Skip to content
2000
image of Biodegradable Food Materials for the Removal of Dyes from Aqueous Solution: Sustainable and Circular Approach for Food Waste Management

Abstract

Dye pollution is unsightly and harmful to the environment because it lowers oxygen levels in water and inhibits photosynthesis. The need for biodegradable polymers that can efficiently absorb pollutants is driven by the frequent failure of conventional treatment procedures to effectively remove dyes. The present study aimed to explore the applications of biodegradable natural components, including starch, cellulose, chitosan, and food waste derivatives, in removing dyes from wastewater. The review analysed relevant literature on biodegradable food materials for the removal of dyes from aqueous solution. The review articles were obtained through databases, including ScienceDirect, Scopus, PubMed, and Google Scholar. This review gathered relevant data, preferably from the last 10 years, on bioadsorbents for dye removal and waste management. Biodegradable adsorbents have shown great promise for dye removal due to their eco-friendliness, but their effectiveness depends on several factors. These include surface area, pH, and material modifications that enhance adsorption properties. Electrostatic interactions, ion exchange, hydrogen bonding, and π-π interactions play key roles in the dye adsorption process. Although these materials can be reused after dye removal, maintaining their efficacy over multiple cycles often requires chemical or thermal regeneration. Cost-effective scaling and the development of green regeneration techniques are still needed for practical applications. Dye removal is possible using biodegradable materials. Although these materials are effective with certain modifications, further research is needed to develop cost-effective scaling methods and environmentally friendly regeneration processes.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461388185250730045311
2025-08-05
2025-09-05
Loading full text...

Full text loading...

References

  1. Dutta S. Adhikary S. Bhattacharya S. Roy D. Chatterjee S. Chakraborty A. Banerjee D. Ganguly A. Nanda S. Rajak P. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. J. Environ. Manage. 2024 353 120103 10.1016/j.jenvman.2024.120103 38280248
    [Google Scholar]
  2. Periyasamy A.P. Recent advances in the remediation of textile-dye-containing wastewater: Prioritizing human health and sustainable wastewater treatment. Sustainability 2024 16 2 495 10.3390/su16020495
    [Google Scholar]
  3. Kumari U. Textile dyes and their impact on the natural environment. In: Dye Pollution from Textile Industry: Challenges and Opportunities for Sustainable Development; Springer Nature Singapore: Singapore 2024 17 30 10.1007/978‑981‑97‑5341‑3_2
    [Google Scholar]
  4. Verma Y. Sharma G. Kumar A. Dhiman P. Si C. Stadler F.J. Synthesizing pectin-crosslinked gum ghatti hydrogel for efficient adsorptive removal of malachite green. Int. J. Biol. Macromol. 2024 258 Pt 1 128640 10.1016/j.ijbiomac.2023.128640 38061515
    [Google Scholar]
  5. Khoo P.S. Ilyas R.A. Uda M.N.A. Hassan S.A. Nordin A.H. Norfarhana A.S. Ab Hamid N.H. Rani M.S.A. Abral H. Norrrahim M.N.F. Knight V.F. Lee C.L. Rafiqah S.A. Starch-based polymer materials as advanced adsorbents for sustainable water treatment: Current status, challenges, and future perspectives. Polymers 2023 15 14 3114 10.3390/polym15143114 37514503
    [Google Scholar]
  6. Yin J. Fang K. Li J. Du N. Hu D. Cao D. Tian R. Deng L. Li K. Competitive adsorption mechanisms of pigments in sugarcane juice on starch-based magnetic nanocomposites. Int. J. Biol. Macromol. 2023 231 123134 10.1016/j.ijbiomac.2023.123134 36657548
    [Google Scholar]
  7. Asadi-Ghalhari M. Usefi S. Mahmoodi M. Starch‐based materials as a natural compound’s application in water and wastewater treatment: A systematic review. Stärke 2024 76 7-8 2300111 10.1002/star.202300111
    [Google Scholar]
  8. Ullah N. Haq F. Farid A. Kiran M. Al Othman Z.A. Aljuwayid A.M. Habila M.A. Bokhari A. Rajendran S. Khoo K.S. Coupling of carboxymethyl starch with 2-carboxyethyl acrylate: A new sorbent for the wastewater remediation of methylene blue. Environ. Res. 2023 219 115091 10.1016/j.envres.2022.115091 36529323
    [Google Scholar]
  9. Kausar A. Zohra S.T. Ijaz S. Iqbal M. Iqbal J. Bibi I. Nouren S. El Messaoudi N. Nazir A. Cellulose-based materials and their adsorptive removal efficiency for dyes: A review. Int. J. Biol. Macromol. 2023 224 1337 1355 10.1016/j.ijbiomac.2022.10.220 36309237
    [Google Scholar]
  10. Varghese A.G. Paul S.A. Latha M.S. Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ. Chem. Lett. 2019 17 2 867 877 10.1007/s10311‑018‑00843‑z
    [Google Scholar]
  11. Aslam A.A. Hassan S.U. Saeed M.H. Kokab O. Ali Z. Nazir M.S. Siddiqi W. Aslam A.A. Cellulose-based adsorbent materials for water remediation: Harnessing their potential in heavy metals and dyes removal. J. Clean. Prod. 2023 421 138555 10.1016/j.jclepro.2023.138555
    [Google Scholar]
  12. Manubolu M. Pathakoti K. Leszczynski J. Recent advances in chitosan-based nanocomposites for dye removal: A review. Int. J. Environ. Sci. Technol. 2024 21 4 4685 4704 10.1007/s13762‑023‑05337‑2
    [Google Scholar]
  13. Yan B. Dai Y. Xin L. Li M. Zhang H. Long H. Gao X. Research progress in the degradation of printing and dyeing wastewater using chitosan based composite photocatalytic materials. Int. J. Biol. Macromol. 2024 263 Pt 2 130082 10.1016/j.ijbiomac.2024.130082 38423910
    [Google Scholar]
  14. Mohan K. Karthick Rajan D. Rajarajeswaran J. Divya D. Ramu Ganesan A. Recent trends on chitosan based hybrid materials for wastewater treatment: A review. Curr. Opin. Environ. Sci. Health 2023 33 100473 10.1016/j.coesh.2023.100473
    [Google Scholar]
  15. Şenol Z.M. El Messaoudi N. Ciğeroglu Z. Miyah Y. Arslanoğlu H. Bağlam N. Kazan-Kaya E.S. Kaur P. Georgin J. Removal of food dyes using biological materials via adsorption: A review. Food Chem. 2024 450 139398 10.1016/j.foodchem.2024.139398 38677180
    [Google Scholar]
  16. Diao Z. Zhang L. Li Q. Gao X. Gao X. Seliem M.K. Dhaoudi F. Sellaoui L. Deng S. Bonilla-Petriciolet A. Badawi M. Li Z. Adsorption of food dyes from aqueous solution on a sweet potato residue-derived carbonaceous adsorbent: Analytical interpretation of adsorption mechanisms via adsorbent characterization and statistical physics modeling. Chem. Eng. J. 2024 482 148982 10.1016/j.cej.2024.148982
    [Google Scholar]
  17. Farsad S. Amjlef A. Chaoui A. Ben Hamou A. Hamma C. Benafqir M. Jada A. El Alem N. Harnessing a carbon-based material from food waste digestate for dye adsorption: The role of hydrogel beads in enhancing the material stability and regenerative capacity. Mater. Adv. 2023 4 24 6599 6611 10.1039/D3MA00505D
    [Google Scholar]
  18. Valentini F. Cerza E. Campana F. Marrocchi A. Vaccaro L. Efficient synthesis and investigation of waste-derived adsorbent for water purification. Exploring the impact of surface functionalization on methylene blue dye removal. Bioresour. Technol. 2023 390 129847 10.1016/j.biortech.2023.129847 37838020
    [Google Scholar]
  19. Mohamed Nasser S. Abbas M. Trari M. Understanding the rate-limiting step adsorption kinetics onto biomaterials for mechanism adsorption control. Prog. React. Kinet. Mech. 2024 49 14686783241226858 10.1177/14686783241226858
    [Google Scholar]
  20. El Jery A. Alawamleh H.S.K. Sami M.H. Abbas H.A. Sammen S.S. Ahsan A. Imteaz M.A. Shanableh A. Shafiquzzaman M. Osman H. Al-Ansari N. Isotherms, kinetics and thermodynamic mechanism of methylene blue dye adsorption on synthesized activated carbon. Sci. Rep. 2024 14 1 970 10.1038/s41598‑023‑50937‑0 38200095
    [Google Scholar]
  21. Cano F.J. Reyes-Vallejo O. Ashok A. Olvera M.L. Velumani S. Kassiba A. Mechanisms of dyes adsorption on titanium oxide– graphene oxide nanocomposites. Ceram. Int. 2023 49 13 21185 21205 10.1016/j.ceramint.2023.03.249
    [Google Scholar]
  22. El-habacha M. Miyah Y. Lagdali S. Mahmoudy G. Dabagh A. Chiban M. Sinan F. Iaich S. Zerbet M. General overview to understand the adsorption mechanism of textile dyes and heavy metals on the surface of different clay materials. Arab. J. Chem. 2023 16 11 105248 10.1016/j.arabjc.2023.105248
    [Google Scholar]
  23. Zhu H. Chen S. Luo Y. Adsorption mechanisms of hydrogels for heavy metal and organic dyes removal: A short review. J. Agric. Food Res. 2023 12 100552 10.1016/j.jafr.2023.100552
    [Google Scholar]
  24. Shafiq F. Liu C. Zhou H. Chen H. Yu S. Qiao W. Adsorption mechanism and synthesis of adjustable hollow hydroxyapatite spheres for efficient wastewater cationic dyes adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2023 672 131713 10.1016/j.colsurfa.2023.131713
    [Google Scholar]
  25. El-Habacha M. Lagdali S. Dabagh A. Mahmoudy G. Assouani A. Benjelloun M. Miyah Y. Iaich S. Chiban M. Zerbet M. High efficiency of treated-phengite clay by sodium hydroxide for the Congo red dye adsorption: Optimization, cost estimation, and mechanism study. Environ. Res. 2024 259 119542 10.1016/j.envres.2024.119542 38969319
    [Google Scholar]
  26. Bellaj M. Aziz K. El Achaby M. El Haddad M. Gebrati L. Kurniawan T.A. Chen Z. Yap P.S. Aziz F. Cationic and anionic dyes adsorption from wastewater by clay-chitosan composite: An integrated experimental and modeling study. Chem. Eng. Sci. 2024 285 119615 10.1016/j.ces.2023.119615
    [Google Scholar]
  27. Alsawat M. Congo red dye adsorption using CuSnO2TiO2 nanocomposites: Adsorption data interpretation by statistical modeling. Int. J. Electrochem. Sci. 2024 19 7 100611 10.1016/j.ijoes.2024.100611
    [Google Scholar]
  28. Mensah K. Mahmoud H. Fujii M. Samy M. Shokry H. Dye removal using novel adsorbents synthesized from plastic waste and eggshell: Mechanism, isotherms, kinetics, thermodynamics, regeneration, and water matrices. Biomass Convers. Biorefin. 2024 14 12 12945 12960 10.1007/s13399‑022‑03304‑4
    [Google Scholar]
  29. Boukarma L. Aziam R. Aboussabek A. El Qdhy S. Zerbet M. Sinan F. Chiban M. Novel insights into crystal violet dye adsorption onto various macroalgae: Comparative study, recyclability and overview of chromium (VI) removal. Bioresour. Technol. 2024 394 130197 10.1016/j.biortech.2023.130197 38086462
    [Google Scholar]
  30. Aryamol K.S. Kanagaraj K. Nangan S. Haponiuk J.T. Okhawilai M. Pandiaraj S. Hanif M.B. Alodhayb A.N. Thomas S. Thirumalaivasan N. Gopi S. Recent advances of carbon pathways for sustainable environment development. Environ. Res. 2024 250 118513 10.1016/j.envres.2024.118513 38368918
    [Google Scholar]
  31. Bushra R. Mohamad S. Alias Y. Jin Y. Ahmad M. Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: A review. Microporous Mesoporous Mater. 2021 319 111040 10.1016/j.micromeso.2021.111040
    [Google Scholar]
  32. Shahnawaz Khan M. Khalid M. Shahid M. What triggers dye adsorption by metal organic frameworks? The current perspectives. Mater. Adv. 2020 1 6 1575 1601 10.1039/D0MA00291G
    [Google Scholar]
  33. Saxena M. Sharma N. Saxena R. Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes. Surf. Interfaces 2020 21 100639 10.1016/j.surfin.2020.100639
    [Google Scholar]
  34. Bensalah H. Younssi S.A. Ouammou M. Gurlo A. Bekheet M.F. Azo dye adsorption on an industrial waste-transformed hydroxyapatite adsorbent: Kinetics, isotherms, mechanism and regeneration studies. J. Environ. Chem. Eng. 2020 8 3 103807 10.1016/j.jece.2020.103807
    [Google Scholar]
  35. Sellaoui L. Franco D. Ghalla H. Georgin J. Netto M.S. Luiz Dotto G. Bonilla-Petriciolet A. Belmabrouk H. Bajahzar A. Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: Experiments, phenomenological modelling and DFT calculations. Chem. Eng. J. 2020 394 125011 10.1016/j.cej.2020.125011
    [Google Scholar]
  36. Ghaedi S. Seifpanahi-Shabani K. Sillanpää M. Waste-to-Resource: New application of modified mine silicate waste to remove Pb2+ ion and methylene blue dye, adsorption properties, mechanism of action and recycling. Chemosphere 2022 292 133412 10.1016/j.chemosphere.2021.133412 34974049
    [Google Scholar]
  37. Li H. Budarin V.L. Clark J.H. North M. Wu X. Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons®: Mechanism and porosity dependence. J. Hazard. Mater. 2022 436 129174 10.1016/j.jhazmat.2022.129174 35739710
    [Google Scholar]
  38. Zhao D. Cai C. Cerium-based UiO-66 metal-organic framework for synergistic dye adsorption and photodegradation: A discussion of the mechanism. Dyes Pigments 2021 185 108957 10.1016/j.dyepig.2020.108957
    [Google Scholar]
  39. El Hadj Ali Y.A. Hejji L. Seddik N.B. Azzouz A. Pérez-Villarejo L. Stitou M. Sonne C. Remediation of malachite-green dye from textile wastewater using biosorbent almond shell-based cellulose. J. Mol. Liq. 2024 399 124435 10.1016/j.molliq.2024.124435
    [Google Scholar]
  40. Wang H. Li Z. Yahyaoui S. Hanafy H. Seliem M.K. Bonilla-Petriciolet A. Luiz Dotto G. Sellaoui L. Li Q. Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: Experiments, characterization and advanced modelling. Chem. Eng. J. 2021 417 128116 10.1016/j.cej.2020.128116
    [Google Scholar]
  41. Zhao S. Wen Y. Du C. Tang T. Kang D. Introduction of vacancy capture mechanism into defective alumina microspheres for enhanced adsorption of organic dyes. Chem. Eng. J. 2020 402 126180 10.1016/j.cej.2020.126180
    [Google Scholar]
  42. Zhao C. Zhang J. Zhang W. Yang Y. Guo D. Zhang H. Liu L. Reveal the main factors and adsorption behavior influencing the adsorption of pollutants on natural mineral adsorbents: Based on machine learning modeling and DFT calculation. Separ. Purif. Tech. 2024 331 125706 10.1016/j.seppur.2023.125706
    [Google Scholar]
  43. Thakur A. Kumar A. Singh A. Adsorptive removal of heavy metals, dyes, and pharmaceuticals: Carbon-based nanomaterials in focus. Carbon 2024 217 118621 10.1016/j.carbon.2023.118621
    [Google Scholar]
  44. Jani N.A. Haddad L. Abdulhameed A.S. Jawad A.H. ALOthman, Z.A.; Yaseen, Z.M. Modeling and optimization of the adsorptive removal of crystal violet dye by durian (Durio zibethinus) seeds powder: Insight into kinetic, isotherm, thermodynamic, and adsorption mechanism. Biomass Convers. Biorefin. 2024 14 11 12441 12454 10.1007/s13399‑022‑03319‑x
    [Google Scholar]
  45. Hamri N. Imessaoudene A. Hadadi A. Cheikh S. Boukerroui A. Bollinger J.C. Amrane A. Tahraoui H. Tran H.N. Ezzat A.O. Al-Lohedan H.A. Mouni L. Enhanced adsorption capacity of methylene blue dye onto kaolin through acid treatment: Batch adsorption and machine learning studies. Water 2024 16 2 243 10.3390/w16020243
    [Google Scholar]
  46. Amor I.B. Hemmami H. Laouini S.E. Abdelaziz A.G. Barhoum A. Influence of chitosan source and degree of deacetylation on antibacterial activity and adsorption of AZO dye from water. Biomass Convers. Biorefin. 2024 14 14 16245 16255 10.1007/s13399‑023‑03741‑9
    [Google Scholar]
  47. Alsharief H.H. Alatawi N.M. Al-bonayan A.M. Alrefaee S.H. Saad F.A. El-Desouky M.G. El-Bindary A.A. Adsorption of Azorubine E122 dye via Na-mordenite with tryptophan composite: Batch adsorption, Box–Behnken design optimisation and antibacterial activity. Environ. Technol. 2024 45 17 3496 3515 10.1080/09593330.2023.2219399 37248830
    [Google Scholar]
  48. Lebouachera S.E. Balamane-Zizi O. Boublia A. Ghriga M.A. Hasanzadeh M. Hadri H.E. Tassalit D. Khodja M. Grassl B. Drouiche N. Understanding the factors affecting the adsorption of surface-active agents onto reservoir rock in chemical enhanced oil recovery applications: A comprehensive review. Chem. Afr 2024 7 2283 2306 10.1007/s42250‑024‑00931‑4
    [Google Scholar]
  49. Oladoye P.O. Kadhom M. Khan I. Aziz K.H. Alli Y.A. Advancements in adsorption and photodegradation technologies for rhodamine B dye wastewater treatment: Fundamentals, applications, and future directions. Green Chem. Eng. 2023
    [Google Scholar]
  50. Alotaibi A.M. Aljabbab A.A. Alajmi M.S. Qadrouh A.N. Farahat M. Abdel Khalek M.A. Baioumy H. Alzahrani R.Y. Mana T.H. Almutairi R.S. Utilization of phosphogypsum as sustainable adsorbent for removal of crystal violet dye from wastewater: Kinetics, thermodynamics, and applications in textile effluent treatment. Sustainability 2025 17 8 3320 10.3390/su17083320
    [Google Scholar]
  51. Bouyahia C. Rahmani M. Bensemlali M. El Hajjaji S. Slaoui M. Bencheikh I. Azoulay K. Labjar N. Influence of extraction techniques on the adsorption capacity of methylene blue on sawdust: Optimization by full factorial design. Mater. Sci. Energy Technol. 2023 6 114 123 10.1016/j.mset.2022.12.004
    [Google Scholar]
  52. Matabola K.P. Mokhena T.C. Sikhwivhilu K. Mokhothu T.H. Mochane M.J. Poly(vinyl alcohol) (PVA)-based nanofibers materials for azo dye adsorption: An overview. Int. J. Environ. Sci. Technol. 2023 20 6 7029 7054 10.1007/s13762‑022‑04666‑y
    [Google Scholar]
  53. Rápó E. Tonk S. Factors affecting synthetic dye adsorption; Desorption studies: A review of results from the last five years (2017–2021). Molecules 2021 26 17 5419 10.3390/molecules26175419 34500848
    [Google Scholar]
  54. Xiao W. Jiang X. Liu X. Zhou W. Garba Z.N. Lawan I. Wang L. Yuan Z. Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. J. Clean. Prod. 2021 284 124773 10.1016/j.jclepro.2020.124773
    [Google Scholar]
  55. El Messaoudi N. El Khomri M. El Mouden A. Bouich A. Jada A. Lacherai A. Iqbal H.M.N. Mulla S.I. Kumar V. Américo-Pinheiro J.H.P. Regeneration and reusability of non-conventional low-cost adsorbents to remove dyes from wastewaters in multiple consecutive adsorption–desorption cycles: A review. Biomass Convers. Biorefin. 2024 14 11 11739 11756 10.1007/s13399‑022‑03604‑9
    [Google Scholar]
  56. Gkika D.A. Mitropoulos A.C. Kyzas G.Z. Why reuse spent adsorbents? The latest challenges and limitations. Sci. Total Environ. 2022 822 153612 10.1016/j.scitotenv.2022.153612 35114231
    [Google Scholar]
  57. Arabkhani P. Javadian H. Asfaram A. Hosseini S.N. A reusable mesoporous adsorbent for efficient treatment of hazardous triphenylmethane dye wastewater: RSM-CCD optimization and rapid microwave-assisted regeneration. Sci. Rep. 2021 11 1 22751 10.1038/s41598‑021‑02213‑2 34815470
    [Google Scholar]
  58. Dehghani M.H. Ahmadi S. Ghosh S. Othmani A. Osagie C. Meskini M. AlKafaas S.S. Malloum A. Khanday W.A. Jacob A.O. Gökkuş Ö. Oroke A. Martins Chineme O. Karri R.R. Lima E.C. Recent advances on sustainable adsorbents for the remediation of noxious pollutants from water and wastewater: A critical review. Arab. J. Chem. 2023 16 12 105303 10.1016/j.arabjc.2023.105303
    [Google Scholar]
  59. Kurnia I. Karnjanakom S. Irkham I. Haryono H. Situmorang Y.A. Indarto A. Noviyanti A.R. Hartati Y.W. Guan G. Enhanced adsorption capacity of activated carbon over thermal oxidation treatment for methylene blue removal: kinetics, equilibrium, thermodynamic, and reusability studies. RSC Advances 2022 13 1 220 227 10.1039/D2RA06481B 36605667
    [Google Scholar]
  60. Alhattab Z.D. Aljeboree A.M. Jawad M.A. Sheri F.S. Obaid Aldulaim A.K. Alkaim A.F. Highly adsorption of alginate/bentonite impregnated TiO2 beads for wastewater treatment: Optimization, kinetics, and regeneration studies. Caspian J. Environ. Sci. 2023 21 3 657 664
    [Google Scholar]
  61. Yadav S. Sharma N. Dalal A. Panghal P. Sharma A.K. Kumar S. Cutting-edge regeneration technologies for saturated adsorbents: A systematic review on pathways to circular wastewater treatment system. Environ. Monit. Assess. 2025 197 2 215 10.1007/s10661‑025‑13657‑8 39888491
    [Google Scholar]
  62. Abdel Hamid E.M. Aly H.M. El Naggar K.A.M. Synthesis of nanogeopolymer adsorbent and its application and reusability in the removal of methylene blue from wastewater using response surface methodology (RSM). Sci. Rep. 2024 14 1 20631 10.1038/s41598‑024‑70284‑y 39231999
    [Google Scholar]
  63. Un Nisa F. Naseem K. Aziz A. Hassan W. Fatima N. Najeeb J. Rehman S.U. Khalid A. Khan M.E. Comparative analysis of dye degradation methods: Unveiling the most effective and environmentally sustainable approaches, a critical review. Rev. Inorg. Chem. 2024 10.1515/revic‑2024‑0042
    [Google Scholar]
  64. Al-Gethami W. Qamar M.A. Shariq M. Alaghaz A.N.M.A. Farhan A. Areshi A.A. Alnasir M.H. Emerging environmentally friendly bio-based nanocomposites for the efficient removal of dyes and micropollutants from wastewater by adsorption: A comprehensive review. RSC Advances 2024 14 4 2804 2834 10.1039/D3RA06501D 38234871
    [Google Scholar]
  65. Ajab H. Nayab D. Mannan A. Waseem A. Jafry A.T. Yaqub A. Comparative analysis of the equilibrium, kinetics, and characterization of the mechanism of rapid adsorption of Congo red on nano-biosorbents based on agricultural waste in industrial effluents. J. Environ. Manage. 2024 358 120863 10.1016/j.jenvman.2024.120863 38615396
    [Google Scholar]
  66. Hashmi Z. Jatoi A.S. Nadeem S. Anjum A. Imam S.M. Jangda H. Comparative analysis of conventional to biomass-derived adsorbent for wastewater treatment: A review. Biomass Convers. Biorefin. 2024 14 1 45 76 10.1007/s13399‑022‑02443‑y
    [Google Scholar]
  67. Abd El-Ghany N.A. Elella M.H.A. Abdallah H.M. Mostafa M.S. Samy M. Recent advances in various starch formulation for wastewater purification via adsorption technique: A review. J. Polym. Environ. 2023 31 7 2792 2825 10.1007/s10924‑023‑02798‑x
    [Google Scholar]
  68. Khan M.D. Singh A. Khan M.Z. Tabraiz S. Sheikh J. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. J. Water Process Eng. 2023 53 103579 10.1016/j.jwpe.2023.103579
    [Google Scholar]
  69. Abbasi A. Khatoon F. Ikram S. A review on remediation of dye adulterated system by ecologically innocuous “biopolymers/natural gums-based composites”. Int. J. Biol. Macromol. 2023 231 123240 10.1016/j.ijbiomac.2023.123240 36639083
    [Google Scholar]
  70. Tang J. Wang L. Qin W. Qing Z. Du C. Xiao S. Yan B. High reusability and adsorption capacity of acid washed calcium alginate/chitosan composite hydrogel spheres in the removal of norfloxacin. Chemosphere 2023 335 139048 10.1016/j.chemosphere.2023.139048 37245593
    [Google Scholar]
  71. Xu A. Gong Y. Sun Q. Li L. Wang F. Xiao Z. Liu R. Recoverable cellulose composite adsorbents for anionic/cationic dyes removal. Int. J. Biol. Macromol. 2023 238 124022 10.1016/j.ijbiomac.2023.124022 36921822
    [Google Scholar]
  72. Zhang Z. Lu Y. Gao S. Wu S. Sustainable and efficient wastewater treatment using cellulose-based hydrogels: A review of heavy metal, dye, and micropollutant removal applications. Separations 2025 12 3 72 10.3390/separations12030072
    [Google Scholar]
  73. Karim A. Raji Z. Karam A. Khalloufi S. Valorization of fibrous plant-based food waste as biosorbents for remediation of heavy metals from wastewater—A review. Molecules 2023 28 10 4205 10.3390/molecules28104205 37241944
    [Google Scholar]
  74. Mihai S. Bondarev A. Necula M. The potential of biogenic materials as sustainable and environmentally benign alternatives to conventional adsorbents for dyes removal: A review. Processes 2025 13 2 589 10.3390/pr13020589
    [Google Scholar]
  75. Nayana P. Wani K.M. Unlocking the green potential: Sustainable extraction of bioactives from orange peel waste for environmental and health benefits. J. Food Meas. Charact. 2024 18 10 8145 8162 10.1007/s11694‑024‑02779‑1
    [Google Scholar]
  76. Wani N.R. Rather R.A. Farooq A. Padder S.A. Baba T.R. Sharma S. Mubarak N.M. Khan A.H. Singh P. Ara S. New insights in food security and environmental sustainability through waste food management. Environ. Sci. Pollut. Res. Int. 2023 31 12 17835 17857 10.1007/s11356‑023‑26462‑y 36988800
    [Google Scholar]
  77. Abdullahi S.S. Mohammad R.E. Jagaba A.H. Musa H. Birniwa A.H. Natural, synthetic, and composite materials for industrial effluents treatment: A mini review on current practices, cost-effectiveness, and sustainability. Case Stud Chem. Environ. Eng. 2024 9 100570 10.1016/j.cscee.2023.100570
    [Google Scholar]
  78. Banu, R.; Kumar, G.; Gunasekaran, M.; Kavitha, S., Eds.; Food. waste to valuable resources: Applications and management. Academic Press 2020
    [Google Scholar]
  79. Mpongwana N. Rathilal S. A review of the techno-economic feasibility of nanoparticle application for wastewater treatment. Water 2022 14 10 1550 10.3390/w14101550
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461388185250730045311
Loading
/content/journals/cgc/10.2174/0122133461388185250730045311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test