Skip to content
2000
image of Microwave-assisted Synthesis and Characterization of Calix[4]resorcinarene Schiff Base [C4RSB]

Abstract

Background/Introduction

Calix[4]resorcinarenes are macrocyclic hosts with wide-ranging applications in catalysis, molecular recognition, and materials science. Functionalization through Schiff base formation can enhance their stability, selectivity, and binding properties. Traditional synthetic approaches are often time-consuming, energy-intensive, and environmentally unfriendly.To develop a rapid, energy-efficient, and eco-friendly microwave-assisted protocol for synthesizing structurally diverse calix[4]resorcinarene Schiff base (C4RSB) derivatives in high yields, while adhering to green chemistry principles.

Method

A series of C4RSB derivatives was synthesized under mild conditions using ethanol as a green solvent and microwave-assisted heating. The reaction parameters were optimized to maximize yield and minimize energy consumption. The resulting compounds were characterized by NMR, FTIR, elemental analysis, and mass spectrometry to confirm structural fidelity, purity, and reproducibility.

Results

The microwave-assisted methodology yielded C4RSB derivatives in excellent yields (80–91%) with significant reductions in reaction time and energy usage compared to conventional methods. Spectroscopic analyses confirmed the successful formation of imine linkages and the preservation of the calix[4]resorcinarene framework. The methodology proved robust and reproducible, generating structurally consistent products.

Discussion

Microwave-assisted synthesis of C4RSB derivatives achieved high yields with markedly reduced reaction times, underscoring its efficiency over conventional methods. The use of ethanol as a green solvent minimized environmental impact while maintaining product purity and structural integrity, as confirmed by spectroscopic analysis. Enhanced reaction kinetics under microwave irradiation facilitated rapid imine formation without thermal degradation, demonstrating the method’s suitability for sustainable, scalable macrocycle functionalization.

Conclusion

Microwave-assisted synthesis using ethanol as a green solvent provides an efficient, sustainable, and high-yielding route to C4RSB derivatives. This approach aligns with green chemistry principles and holds promise for the scalable production of functionalized calix[4]resorcinarenes for catalysis, molecular recognition, and advanced materials development.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461391375250728203247
2025-08-05
2025-09-05
Loading full text...

Full text loading...

References

  1. Sosa M.V. Hussain K. Prieto E.D. Da Ros T. Shah M.R. García Einschlag F.S. Wolcan E. A water-responsive calix[4]resorcinarene system: Self-assembly and fluorescence modulation. Phys. Chem. Chem. Phys. 2025 27 1041 1054 10.1039/D4CP04011B
    [Google Scholar]
  2. Agrawal Y.K. Pancholi J.P. Vyas J.M. Design and synthesis of Calixarene. J. Sci. Ind. Res. 2009 68 745 768
    [Google Scholar]
  3. Wang K. Yan K. Liu Q. Wang Z. Hu X.Y. The versatile applications of calix[4]resorcinarene-based cavitands. Molecules 2024 29 24 5854 10.3390/molecules29245854 39769942
    [Google Scholar]
  4. Jain V.K. Pandya R.A. Pillai S.G. Agrawal Y.K. Kanaiya P.H. Solid-phase extractive preconcentration and separation of lanthanum(III) and cerium(III) using a polymer-supported chelating calix [4] arene resin. J. Anal. Chem. 2007 62 2 104 112 10.1134/S1061934807020025
    [Google Scholar]
  5. Malik A. Sharma P.R. Sharma R.K. α-Methylbenzylamine functionalized crown-ether-appended calix[4]arene phase transfer catalyst for enantioselective Henry reaction. Chemistry 2023 29 72 202302638 10.1002/chem.202302638 37850687
    [Google Scholar]
  6. Timmerman P. Verboom W. Reinhoudt D.N. Resorcinarenes. Tetrahedron 1996 52 8 2663 2704 10.1016/0040‑4020(95)00984‑1
    [Google Scholar]
  7. Manjare S.B. Mahadik R.K. Manval K.S. More P.P. Dalvi S.S. Microwave-assisted rapid and green synthesis of Schiff bases using cashew shell extract as a natural acid catalyst. ACS Omega 2023 8 1 473 479 10.1021/acsomega.2c05187 36643449
    [Google Scholar]
  8. Agrawal Y.K. Patadia R.N. Studies on resorcinarenes and their analytical applications. Rev. Anal. Chem. 2006 25 3 155 239 10.1515/REVAC.2006.25.3.155
    [Google Scholar]
  9. Shebitha A.M. Shaibuna M. Hiba K. Sreekumar K. Synthesis, characterization and DFT-D studies of 2-aminoethoxycalix[4]resorcinarenes: A novel heterogeneous organocatalyst. Catal. Lett. 2022 152 10 3017 3030 10.1007/s10562‑021‑03895‑z
    [Google Scholar]
  10. Sliwa W. Zujewska T. Bachowska B. Resorcinarenes. Pol. J. Chem. 2003 77 1079 1111
    [Google Scholar]
  11. Kanaiya P.H. Jain V.K. Microwave-assisted synthesis and characterization of calix[4]resorcinarenes. Russ. J. Org. Chem. 2024 60 10 2014 2019 10.1134/S107042802410018X
    [Google Scholar]
  12. Sardjono R.E. Musthapa I. Rosliana I. Khoerunnisa F. Yuliani G. A green synthesis of a novel calix[4]resorcinarene from 7-hydroxycitronellal using microwave irradiation. Indones J. Chem. 2023 23 1 1 7 10.22146/ijc.25466
    [Google Scholar]
  13. Jain V.K. Pillai S.G. Kanaiya P.H. Octafunctionalized calix[4]resorcinarene-N-fenil-acetohydroxamic acid for the separation, preconcentration and transport studies of cerium(IV). J. Braz. Chem. Soc. 2006 17 7 1316 1322 10.1590/S0103‑50532006000700018
    [Google Scholar]
  14. Zhang Q. Syntheses and biological activities of calix[4]resorcinarene derivatives modified by sulfonic acid and sulfonamides. RSC Advances 2024 14 25115 25119 10.1039/D4RA04426F
    [Google Scholar]
  15. Jain V.K. Kanaiya P.H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev. 2011 80 1 75 102 10.1070/RC2011v080n01ABEH004127
    [Google Scholar]
  16. He L. Li L. Wang S.C. Chan Y.T. Sequential self-assembly of calix[4]resorcinarene-based heterobimetallic Cd8Pt8 nano-Saturn complexes. Chem. Commun. 2023 59 77 11500 11503 10.1039/D3CC03414C 37622211
    [Google Scholar]
  17. Deleersnyder K. Mehdi H. Horváth I.T. Binnemans K. Parac-Vogt T.N. Lanthanide(III) nitrobenzenesulfonates and p-toluenesulfonate complexes of lanthanide(III), iron(III), and copper(II) as novel catalysts for the formation of calix[4]resorcinarene. Tetrahedron 2007 63 37 9063 9070 10.1016/j.tet.2007.06.090
    [Google Scholar]
  18. Roberts B.A. Cave G.W.V. Raston C.L. Scott J.L. Solvent-free synthesis of calix[4]resorcinarenes. Green Chem. 2001 3 6 280 284 10.1039/b104430n
    [Google Scholar]
  19. Cave G.W.V. Hardie M.J. Roberts B.A. Raston C.L. A versatile six-component molecular capsule based on benign synthons−selective confinement of a heterogeneous molecular aggregate. Eur. J. Org. Chem. 2001 2001 17 3227 3231 10.1002/1099‑0690(200109)2001:17<3227:AID‑EJOC3227>3.0.CO;2‑V
    [Google Scholar]
  20. Menon S.K. Jogani S.K. Agrawal Y.K. Macrocyclic Schiff bases and their analytical application. Rev. Anal. Chem. 2000 19 5 361 412 10.1515/REVAC.2000.19.5.361
    [Google Scholar]
  21. Makwana B.A. Bhatt K. Vyas D. Gupte H.S. Jain V.K. Synthesis, characterisation, binding behaviour and antimicrobial activity of azocalix[4]resorcine dye derived from 8-aminoquinoline. Sch Acad. J. Pharm. 2014 3 463 470
    [Google Scholar]
  22. Song Y. Xiao Y. Pei W.Y. Zhang J.Y. Liu C. Ma J.F.A. Calix[4]resorcinarene-Copper(II) based supramolecular nanocapsule with encapsulated polyoxometalates for enhanced photocatalytic activity. ACS Appl. Nano Mater. 2023 6 13 11902 11911 10.1021/acsanm.3c01760
    [Google Scholar]
  23. Jain V. Pillai S. Pandya R. Agrawal Y. Shrivastav P. Molecular octopus: octa functionalized calix[4]resorcinarene-hydroxamic acid [C4RAHA] for selective extraction, separation and preconcentration of U(VI). Talanta 2005 65 2 466 475 10.1016/j.talanta.2004.06.033 18969821
    [Google Scholar]
  24. Jain V.K. Pillai S.G. Pandya R.A. Agrawal Y.K. Shrivastav P.S. Selective extraction, preconcentration and transport studies of thorium(IV) using octa-functionalized calix[4]resorcinarene-hydroxamic acid. Anal. Sci. 2005 21 2 129 135 10.2116/analsci.21.129 15732472
    [Google Scholar]
  25. Jain V.K. Mandalia H.C. Suresh E. A facial microwave-assisted synthesis, spectroscopic characterization and preliminary complexation studies of calix[4]pyrroles containing the hydroxamic-acid moiety. J. Incl. Phenom. Macrocycl. Chem. 2008 62 1-2 167 178 10.1007/s10847‑008‑9453‑1
    [Google Scholar]
  26. Selvakumar K. Kumaresan M. Sami P. Swaminathan M. Eco-friendly heteropoly acid supported on natural clay for the synthesis of calix[4]resorcinarene derivatives. Indian J. Chem. Technol. 2020 27 185 191
    [Google Scholar]
  27. Sardjono R.E. Kadarohman A. Mardhiyah A. Green synthesis of some Calix[4]resorcinarene under microwave irradiation. Procedia Chem. 2012 4 224 231 10.1016/j.proche.2012.06.031
    [Google Scholar]
  28. Jain V.K. Mandalia H.C. Suresh E. Azocalix[4]pyrroles: One-pot microwave and one drop water assisted synthesis, spectroscopic characterization and preliminary investigation of its complexation with copper (II). J. Incl. Phenom. Macrocycl. Chem. 2009 63 1-2 27 35 10.1007/s10847‑008‑9485‑6
    [Google Scholar]
  29. Agrawal Y.K. Desai N.C. Mehta N.D. Microwave‐assisted synthesis of Azocalixarenes. Synth. Commun. 2007 37 13 2243 2252 10.1080/00397910701397086
    [Google Scholar]
  30. Beniwal S. Jain A. Sharma N. Fahmi N. Microwave-assisted synthesis, spectral characterization, and biological activities of complexes of a Schiff base derived from S-benzyl dithiocarbazate. J. Coord. Chem. 2024 77 5-6 601 618 10.1080/00958972.2024.2330995
    [Google Scholar]
  31. Mahmoudi Asl A. Karami B. Karimi Z. Tungstic acid-functionalized polycalix[4]resorcinarene as a cavity-containing hyper-branched supramolecular and recoverable acidic catalyst in 4 H -pyran synthesis. RSC Advances 2023 13 20 13374 13383 10.1039/D3RA00804E 37143914
    [Google Scholar]
  32. Muraleedharan J.E. Viswanathan K.P. Microwave assisted synthesis of some Ln(III) chloride complexes from 4-formyl antipyrine schiff base:Structural characterization and antimicrobial evaluation. Orient. J. Chem. 2025 41 1 254 263 10.13005/ojc/410130
    [Google Scholar]
  33. Mamta; Chaudhary, A. Novel tetraaza macrocyclic Schiff base complexes of bivalent zinc: Microwave-assisted green synthesis, spectroscopic characterization, density functional theory calculations, molecular docking studies, in vitro antimicrobial and anticancer activities. Biometals 2024 37 6 1431 1456 10.1007/s10534‑024‑00616‑y 38922505
    [Google Scholar]
  34. Kumar S. Heterocyclic Schiff base complexes of bivalent transition metals: Microwave-assisted green synthesis, structure elucidation and antimicrobial studies. Chem. Sci. Int. J. 2024 33 5 41 51 10.9734/CSJI/2024/v33i5915
    [Google Scholar]
  35. Jain V.K. Kanaiya P.H. Diazo reductive: A new approach to the synthesis of novel “upper rim” functionalized resorcin[4]arene Schiff-bases. J. Incl. Phenom. Macrocycl. Chem. 2008 62 1-2 111 115 10.1007/s10847‑008‑9445‑1
    [Google Scholar]
  36. Ak M.S. Deligöz H. Azocalixarenes. 6: Synthesis, complexation, extraction and thermal behaviour of four new azocalix[4]arenes. J. Incl. Phenom. Macrocycl. Chem. 2007 59 1-2 115 123 10.1007/s10847‑007‑9300‑9
    [Google Scholar]
  37. Desroches C. Parola S. Vocanson F. Perrin M. Lamartine R. Létoffé J.M. Bouix J. Nitration of thiacalix[4]arene using nitrosium nitrate complexes: Synthesis and characterization of tetranitro-, tetraamino-, and tetra(4-pyridylimino)tetrahydroxythiacalix[4]arene. New J. Chem. 2002 26 5 651 655 10.1039/b110609k
    [Google Scholar]
  38. Morita Y. Agawa T. Nomura E. Taniguchi H. Syntheses and NMR behavior of calix[4]quinone and calix[4]hydroquinone. J. Org. Chem. 1992 57 13 3658 3662 10.1021/jo00039a027
    [Google Scholar]
  39. Lhoták P. Morávek J. Stibor I. Diazo coupling: An alternative method for the upper rim amination of thiacalix[4]arenes. Tetrahedron Lett. 2002 43 20 3665 3668 10.1016/S0040‑4039(02)00627‑5
    [Google Scholar]
  40. Jain V.K. Kanaiya P.H. Bhojak N. Synthesis, spectral characterization of azo dyes derived from calix[4]resorcinarene and their application in dyeing of fibers. Fibers Polym. 2008 9 6 720 726 10.1007/s12221‑008‑0113‑2
    [Google Scholar]
  41. Jain V.K. Pillai S.G. Kanaiya P.H. Synthesis of Calix[4]resorcinarene based dyes and its application in dyeing of fibres. E-J. Chem. 2008 5 1037
    [Google Scholar]
  42. Kanaiya P.H. Jain V.K. Tetrafunctionalized Azocalix[4]resorcinarene dye: A chromogenic supramolecule used for the selective liquid-liquid extraction and spectrophotometric determination of Cu(II). Curr. Anal. Chem. 2024 10.2174/0115734110346665241016094729
    [Google Scholar]
  43. Kanaiya P.H. Jain V.K. Microwave assisted synthesis, characterization and antimicrobial study of Azocalix[4]resorcinarene. Curr. Microw. Chem. 2025 12 1 73 80 10.2174/0122133356365251250314051938
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461391375250728203247
Loading
/content/journals/cgc/10.2174/0122133461391375250728203247
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test