Skip to content
2000
image of Production and Multidisciplinary Applications of Bioplastic: A Biodegradable and Eco-Friendly Alternative to Plastic

Abstract

The versatility of plastics has led to their widespread use. The use of plastic has increased twentyfold in the previous half-century, and scientists anticipate that it will increase further in the subsequent two decades. Roughly 330 million metric tons of plastic is produced annually on a worldwide scale. A relatively recent and persistent issue in environmental management is the production, usage, and eventual disposal of plastics. Millions of animals perish annually, and soil fertility is diminished as a result of plastics building up in the ecosystem due to improper disposal. One solution to the environmental problems caused by polymers made from petrochemicals is the development of bioplastics, which are biodegradable and functionally equivalent to conventional plastics. Bioplastics and their derivatives have the potential to revolutionise environmental sustainability by reducing emissions of greenhouse gases and facilitating their widespread application. To find a long-term solution to the problem of plastic pollution, bioplastics must be developed further. It is crucial to raise public awareness to tackle plastic pollution in a sustainable manner. Concerns about pollution and the depletion of fossil fuel resources have prompted a dramatic increase in the study and creation of sustainable alternatives. Bioplastics made from sustainable plants provide a practical answer to these problems. This review article examined existing studies on the production, use, and multidisciplinary applications of bioplastics as biodegradable and environmentally friendly alternatives to conventional plastics. Research articles were collected from databases such as ScienceDirect, Scopus, PubMed, and Google Scholar. The review focused on highlighting the growing significance of bioplastics by analysing their production methods, diverse applications, and potential benefits across various sectors. This review will examine the many plant-based bioplastics, their production process, and their various uses in different sectors. Along with the opportunities and threats associated with bioplastics' potential future commercialisation, this paper explains the positive side along with the limitations of these environmentally friendly materials.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461392222250728063841
2025-08-05
2025-09-27
Loading full text...

Full text loading...

References

  1. Geyer R. Jambeck J.R. Law K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017 3 7 e1700782 10.1126/sciadv.1700782 28776036
    [Google Scholar]
  2. Wilcox C. Mallos N.J. Leonard G.H. Rodriguez A. Hardesty B.D. Using expert elicitation to estimate the impacts of plastic pollution on marine wildlife. Mar. Policy 2016 65 107 114 10.1016/j.marpol.2015.10.014
    [Google Scholar]
  3. McQueen R.H. Moran L.J. Cunningham C. Hooper P.M. Exploring the connection between odour and clothing disposal. J. Text. Inst. 2021 112 11 1859 1866 10.1080/00405000.2020.1848114
    [Google Scholar]
  4. Rochman C.M. Browne M.A. Underwood A.J. van Franeker J.A. Thompson R.C. Amaral-Zettler L.A. The ecological impacts of marine debris: Unraveling the demonstrated evidence from what is perceived. Ecology 2016 97 2 302 312 10.1890/14‑2070.1 27145606
    [Google Scholar]
  5. Cavalheiro J.M.B.T. de Almeida M.C.M.D. Grandfils C. da Fonseca M.M.R. Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem. 2009 44 5 509 515 10.1016/j.procbio.2009.01.008
    [Google Scholar]
  6. Greene J.P. Biobased and biodegradable polymers. In:Sustainable Plastics. Wiley 2014 71 106
    [Google Scholar]
  7. Mal N. Satpati G. Raghunathan S. Davoodbasha M. Current strategies on algae-based biopolymer production and scale-up. Chemosphere 2022 289 133178 10.1016/j.chemosphere.2021.133178 34890607
    [Google Scholar]
  8. Demirbas A. Biodegradable plastics from renewable resources. Energy Sources, Part A. Recovery Util Environ. Effects 2007 29 5 419 424 10.1080/009083190965820
    [Google Scholar]
  9. Rajput S. Malviya R. Uniyal P. Advancements in the diagnosis, prognosis, and treatment of retinoblastoma. Can. J. Ophthalmol. 2024 59 5 281 299 10.1016/j.jcjo.2024.01.018 38369298
    [Google Scholar]
  10. Dobrucka R. Bioplastic packaging materials in circular economy. LogForum 2019 15 1
    [Google Scholar]
  11. Selvamurugan Muthusamy M. Pramasivam S. Bioplastics–an eco-friendly alternative to petrochemical plastics. Curr. World Environ. 2019 14 1 49 59 10.12944/CWE.14.1.07
    [Google Scholar]
  12. Getahun M.J. Kassie B.B. Alemu T.S. Recent advances in biopolymer synthesis, properties, & commercial applications: a review. Process Biochem. 2024 145 261 287 10.1016/j.procbio.2024.06.034
    [Google Scholar]
  13. Thomas S. Gopi S. Amalraj A. Biopolymers and their industrial applications: From plant, animal, and marine sources, to functional products. Elsevier 2020
    [Google Scholar]
  14. Nisar B. Pahalvi H.N. Gulzar A. Rashid S. Majeed L.R. Kamili A.N. Bioplastics: Solution to a green environment and sustainability. In:Role of Green Chemistry in Ecosystem Restoration to Achieve Environmental Sustainability. Elsevier 2024 261 269 10.1016/B978‑0‑443‑15291‑7.00021‑3
    [Google Scholar]
  15. Alaswad S.O. Mahmoud A.S. Arunachalam P. Recent advances in biodegradable polymers and their biological applications: A brief review. Polymers 2022 14 22 4924 10.3390/polym14224924 36433050
    [Google Scholar]
  16. Yin G.Z. Yang X.M. Biodegradable polymers: A cure for the planet, but a long way to go. J. Polym. Res. 2020 27 2 38 10.1007/s10965‑020‑2004‑1
    [Google Scholar]
  17. Dalton B. Bhagabati P. De Micco J. Padamati R.B. O’Connor K. A review on biological synthesis of the biodegradable polymers polyhydroxyalkanoates and the development of multiple applications. Catalysts 2022 12 3 319 10.3390/catal12030319
    [Google Scholar]
  18. Omura T. Isobe N. Miura T. Ishii S. Mori M. Ishitani Y. Kimura S. Hidaka K. Komiyama K. Suzuki M. Kasuya K. Nomaki H. Nakajima R. Tsuchiya M. Kawagucci S. Mori H. Nakayama A. Kunioka M. Kamino K. Iwata T. Microbial decomposition of biodegradable plastics on the deep-sea floor. Nat. Commun. 2024 15 1 568 10.1038/s41467‑023‑44368‑8 38278791
    [Google Scholar]
  19. Chakraborty M. Hasanuzzaman M. Rahman M. Khan M.A.R. Bhowmik P. Mahmud N.U. Tanveer M. Islam T. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture 2020 10 12 624 10.3390/agriculture10120624
    [Google Scholar]
  20. Moyo M. Rane A.V. Joseph G.O. Kanny K. Green composites based on polyhydroxyalkanoates. In:Green Micro-and Nanocomposites. Jenny Stanford Publishing 2024 143 160
    [Google Scholar]
  21. Mannina G. Presti D. Montiel-Jarillo G. Carrera J. Suárez-Ojeda M.E. Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. Bioresour. Technol. 2020 297 122478 10.1016/j.biortech.2019.122478 31810735
    [Google Scholar]
  22. Yu L.P. Yan X. Zhang X. Chen X.B. Wu Q. Jiang X.R. Chen G.Q. Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis. Metab. Eng. 2020 59 119 130 10.1016/j.ymben.2020.02.005 32119929
    [Google Scholar]
  23. Choi S.Y. Cho I.J. Lee Y. Kim Y.J. Kim K.J. Lee S.Y. Microbial polyhydroxyalkanoates and nonnatural polyesters. Adv. Mater. 2020 32 35 1907138 10.1002/adma.201907138 32249983
    [Google Scholar]
  24. Ventura J.R. Ventura R.L. Techno-economic feasibility of polyhydroxybutyrate (PHB) production from corn stover. Philipp. Agric. 2024 107 1 3 10.62550/DS037022
    [Google Scholar]
  25. Rajput S. Sharma P. Malviya R. Utilization of herbal components as insecticidal and repellent effects. Recent Adv. Food Nutr. Agric. 2023 14 3 144 154 10.2174/2772574X14666230804102104 37537931
    [Google Scholar]
  26. Tarrahi R. Fathi Z. Seydibeyoğlu M.Ö. Doustkhah E. Khataee A. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. Int. J. Biol. Macromol. 2020 146 596 619 10.1016/j.ijbiomac.2019.12.181 31899240
    [Google Scholar]
  27. Javaid A. Aslam S. Qaisar H. Batool F. Javed R. Waqas M. Isolation and characterization of the bioplastic producing bacteria using low-cost substrate, Sawdust J Eng. Res. Sci 2022 2 (12) 7 14 10.55708/js0212002
    [Google Scholar]
  28. Kalia V.C. Patel S.K.S. Lee J.K. Exploiting polyhydroxyalkanoates for biomedical applications. Polymers 2023 15 8 1937 10.3390/polym15081937 37112084
    [Google Scholar]
  29. Obruca S. Sedlacek P. Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. Bioresour. Technol. 2021 326 124767 10.1016/j.biortech.2021.124767 33540213
    [Google Scholar]
  30. Miranda Campos B. Fontaine G. Bourbigot S. Stoclet G. Bonnet F. Poly (L-lactide-co-ε-caprolactone) matrix composites produced in one step by in situ polymerization in TP-RTM. ACS Appl. Polym. Mater. 2022 4 10 6797 6802 10.1021/acsapm.2c01056
    [Google Scholar]
  31. Polylactic acid market size to reach USD 5,944.9 Million by 2027| growing demand for sustainable and green packaging are key fac-tors driving industry revenue growth, says Emergen Research 2021 Available from: https://www.globenewswire.com/news-release/2021/06/15/2246915/0/en/Polylactic-Acid-Market-Size-to-Reach-USD-5-944-9-Million-by-2027-Growing-Demand-for-Sustainable-and-Green-Packaging-are-Key-Factors-Driving-Industry-Revenue-Growth-says-Emergen-Res.html
  32. Tutoni G. Becker M.L. Underexplored stereocomplex polymeric scaffolds with improved thermal and mechanical properties. Macromolecules 2020 53 23 10303 10314 10.1021/acs.macromol.0c01468
    [Google Scholar]
  33. Sanivada U.K. Mármol G. Brito F.P. Fangueiro R. PLA composites reinforced with flax and jute fibers—A review of recent trends, processing parameters and mechanical properties. Polymers 2020 12 10 2373 10.3390/polym12102373 33076571
    [Google Scholar]
  34. Zhong Y. Godwin P. Jin Y. Xiao H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv. Indust Eng. Polymer Res. 2020 3 1 27 35 10.1016/j.aiepr.2019.11.002
    [Google Scholar]
  35. Sirohi R. Kumar Gaur V. Kumar Pandey A. Jun Sim S. Kumar S. Harnessing fruit waste for poly-3-hydroxybutyrate production: A review. Bioresour. Technol. 2021 326 124734 10.1016/j.biortech.2021.124734 33497926
    [Google Scholar]
  36. Zhuikova Y.V. Zhuikov V.A. Khaydapova D.D. Lunkov A.P. Bonartseva G.A. Varlamov V.P. Evaluation of chemical and biological properties of biodegradable composites based on Poly(3-hydroxybutyrate) and Chitosan. Polymers 2024 16 8 1124 10.3390/polym16081124 38675043
    [Google Scholar]
  37. Gouws M.R. Bosman C.E. Dogbe E.S. Görgens J.F. Comparative techno-economics of 2,3-butanediol, polyhydroxybutyrate and citric acid production in a biorefinery using 1G and 1G2G sugarcane-based feedstocks. Chem. Eng. Sci. 2024 286 119649 10.1016/j.ces.2023.119649
    [Google Scholar]
  38. Mishra S. Shah H. Patel A. Tripathi S.M. Malviya R. Prajapati B.G. Applications of bioengineered polymer in the field of nano-based drug delivery. ACS Omega 2024 9 1 81 96 10.1021/acsomega.3c07356 38222544
    [Google Scholar]
  39. Garrido-Miranda K.A. Rivas B.L. Pérez-Rivera M. Fernández-Blázquez J.P. Monclús M. Peña-Farfal C. Mechanical and morphological properties of poly (3-Hydroxybutyrate)-Thermoplastic starch/Clay/Eugenol bionanocomposites. J. Chil. Chem. Soc. 2020 65 4 4992 4997 10.4067/S0717‑97072020000404992
    [Google Scholar]
  40. Dechet M.A. Demina A. Römling L. Gómez Bonilla J.S. Lanyi F.J. Schubert D.W. Bück A. Peukert W. Schmidt J. Development of poly(L-lactide) (PLLA) microspheres precipitated from triacetin for application in powder bed fusion of polymers. Addit. Manuf. 2020 32 100966 10.1016/j.addma.2019.100966
    [Google Scholar]
  41. Agrawal A. Bio-based polyamides. In:Chemistry and FeedstocksBio-Based Polymers: Farm to Industry. American Chemical Society 2024 103 119
    [Google Scholar]
  42. Nanni A. Messori M. Thermo-mechanical properties and creep modelling of wine lees filled Polyamide 11 (PA11) and polybutylene succinate (PBS) bio-composites. Compos. Sci. Technol. 2020 188 107974 10.1016/j.compscitech.2019.107974
    [Google Scholar]
  43. Baley C. Bourmaud A. Davies P. Eighty years of composites reinforced by flax fibres: A historical review. Compos., Part A Appl. Sci. Manuf. 2021 144 106333 10.1016/j.compositesa.2021.106333
    [Google Scholar]
  44. Oliver-Ortega H. Julian F. Espinach F.X. Tarrés Q. Delgado-Aguilar M. Mutjé P. Biobased polyamide reinforced with natural fiber composites. In:Fiber Reinforced Composites. Duxford, UK Woodhead Publishing 2021 141 165 10.1016/B978‑0‑12‑821090‑1.00008‑9
    [Google Scholar]
  45. Feldmann M. Bio-based polyamides. In:Industrial Applications of Biopolymers and their Environmental Impact. CRC Press 2020 94 112 10.1201/9781315154190‑3
    [Google Scholar]
  46. Tey W.S. Cai C. Zhou K. A comprehensive investigation on 3D printing of polyamide 11 and thermoplastic polyurethane via multi jet fusion. Polymers 2021 13 13 2139 10.3390/polym13132139 34209747
    [Google Scholar]
  47. Lee K.P.M. Pandelidi C. Kajtaz M. Build orientation effects on mechanical properties and porosity of polyamide-11 fabricated via multi jet fusion. Addit. Manuf. 2020 36 101533 10.1016/j.addma.2020.101533
    [Google Scholar]
  48. Arun M. Sathishkumar N. Nithesh Kumar K. Ajai S.S. Aswin S. Development of patient specific bio-polymer incisor teeth by 3D printing process: A case study. Mater. Today Proc. 2021 39 1303 1308 10.1016/j.matpr.2020.04.367
    [Google Scholar]
  49. Nanda S. Patra B.R. Patel R. Bakos J. Dalai A.K. Innovations in applications and prospects of bioplastics and biopolymers: a review. Environ. Chem. Lett. 2022 20 1 379 395 10.1007/s10311‑021‑01334‑4 34867134
    [Google Scholar]
  50. Leitsch E.K. Heath W.H. Torkelson J.M. Polyurethane/polyhydroxyurethane hybrid polymers and their applications as adhesive bonding agents. Int. J. Adhes. Adhes. 2016 64 1 8 10.1016/j.ijadhadh.2015.09.001
    [Google Scholar]
  51. Singh S. Malviya R. Sharma P.K. Gupta A. Metal ion and dye adsorption potential of grafted co-polymer of polysaccharides for the treatment of wastewater. Curr. Appl. Polym. Sci. 2022 5 3 190 211 10.2174/2452271606666221206105936
    [Google Scholar]
  52. Ait Aissa K. Zheng J.L. Estel L. Leveneur S. Thermal stability of epoxidized and carbonated vegetable oils. Org. Process Res. Dev. 2016 20 5 948 953 10.1021/acs.oprd.6b00040
    [Google Scholar]
  53. Sukumaran Nair A. Cherian S. Balachandran N. Panicker U.G. Kalamblayil Sankaranarayanan S.K. Hybrid poly(hydroxy urethane)s: Folded-sheet morphology and thermoreversible adhesion. ACS Omega 2019 4 8 13042 13051 10.1021/acsomega.9b00789 31460431
    [Google Scholar]
  54. Suryawanshi Y. Sanap P. Wani V. Advances in the synthesis of non-isocyanate polyurethanes. Polym. Bull. 2019 76 6 3233 3246 10.1007/s00289‑018‑2531‑7
    [Google Scholar]
  55. Miao S. Wang P. Su Z. Zhang S. Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater. 2014 10 4 1692 1704 10.1016/j.actbio.2013.08.040 24012607
    [Google Scholar]
  56. Ecochard Y. Caillol S. Hybrid polyhydroxyurethanes: How to overcome limitations and reach cutting edge properties? Eur. Polym. J. 2020 137 109915 10.1016/j.eurpolymj.2020.109915
    [Google Scholar]
  57. Nanda S. Mohammad J. Reddy S.N. Kozinski J.A. Dalai A.K. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers. Biorefin. 2014 4 2 157 191 10.1007/s13399‑013‑0097‑z
    [Google Scholar]
  58. Okolie J.A. Nanda S. Dalai A.K. Kozinski J.A. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valoriz. 2021 12 5 2145 2169 10.1007/s12649‑020‑01123‑0
    [Google Scholar]
  59. Qasim U. Osman A.I. Al-Muhtaseb A.H. Farrell C. Al-Abri M. Ali M. Vo D.V.N. Jamil F. Rooney D.W. Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: a review. Environ. Chem. Lett. 2021 19 1 613 641 10.1007/s10311‑020‑01090‑x
    [Google Scholar]
  60. Polman E.M.N. Gruter G.J.M. Parsons J.R. Tietema A. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Sci. Total Environ. 2021 753 141953 10.1016/j.scitotenv.2020.141953 32896737
    [Google Scholar]
  61. Yaradoddi J.S. Banapurmath N.R. Ganachari S.V. Soudagar M.E.M. Mubarak N.M. Hallad S. Hugar S. Fayaz H. Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Sci. Rep. 2020 10 1 21960 10.1038/s41598‑020‑78912‑z 33319818
    [Google Scholar]
  62. Aguilar N.M. Arteaga-Cardona F. de Anda Reyes M.E. Gervacio-Arciniega J.J. Salazar-Kuri U. Magnetic bioplastics based on isolated cellulose from cotton and sugarcane bagasse. Mater. Chem. Phys. 2019 238 121921 10.1016/j.matchemphys.2019.121921
    [Google Scholar]
  63. Sharif Hossain A.B.M. Uddin M.M. Veettil V.N. Fawzi M. Nano-cellulose based nano-coating biomaterial dataset using corn leaf biomass: An innovative biodegradable plant biomaterial. Data Brief 2018 17 162 168 10.1016/j.dib.2017.12.046 29877503
    [Google Scholar]
  64. Isroi A.C. JURNAL SELULOSA. J. Selulosa 2018 8 2 51 60 10.25269/jsel.v8i02.233
    [Google Scholar]
  65. Dharmaraja J. Priya R.K. Shobana S. Arvindnarayan S. Bartolucci L. Maina E. Mele P. Mulone V. Kumar G. Second-and third-generation sources for bioplastics: Production and innovations in applications. In:Second and Third Generation Bioplastics. CRC Press 2023 69 84
    [Google Scholar]
  66. Srivastava A. Srivasatva A.K. Singh A. Singh P. Verma S. Vats M. Sagadevan S. Biopolymers as renewable polymeric materials for sustainable development: An overview. Polimery 2022 67 5 185 196 10.14314/polimery.2022.5.1
    [Google Scholar]
  67. Spiridon I. Extraction of lignin and therapeutic applications of lignin-derived compounds. A review. Environ. Chem. Lett. 2020 18 3 771 785 10.1007/s10311‑020‑00981‑3
    [Google Scholar]
  68. Shahabi-Ghahfarrokhi I. Goudarzi V. Babaei-Ghazvini A. Production of starch based biopolymer by green photochemical reaction at different UV region as a food packaging material: Physicochemical characterization. Int. J. Biol. Macromol. 2019 122 201 209 10.1016/j.ijbiomac.2018.10.154 30365989
    [Google Scholar]
  69. Diyana Z.N. Jumaidin R. Selamat M.Z. Ghazali I. Julmohammad N. Huda N. Ilyas R.A. Physical properties of thermoplastic starch derived from natural resources and its blends: A review. Polymers 2021 13 9 1396 10.3390/polym13091396 33925897
    [Google Scholar]
  70. Nanda S. Azargohar R. Dalai A.K. Kozinski J.A. An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew. Sustain. Energy Rev. 2015 50 925 941 10.1016/j.rser.2015.05.058
    [Google Scholar]
  71. Khlestkin V.K. Peltek S.E. Kolchanov N.A. Review of direct chemical and biochemical transformations of starch. Carbohydr. Polym. 2018 181 460 476 10.1016/j.carbpol.2017.10.035 29253997
    [Google Scholar]
  72. Helal I.M. El-Bessoumy A. Al-Bataineh E. Joseph M.R.P. Rajagopalan P. Chandramoorthy H.C. Ben Hadj Ahmed S. Antimicrobial efficiency of essential oils from traditional medicinal plants of Asir region, Saudi Arabia, over drug resistant isolates. BioMed Res. Int. 2019 2019 1 1 9 10.1155/2019/8928306 30792999
    [Google Scholar]
  73. Utami R. Khasanah L.U. Manuhara G.J. Ayuningrum Z.K. Effects of cinnamon bark essential oil (Cinnamomum burmannii) on characteristics of edible film and quality of fresh beef. Pertanika, J. Trop. Agric. Sci. 2019 42 4
    [Google Scholar]
  74. Gao W. Wu W. Liu P. Hou H. Li X. Cui B. Preparation and evaluation of hydrophobic biodegradable films made from corn/octenylsuccinated starch incorporated with different concentrations of soybean oil. Int. J. Biol. Macromol. 2020 142 376 383 10.1016/j.ijbiomac.2019.09.108 31593726
    [Google Scholar]
  75. Abe M.M. Martins J.R. Sanvezzo P.B. Macedo J.V. Branciforti M.C. Halley P. Botaro V.R. Brienzo M. Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers 2021 13 15 2484 10.3390/polym13152484 34372086
    [Google Scholar]
  76. Thakur R. Pristijono P. Scarlett C.J. Bowyer M. Singh S.P. Vuong Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019 132 1079 1089 10.1016/j.ijbiomac.2019.03.190 30926503
    [Google Scholar]
  77. Mohamed S.A. El-Sakhawy M. El-Sakhawy M.A.M. Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydr. Polym. 2020 238 116178 10.1016/j.carbpol.2020.116178 32299560
    [Google Scholar]
  78. Rodrigues D.C. Cunha A.P. Brito E.S. Azeredo H.M.C. Gallão M.I. Mesquite seed gum and palm fruit oil emulsion edible films: Influence of oil content and sonication. Food Hydrocoll. 2016 56 227 235 10.1016/j.foodhyd.2015.12.018
    [Google Scholar]
  79. Calva-Estrada S.J. Jiménez-Fernández M. Lugo-Cervantes E. Protein-based films: Advances in the development of biomaterials applicable to food packaging. Food Eng. Rev. 2019 11 2 78 92 10.1007/s12393‑019‑09189‑w
    [Google Scholar]
  80. Chiumarelli M. Hubinger M.D. Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocoll. 2014 38 20 27 10.1016/j.foodhyd.2013.11.013
    [Google Scholar]
  81. Castro G.R. Panilaitis B. Kaplan D.L. Emulsan, a tailorable biopolymer for controlled release. Bioresour. Technol. 2008 99 11 4566 4571 10.1016/j.biortech.2007.06.059 17937982
    [Google Scholar]
  82. Malafaya P.B. Silva G.A. Reis R.L. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 2007 59 4-5 207 233 10.1016/j.addr.2007.03.012 17482309
    [Google Scholar]
  83. Vroman I. Tighzert L. Biodegradable polymers. Materials 2009 2 2 307 344 10.3390/ma2020307
    [Google Scholar]
  84. Rabetafika H.N. Paquot M. Dubois P. Les polymeres issus du vegetal: materiaux a proprietes specifiques pour des applications ciblees en industrie plastique. Biotechnol. Agron. Soc. Environ. 2006 10 3
    [Google Scholar]
  85. Yamaoka T. Tabata Y. Ikada Y. Body distribution of intravenously administered gelatin with different molecular weights. J. Control. Release 1994 31 1 1 8 10.1016/0168‑3659(94)90245‑3
    [Google Scholar]
  86. Hokugo A. Ozeki M. Kawakami O. Sugimoto K. Mushimoto K. Morita S. Tabata Y. Poster 27. J. Oral Maxillofac. Surg. 2003 61 8 95a 96 10.1016/S0278‑2391(03)00629‑3
    [Google Scholar]
  87. Muzzarelli R.A.A. Chitin and its derivatives: New trends of applied research. Carbohydr. Polym. 1983 3 1 53 75 10.1016/0144‑8617(83)90012‑7
    [Google Scholar]
  88. Xie W. Xu P. Liu Q. Antioxidant activity of water-soluble chitosan derivatives. Bioorg. Med. Chem. Lett. 2001 11 13 1699 1701 10.1016/S0960‑894X(01)00285‑2 11425541
    [Google Scholar]
  89. Kiatkamjornwong S. Chomsaksakul W. Sonsuk M. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiat. Phys. Chem. 2000 59 4 413 427 10.1016/S0969‑806X(00)00297‑8
    [Google Scholar]
  90. Castagnino E. Francesca Ottaviani M. Cangiotti M. Morelli M. Casettari L. Muzzarelli R.A.A. Radical scavenging activity of 5-methylpyrrolidinone chitosan and dibutyryl chitin. Carbohydr. Polym. 2008 74 3 640 647 10.1016/j.carbpol.2008.04.016
    [Google Scholar]
  91. Petersen K. Væggemose Nielsen P. Bertelsen G. Lawther M. Olsen M.B. Nilsson N.H. Mortensen G. Potential of biobased materials for food packaging. Trends Food Sci. Technol. 1999 10 2 52 68 10.1016/S0924‑2244(99)00019‑9
    [Google Scholar]
  92. Pitt C.G. Poly-ε-caprolactone and its copolymers. Int. J. Pharm. 1990 278 1 23 10.1016/j.ijpharm.2004.01.044
    [Google Scholar]
  93. Prior T.D. Grace D.L. MacLean J.B. Allen P.W. Chapman P.G. Day A. Correction of hallux abductus valgus by Mitchell’s metatarsal osteotomy: comparing standard fixation methods with absorbable polydioxanone pins. Foot 1997 7 3 121 125 10.1016/S0958‑2592(97)90020‑1
    [Google Scholar]
  94. Sinclair R.G. The case for polylactic acid as a commodity packaging plastic. J. Macromol. Sci. Part A Pure Appl. Chem. 1996 33 5 585 597 10.1080/10601329608010880
    [Google Scholar]
  95. Cao N. Fu Y. He J. Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocoll. 2007 21 7 1153 1162 10.1016/j.foodhyd.2006.09.001
    [Google Scholar]
  96. Ham-Pichavant F. Sèbe G. Pardon P. Coma V. Fat resistance properties of chitosan-based paper packaging for food applications. Carbohydr. Polym. 2005 61 3 259 265 10.1016/j.carbpol.2005.01.020
    [Google Scholar]
  97. Dutta P.K. Tripathi S. Mehrotra G.K. Dutta J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009 114 4 1173 1182 10.1016/j.foodchem.2008.11.047
    [Google Scholar]
  98. Goel S. Bano Y. Chitosan-based nanofibrous membranes for antibacterial filter applications. In:Antimicrobial Materials and Coatings. Woodhead Publishing 2025 10.1016/B978‑0‑323‑95460‑0.00013‑7
    [Google Scholar]
  99. Salah M. Tayebi L. Moharamzadeh K. Naini F.B. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac. Plast. Reconstr. Surg. 2020 42 1 18 10.1186/s40902‑020‑00263‑6 32548078
    [Google Scholar]
  100. Rajput S. Kumar Sharma P. Malviya R. Fluid mechanics in circulating tumour cells: Role in metastasis and treatment strategies. Med. Drug Discov. 2023 18 100158 10.1016/j.medidd.2023.100158
    [Google Scholar]
  101. Bucci D.Z. Tavares L.B.B. Sell I. PHB packaging for the storage of food products. Polym. Test. 2005 24 5 564 571 10.1016/j.polymertesting.2005.02.008
    [Google Scholar]
  102. Chiellini E. Solaro R. Biodegradable polymers and plastics. 2003 10.1007/978‑1‑4419‑9240‑6
    [Google Scholar]
  103. Mazollier C. Taullet A. Paillages et ficelles biodégradables: une alternative pour le maraîchage bio. Alter Agric. 2003 59 10 13
    [Google Scholar]
  104. English B. Biobased, biodegradable geotextiles: USDA forest service research update. In:Proceedings of the 2nd pacific rim bio-based composites symposium Vancouver, Canada 1994
    [Google Scholar]
  105. Maurya A.K. de Souza F.M. Dawsey T. Gupta R.K. Biodegradable polymers and composites: Recent development and challenges. Polym. Compos. 2024 45 4 2896 2918 10.1002/pc.28023
    [Google Scholar]
  106. Lammers P.S. Kromer K.H. Competitive natural fibre used in composite materials for automotive parts. 2002
    [Google Scholar]
  107. Vink E.T.H. Rábago K.R. Glassner D.A. Springs B. O’Connor R.P. Kolstad J. Gruber P.R. The sustainability of natureworks polylactide polymers and Ingeo polylactide fibers: an update of the future. Macromol. Biosci. 2004 4 6 551 564 10.1002/mabi.200400023 15468247
    [Google Scholar]
  108. Agulló E. Rodríguez M.S. Ramos V. Albertengo L. Present and future role of chitin and chitosan in food. Macromol. Biosci. 2003 3 10 521 530 10.1002/mabi.200300010
    [Google Scholar]
  109. Flórez M. Cazón P. Vázquez M. Selected biopolymers’ processing and their applications: A review. Polymers 2023 15 3 641 10.3390/polym15030641 36771942
    [Google Scholar]
  110. Schmidt B. Wilpiszewska K. The effect of cross-linking agent amount and type on the sorption properties of starch graft polyacrylamide and poly(acrylic acid) copolymers. Pol. J. Chem. Technol. 2024 26 4 81 86 10.2478/pjct‑2024‑0043
    [Google Scholar]
  111. de Jong E.D. Dam M.A. Sipos L. Gruter G.J. Biobased monomers, polymers, and materials. In: ACS symposium series; Ameri-can Chemical Society Washington: DC, 2012 1 13 10.1021/bk‑2012‑1105.ch001
    [Google Scholar]
  112. Hann S. Scholes R. Briedis R. Kirkevaag K. Bio-based and biodegradable plastics: An assessment of the value chain for bio-based and biodegradable plastics in Norway. Eunomia For The Norwegian Environment Agency 2018
    [Google Scholar]
  113. Mortvedt J.J. Mikkelsen R.L. Micronutrient delivery systems using hydrophilic polyacrylamides US Patent 5,221,313 1993
    [Google Scholar]
  114. Rajput S. Malviya R. Uniyal P. Advances in the treatment of kidney disorders using mesenchymal stem cells. Curr. Pharm. Des. 2024 30 11 825 840 10.2174/0113816128296105240305110312 38482624
    [Google Scholar]
  115. Rahman A. Oxo-biodegradable additives for use in fossil fuel polymer films and once-used packaging. Patent CA2726602A1 2012
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461392222250728063841
Loading
/content/journals/cgc/10.2174/0122133461392222250728063841
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test