Acid Drugs Advances in Polymer Science. Berlin, Heidelberg Springer 2011 95 134 10.1007/12_2011_129
    [Google Scholar]
  15. Conner S.D. Schmid S.L. Regulated portals of entry into the cell. Nature 2003 422 6927 37 44 10.1038/nature01451 12621426
    [Google Scholar]
  16. Mukalel A.J. Riley R.S. Zhang R. Mitchell M.J. Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy. Cancer Lett. 2019 458 102 112 10.1016/j.canlet.2019.04.040 31100411
    [Google Scholar]
  17. Wang C. Ge Q. Ting D. Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat. Mater. 2004 3 3 190 196 10.1038/nmat1075 14991022
    [Google Scholar]
  18. Liu K. Hui L. Qing Z. Coupling of a bifunctional peptide R13 to OTMCS-PEI copolymer as a gene vector increases transfection efficiency and tumor targeting. Int. J. Nanomedicine 2014 9 1311 1322 10.2147/IJN.S59726 24648730
    [Google Scholar]
  19. Vermeulen L.M.P. Brans T. De Smedt S.C. Remaut K. Braeckmans K. Methodologies to investigate intracellular barriers for nucleic acid delivery in non-viral gene therapy. Nano Today 2018 21 74 90 10.1016/j.nantod.2018.06.007
    [Google Scholar]
  20. Ni R. Feng R. Chau Y. Synthetic approaches for nucleic acid delivery: Choosing the right carriers. Life 2019 9 3 59 10.3390/life9030059 31324016
    [Google Scholar]
  21. Dutta K. Das R. Medeiros J. Kanjilal P. Thayumanavan S. Charge‐conversion strategies for nucleic acid delivery. Adv. Funct. Mater. 2021 31 24 2011103 10.1002/adfm.202011103 35832306
    [Google Scholar]
  22. Zhou L. Ren J. Qu X. Nucleic acid-templated functional nanocomposites for biomedical applications. Mater. Today 2017 20 4 179 190 10.1016/j.mattod.2016.09.012
    [Google Scholar]
  23. Surana S. Shenoy A.R. Krishnan Y. Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nat. Nanotechnol. 2015 10 9 741 747 10.1038/nnano.2015.180 26329110
    [Google Scholar]
  24. Xu F. Xia Q. Wang P. Rationally designed DNA nanostructures for drug delivery. Front Chem. 2020 8 751 10.3389/fchem.2020.00751
    [Google Scholar]
  25. Zahid M. Kim B. Hussain R. Amin R. Park S.H. DNA nanotechnology: A future perspective. Nanoscale Res. Lett. 2013 8 1 3 10.1186/1556‑276x‑8‑119
    [Google Scholar]
  26. Zhang C. Su M. He Y. Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc. Natl. Acad. Sci. 2008 105 31 10665 10669 10.1073/pnas.0803841105
    [Google Scholar]
  27. Sharma A. Porterfield J.E. Smith E. Sharma R. Kannan S. Kannan R.M. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model. J. Control. Release 2018 283 175 189 10.1016/j.jconrel.2018.06.003 29883694
    [Google Scholar]
  28. Ma Y. Sha M. Cheng S. Yao W. Li Z. Qi X.R. Construction of hyaluronic tetrasaccharide clusters modified polyamidoamine siRNA delivery system. Nanomaterials 2018 8 6 433 10.3390/nano8060433 29899207
    [Google Scholar]
  29. Altwaijry N. Somani S. Parkinson J.A. Regression of prostate tumors after intravenous administration of lactoferrin-bearing polypropylenimine dendriplexes encoding TNF-α, TRAIL, and interleukin-12. Drug Deliv. 2018 25 1 679 689 10.1080/10717544.2018.1440666 29493296
    [Google Scholar]
  30. Schlosser K. Taha M. Deng Y. Stewart D.J. Systemic delivery of MicroRNA mimics with polyethylenimine elevates pulmonary microRNA levels, but lacks pulmonary selectivity. Pulm. Circ. 2018 8 1 1 4 10.1177/2045893217750613 29251557
    [Google Scholar]
  31. Wagner E. Polymers for siRNA delivery: Inspired by viruses to be targeted, dynamic, and precise. Acc. Chem. Res. 2012 45 7 1005 1013 10.1021/ar2002232 22191535
    [Google Scholar]
  32. Jiang Q. Song C. Nangreave J. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 2012 134 32 13396 13403 10.1021/ja304263n
    [Google Scholar]
  33. Peng L. Wagner E. Polymeric carriers for nucleic acid delivery: Current designs and future directions. Biomacromolecules 2019 20 10 3613 3626 10.1021/acs.biomac.9b00999 31497946
    [Google Scholar]
  34. Halman J.R. Kim K.T. Gwak S.J. A cationic amphiphilic co-polymer as a carrier of nucleic acid nanoparticles (Nanps) for controlled gene silencing, immunostimulation, and biodistribution. Nanomedicine 2020 23 102094 10.1016/j.nano.2019.102094 31669854
    [Google Scholar]
  35. Lee H. Lytton-Jean A.K. Chen Y. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 2012 7 6 389 393 10.1038/nnano.2012.73
    [Google Scholar]
  36. Qian H. Tay C.Y. Setyawati M.I. Chia S.L. Lee D.S. Leong D.T. Protecting microRNAs from RNase degradation with steric DNA nanostructures. Chem. Sci. 2017 8 2 1062 1067 10.1039/c6sc01829g
    [Google Scholar]
  37. Choi K.Y. Correa S. Min J. Binary targeting of siRNA to hematologic cancer cells in vivo using layer‐by‐layer nanoparticles. Adv. Funct. Mater. 2019 29 20 1900018 10.1002/adfm.201900018 31839764
    [Google Scholar]
  38. Piotrowski-Daspit A.S. Kauffman A.C. Bracaglia L.G. Saltzman W.M. Polymeric vehicles for nucleic acid delivery. Adv. Drug Deliv. Rev. 2020 156 119 132 10.1016/j.addr.2020.06.014 32585159
    [Google Scholar]
  39. Bishop C.J. Abubaker-Sharif B. Guiriba T. Tzeng S.Y. Green J.J. Gene delivery polymer structure–function relationships elucidated via principal component analysis. Chem. Commun. 2015 51 60 12134 12137 10.1039/C5CC04417K 26126593
    [Google Scholar]
  40. Kaczmarek J.C. Kauffman K.J. Fenton O.S. Optimization of a degradable polymer–lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells. Nano Lett. 2018 18 10 6449 6454 10.1021/acs.nanolett.8b02917 30211557
    [Google Scholar]
  41. Niu W. Chen X. Tan W. Veige A.S. N-Heterocyclic carbene–gold (I) complexes conjugated to a leukemia-specific DNA aptamer for targeted drug delivery. Angew. Chem. Int. Ed. 2016 55 31 8889 8893 10.1002/anie.201602702
    [Google Scholar]
  42. Hu Q. Li H. Wang L. Gu H. Fan C. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 2019 119 10 6459 6506 10.1021/acs.chemrev.7b00663 29465222
    [Google Scholar]
  43. Ke Y. Ong L.L. Shih W.M. Yin P. Three-dimensional structures self-assembled from DNA bricks. Science 2012 338 6111 1177 1183 10.1126/science.1227268 23197527
    [Google Scholar]
  44. Wei B. Dai M. Yin P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 2012 485 7400 623 626 10.1038/nature11075 22660323
    [Google Scholar]
  45. Hamblin G.D. Hariri A.A. Carneiro K.M.M. Lau K.L. Cosa G. Sleiman H.F. Simple design for DNA nanotubes from a minimal set of unmodified strands: Rapid, room-temperature assembly and readily tunable structure. ACS Nano 2013 7 4 3022 3028 10.1021/nn4006329 23452006
    [Google Scholar]
  46. Whitfield C.J. Zhang M. Winterwerber P. Wu Y. Ng D.Y.W. Weil T. Functional DNA–polymer conjugates. Chem. Rev. 2021 121 18 11030 11084 10.1021/acs.chemrev.0c01074 33739829
    [Google Scholar]
  47. Zhang F. Jiang S. Wu S. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 2015 10 9 779 784 10.1038/nnano.2015.162 26192207
    [Google Scholar]
  48. Jun H Shepherd TR Zhang K Automated sequence design of 3d polyhedral wireframe DNA origami with honeycomb edges. ACS Nano 2019 13 2 acsnano.8b08671 10.1021/acsnano.8b08671 30605605
    [Google Scholar]
  49. Yoon S. Wu X. Armstrong B. Habib N. Rossi J.J. An RNA aptamer targeting the receptor tyrosine kinase PDGFRα induces anti-tumor effects through STAT3 and p53 in glioblastoma. Mol. Ther. Nucleic Acids 2019 14 131 141 10.1016/j.omtn.2018.11.012
    [Google Scholar]
  50. Liu J. Song L. Liu S. A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy. Nano Lett. 2018 18 6 3328 3334 10.1021/acs.nanolett.7b04812 29708760
    [Google Scholar]
  51. Tan X. Li B.B. Lu X. Light-triggered, self-immolative nucleic acid-drug nanostructures. J. Am. Chem. Soc. 2015 137 19 6112 6115 10.1021/jacs.5b00795 25924099
    [Google Scholar]
  52. Zhao Y.X. Shaw A. Zeng X. Benson E. Nyström A.M. Högberg B. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 2012 6 10 8684 8691 10.1021/nn3022662 22950811
    [Google Scholar]
  53. Esposito C.L. Nuzzo S. Catuogno S. Romano S. De Nigris F. De Franciscis V. STAT3 gene silencing by aptamer-siRNA chimera as selective therapeutic for glioblastoma. Mol. Ther. Nucleic Acids 2017 10 398 411 10.1016/j.omtn.2017.12.021
    [Google Scholar]
  54. Nunes R. Valente J.F.A. Patrício T.M.F. Sousa Â. Nanoengineered innovations on DNA delivery systems for targeted cancer therapy. J. Drug Deliv. Sci. Technol [Internet]. 2025 111 107131 107131 10.1016/j.jddst.2025.107131
    [Google Scholar]
  55. Lacroix A. Vengut-Climent E. de Rochambeau D. Sleiman H.F. Uptake and fate of fluorescently labeled dna nanostructures in cellular environments: A cautionary tale. ACS Cent. Sci. 2019 5 5 882 891 10.1021/acscentsci.9b00174 31139724
    [Google Scholar]
  56. Tan X. Lu X. Jia F. Blurring the role of oligonucleotides: Spherical nucleic acids as a drug delivery vehicle. J. Am. Chem. Soc. 2016 138 34 10834 10837 10.1021/jacs.6b07554 27522867
    [Google Scholar]
  57. Guo Y. Zhang J. Ding F. Stressing the role of DNA as a drug carrier: Synthesis of DNA–drug conjugates through grafting chemotherapeutics onto phosphorothioate oligonucleotides. Adv. Mater. 2019 31 16 1807533 10.1002/adma.201807533 30847970
    [Google Scholar]
  58. Jia F. Lu X. Tan X. Zhang K. Facile synthesis of nucleic acid–polymer amphiphiles and their self-assembly. Chem. Commun. 2015 51 37 7843 7846 10.1039/C5CC01934F 25855414
    [Google Scholar]
  59. Veneziano R. Ratanalert S. Zhang K. Designer nanoscale DNA assemblies programmed from the top down. Science 2016 352 6293 1534 10.1126/science.aaf4388 27229143
    [Google Scholar]
  60. Long Q. Tian X. Wang H. Applications of DNA tetrahedron nanostructure in cancer diagnosis and anticancer drugs delivery. Nanotechnol. Rev. 2023 12 1 20220553 10.1515/ntrev‑2022‑0553
    [Google Scholar]
  61. Mou Q. Ma Y. Ding F. Two-in-one chemogene assembled from drug-integrated antisense oligonucleotides to reverse chemoresistance. J. Am. Chem. Soc. 2019 141 17 6955 6966 10.1021/jacs.8b13875 30964284
    [Google Scholar]
  62. Bousmail D. Amrein L. Fakhoury J.J. Precision spherical nucleic acids for delivery of anticancer drugs. Chem. Sci. 2017 8 9 6218 6229 10.1039/C7SC01619K 28989655
    [Google Scholar]
  63. Yoon S. Huang K.W. Reebye V. Spalding D. Przytycka T.M. Wang Y. Aptamer-drug conjugates of active metabolites of nucleoside analogs and cytotoxic agents inhibit pancreatic tumor cell growth. Mol. Ther. Nucleic Acids 2017 6 80 88 10.1016/j.omtn.2016.11.008
    [Google Scholar]
  64. Wang W. Chen S. An B. Complex wireframe DNA nanostructures from simple building blocks. Nat. Commun. 2019 10 1 1067 10.1038/s41467‑019‑08647‑7 30842408
    [Google Scholar]
  65. Gudipati S. Zhang K. Rouge J.L. Towards self-transfecting nucleic acid nanostructures for gene regulation. Trends Biotechnol. 2019 37 9 983 994 10.1016/j.tibtech.2019.01.008 30879697
    [Google Scholar]
  66. Mendes B.B. Conniot J. Avital A. Nanodelivery of nucleic acids. Nature Reviews Methods Primers 2022 2 1 24 10.1038/s43586‑022‑00104‑y 35480987
    [Google Scholar]
  67. Bishop C.J. Majewski R.L. Guiriba T.R.M. Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Acta Biomater. 2016 37 120 130 10.1016/j.actbio.2016.03.036 27019146
    [Google Scholar]
  68. Mangraviti A. Tzeng S.Y. Kozielski K.L. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano 2015 9 2 1236 1249 10.1021/nn504905q 25643235
    [Google Scholar]
  69. Xiang S.D. Selomulya C. Ho J. Apostolopoulos V. Plebanski M. Delivery of DNA vaccines: An overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010 2 3 205 218 10.1002/wnan.88 20391461
    [Google Scholar]
  70. Shim G. Han S.E. Yu Y.H. Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug. J. Control. Release 2011 155 1 60 66 10.1016/j.jconrel.2010.10.017 20971142
    [Google Scholar]
  71. Costa P.M. Cardoso A.L. Mendonça L.S. Serani A. Custódia C. Conceição M. Tumor-targeted chlorotoxin-coupled nanoparticles for NA delivery to glioblastoma cells: A promising system for glioblastoma treatment. Mol. Ther. Nucleic Acids 2013 2 e100 10.1038/mtna.2013.30
    [Google Scholar]
  72. Pakunlu R.I. Wang Y. Saad M. Khandare J.J. Starovoytov V. Minko T. In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug. J. Control. Release 2006 114 2 153 162 10.1016/j.jconrel.2006.06.010 16889867
    [Google Scholar]
  73. Rapoport N. Phase‐shift, stimuli‐responsive perfluorocarbon nanodroplets for drug delivery to cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012 4 5 492 510 10.1002/wnan.1176 22730185
    [Google Scholar]
  74. Torchilin V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005 4 2 145 160 10.1038/nrd1632 15688077
    [Google Scholar]
  75. Kumar S. Gold nanorod, an optical probe to track HIV infection. J. Sens. Technol. 2012 2 1 38 47 10.4236/jst.2012.21006
    [Google Scholar]
  76. Sato Y. Hatakeyama H. Sakurai Y. Hyodo M. Akita H. Harashima H. A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J. Control. Release 2012 163 3 267 276 10.1016/j.jconrel.2012.09.009 23000694
    [Google Scholar]
  77. Wang L. Liang T.T. CD59 receptor targeted delivery of miRNA-1284 and cisplatin-loaded liposomes for effective therapeutic efficacy against cervical cancer cells. AMB Express 2020 10 1 54 10.1186/s13568‑020‑00990‑z 32185543
    [Google Scholar]
  78. Ramasamy T. Chen X. Qin B. Johnson D.E. Grandis J.R. Villanueva F.S. STAT3 decoy oligonucleotide-carrying microbubbles with pulsed ultrasound for enhanced therapeutic effect in head and neck tumors. PLoS One 2020 15 11 e0242264 10.1371/journal.pone.0242264 33206698
    [Google Scholar]
  79. Hirao K. Sugita T. Kubo T. Targeted gene delivery to human osteosarcoma cells with magnetic cationic liposomes under a magnetic field. Int. J. Oncol. 2003 22 5 1065 1071 10.3892/ijo.22.5.1065 12684673
    [Google Scholar]
  80. Bujold K.E. Lacroix A. Sleiman H.F. DNA nanostructures at the interface with biology. Chem 2018 4 3 495 521 10.1016/j.chempr.2018.02.005
    [Google Scholar]
  81. Zhu G. Niu G. Chen X. Aptamer–drug conjugates. Bioconjug. Chem. 2015 26 11 2186 2197 10.1021/acs.bioconjchem.5b00291 26083153
    [Google Scholar]
  82. Sokolova V. Epple M. Biological and medical applications of calcium phosphate nanoparticles. Chemistry 2021 27 27 7471 7488 10.1002/chem.202005257 33577710
    [Google Scholar]
  83. Levingstone T.J. Herbaj S. Redmond J. McCarthy H.O. Dunne N.J. Calcium phosphate nanoparticles-based systems for RNAi delivery: Applications in bone tissue regeneration. Nanomaterials 2020 10 1 146 10.3390/nano10010146 31947548
    [Google Scholar]
  84. Yakovchuk P. Protozanova E. Frank-Kamenetskii M.D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006 34 2 564 574 10.1093/nar/gkj454 16449200
    [Google Scholar]
  85. Wang Y. Santos A. Evdokiou A. Losic D. An overview of nanotoxicity and nanomedicine research: Principles, progress and implications for cancer therapy. J. Mater. Chem. B Mater. Biol. Med. 2015 3 36 7153 7172 10.1039/C5TB00956A 32262822
    [Google Scholar]
  86. Wang X. Lai W. Man T. Bio-surface engineering with DNA scaffolds for theranostic applications. Nanofabrication 2018 4 1 1 16 10.1515/nanofab‑2018‑0001
    [Google Scholar]
  87. Ramakrishnan S. Ijäs H. Linko V. Keller A. Structural stability of DNA origami nanostructures under application-specific conditions. Comput. Struct. Biotechnol. J. 2018 16 342 349 10.1016/j.csbj.2018.09.002 30305885
    [Google Scholar]
  88. Kim H.J. Kim A. Miyata K. Kataoka K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv. Drug Deliv. Rev. 2016 104 61 77 10.1016/j.addr.2016.06.011 27352638
    [Google Scholar]
  89. Oliveira C. Ribeiro A.J. Veiga F. Silveira I. Recent advances in nucleic acid-based delivery: From bench to clinical trials in genetic diseases. J. Biomed. Nanotechnol. 2016 12 5 841 862 10.1166/jbn.2016.2245 27305810
    [Google Scholar]
  90. Hu B. Weng Y. Xia X.H. Liang X. Huang Y. Clinical advances of siRNA therapeutics. J. Gene Med. 2019 21 7 e3097 10.1002/jgm.3097 31069898
    [Google Scholar]
  91. Zhang L. Ma X. Wang G. Non-origami DNA for functional nanostructures: From structural control to advanced applications. Nano Today 2021 39 101154 10.1016/j.nantod.2021.101154
    [Google Scholar]
  92. Zhang W. Hou Y. Yin S. Advanced gene nanocarriers/scaffolds in nonviral-mediated delivery system for tissue regeneration and repair. J. Nanobiotechnology 2024 22 1 376 10.1186/s12951‑024‑02580‑8 38926780
    [Google Scholar]
  93. Frede A Neuhaus B Klopfleisch R Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo. J Cont. Release 2016 222 86 96 10.1016/j.jconrel.2015.12.021
    [Google Scholar]
  94. Cheng Q. Wei T. Farbiak L. Johnson L.T. Dilliard S.A. Siegwart D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 2020 15 4 313 320 10.1038/s41565‑020‑0669‑6 32251383
    [Google Scholar]
  95. Möser C. Lorenz J.S. Sajfutdinow M. Smith D.M. Pinpointed stimulation of EphA2 receptors via DNA-templated oligovalence. Int. J. Mol. Sci. 2018 19 11 3482 10.3390/ijms19113482
    [Google Scholar]
  96. Lee E.J. Lee S.J. Kang Y.S. Engineered proteinticles for targeted delivery of siRNA to cancer cells. Adv. Funct. Mater. 2015 25 8 1279 1286 10.1002/adfm.201403680
    [Google Scholar]
  97. Wang H. Yao H. Li C. HIP1R targets PD-L1 to lysosomal degradation to alter T cell–mediated cytotoxicity. Nat. Chem. Biol. 2019 15 1 42 50 10.1038/s41589‑018‑0161‑x 30397328
    [Google Scholar]
  98. Tay L.M. Xu C. Coating microbubbles with nanoparticles for medical imaging and drug delivery. Nanomedicine 2017 12 2 91 94 10.2217/nnm‑2016‑0362 27876447
    [Google Scholar]
  99. Pun S.H. Tack F. Bellocq N.C. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol. Ther. 2004 3 7 641 650 10.4161/cbt.3.7.918 15136766
    [Google Scholar]
  100. Macfarlane L.A. Murphy P.R. MicroRNA: Biogenesis, function and role in cancer. Curr. Genomics 2010 11 7 537 561 10.2174/138920210793175895 21532838
    [Google Scholar]
  101. Dirisala A. Uchida S. Li J. Effective mRNA protection by Poly(l ‐ornithine) synergizes with endosomal escape functionality of a charge‐conversion polymer toward maximizing mrna introduction efficiency. Macromol. Rapid Commun. 2022 43 12 2100754 10.1002/marc.202100754 35286740
    [Google Scholar]
  102. Dirisala A. Uchida S. Tockary T.A. Precise tuning of disulphide crosslinking in mRNA polyplex micelles for optimising extracellular and intracellular nuclease tolerability. J. Drug Target. 2019 27 5-6 670 680 10.1080/1061186X.2018.1550646 30499743
    [Google Scholar]
  103. Dirisala A. Osada K. Chen Q. Optimized rod length of polyplex micelles for maximizing transfection efficiency and their performance in systemic gene therapy against stroma-rich pancreatic tumors. Biomaterials 2014 35 20 5359 5368 10.1016/j.biomaterials.2014.03.037 24720877
    [Google Scholar]
  104. Haladjova E. Rangelov S. Application of polymeric micelles for drug and gene delivery. Pharmaceutics 2024 16 5 646 10.3390/pharmaceutics16050646 38794308
    [Google Scholar]
  105. Grimme C.J. Hanson M.G. Corcoran L.G. Reineke T.M. Polycation architecture affects complexation and delivery of short antisense oligonucleotides: Micelleplexes outperform polyplexes. Biomacromolecules 2022 23 8 3257 3271 10.1021/acs.biomac.2c00338 35862267
    [Google Scholar]
  106. Tan Z. Jiang Y. Zhang W. Karls L. Lodge T.P. Reineke T.M. Polycation architecture and assembly direct successful gene delivery: Micelleplexes outperform polyplexes via optimal dna packaging. J. Am. Chem. Soc. 2019 141 40 15804 15817 10.1021/jacs.9b06218 31553590
    [Google Scholar]
  107. Wen P. Ke W. Dirisala A. Toh K. Tanaka M. Li J. Stealth and pseudo-stealth nanocarriers. Adv. Drug Deliv. Rev. 2023 198 114895 10.1016/j.addr.2023.114895 37211278
    [Google Scholar]
  108. Shen X. Dirisala A. Toyoda M. pH-responsive polyzwitterion covered nanocarriers for DNA delivery. J. Control. Release 2023 360 928 939 10.1016/j.jconrel.2023.07.038 37495117
    [Google Scholar]
  109. Ge Z. Chen Q. Osada K. Targeted gene delivery by polyplex micelles with crowded PEG palisade and cRGD moiety for systemic treatment of pancreatic tumors. Biomaterials 2014 35 10 3416 3426 10.1016/j.biomaterials.2013.12.086 24439417
    [Google Scholar]
  110. Chen Q. Osada K. Ge Z. Polyplex micelle installing intracellular self-processing functionalities without free catiomers for safe and efficient systemic gene therapy through tumor vasculature targeting. Biomaterials 2017 113 253 265 10.1016/j.biomaterials.2016.10.042 27835820
    [Google Scholar]
  111. Jin J.O. Kim G. Hwang J. Han K.H. Kwak M. Lee P.C.W. NA nanotechnology for cancer treatment. Biochim. Biophys. Acta Rev. Cancer 2020 1874 1 188377 10.1016/j.bbcan.2020.188377 32418899
    [Google Scholar]
  112. Mustafa G. Hassan D. Ruiz-Pulido G. Nanoscale drug delivery systems for cancer therapy using paclitaxel— A review of challenges and latest progressions. J. Drug Deliv. Sci. Technol. 2023 84 104494 10.1016/j.jddst.2023.104494
    [Google Scholar]
  113. Shah R. Patel T. Freedman J.E. Circulating extracellular vesicles in human disease. N. Engl. J. Med. 2018 379 10 958 966 10.1056/NEJMra1704286 30184457
    [Google Scholar]
  114. Zhou J. Shum K.T. Burnett J. Rossi J. Nanoparticle-based delivery of RNAi therapeutics: Progress and challenges. Pharmaceuticals 2013 6 1 85 107 10.3390/ph6010085 23667320
    [Google Scholar]
  115. Dirisala A. Li J. Gonzalez-Carter D. Wang Z. Editorial: Delivery systems in biologics-based therapeutics. Front. Bioeng. Biotechnol. 2023 11 1274210 10.3389/fbioe.2023.1274210 37662436
    [Google Scholar]
  116. Malik S. Muhammad K. Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules 2023 28 18 6624 10.3390/molecules28186624 37764400
    [Google Scholar]
  117. Wei T. Cheng Q. Farbiak L. Anderson D.G. Langer R. Siegwart D.J. Delivery of tissue-targeted scalpels: Opportunities and challenges for in vivo CRISPR/Cas-based genome editing. ACS Nano 2020 14 8 9243 9262 10.1021/acsnano.0c04707 32697075
    [Google Scholar]
  118. Dilliard S.A. Cheng Q. Siegwart D.J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl. Acad. Sci. USA 2021 118 52 e2109256118 10.1073/pnas.2109256118 34933999
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232367377250519114910
Loading
/content/journals/cgt/10.2174/0115665232367377250519114910
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: gene therapy ; mRNA ; nanobiosystems ; nanoparticles ; Nucleic acid delivery ; siRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test