Skip to content
2000
image of Advanced Strategies for Enhancing Analytical Techniques of Solid Phase Microextraction: An Overview

Abstract

Solid-phase microextraction (SPME) is a popular technique for sample preparation, known for reducing the need for solvents and integrating well with chromatography instruments. Recent advancements focus on improving extraction efficiency through new coating materials. Despite improvements in analytical instruments, sample preparation remains a challenge, especially for detecting trace substances. This review explores the latest developments in SPME, particularly new coating materials, including nanomaterials like metal oxide nanoparticles, metal nanoparticles, carbon-based nanomaterials, and silica nanoparticles. These materials improve enrichment, analyte selectivity, and resistance to interference. The review also examines how analyte properties and coating composition affect extraction performance, helping researchers design better coatings. Additionally, the manuscript discusses modern applications of SPME, such as direct coupling with mass spectrometry and sampling, highlighting its growing importance in analytical fields. By summarizing recent innovations and applications, this review aims to provide valuable insights into developing more effective SPME techniques using advanced adsorbents for detecting and analyzing a wide range of substances.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461384287250711063801
2025-07-18
2025-09-04
Loading full text...

Full text loading...

References

  1. Abdussalam-Mohammed W. Ali A.Q. Errayes A. Green chemistry: Principles, applications, and disadvantages. Chem. Methodologies 2020 4 4 408 423 10.33945/SAMI/CHEMM.2020.4.4
    [Google Scholar]
  2. Gionfriddo E. Green analytical solutions for sample preparation: Solid phase microextraction and related techniques. Phys. Sci. Rev. 2020 5 8 20200006 10.1515/psr‑2020‑0006
    [Google Scholar]
  3. Reyes-Garcés N. Gionfriddo E. Gómez-Ríos G.A. Alam M.N. Boyacı E. Bojko B. Singh V. Grandy J. Pawliszyn J. Advances in solid phase microextraction and perspective on future directions. Anal. Chem. 2018 90 1 302 360 10.1021/acs.analchem.7b04502 29116756
    [Google Scholar]
  4. Wojnowski W. Tobiszewski M. Pena-Pereira F. Psillakis E. AGREEprep – Analytical greenness metric for sample preparation. Trends Analyt. Chem. 2022 149 116553 10.1016/j.trac.2022.116553
    [Google Scholar]
  5. Kabir A. Locatelli M. Ulusoy H. Recent trends in microextraction techniques employed in analytical and bioanalytical sample preparation. Separations 2017 4 4 36 10.3390/separations4040036
    [Google Scholar]
  6. Li W. Jian W. Fu Y. Basic sample preparation techniques in LC‐MS bioanalysis: Protein precipitation, liquid–liquid extraction, and solid‐phase extraction. In: Sample Preparation in LC‐MS Bioanalysis 2019 10.1002/9781119274315.ch1
    [Google Scholar]
  7. Zheng J. Kuang Y. Zhou S. Gong X. Ouyang G. Latest improvements and expanding applications of solid-phase microextraction. Anal. Chem. 2023 95 1 218 237 10.1021/acs.analchem.2c03246 36625125
    [Google Scholar]
  8. Brown R.W. Metabolomic and volatilomic profiling for the assessment of soil carbon cycling and biological quality. United Kingdom Bangor University 2021
    [Google Scholar]
  9. Kumar S. Satapathy S. Kurmi B.D. Gupta G.D. Patel P. Recent overview of microextraction of metal ions and pharmaceuticals by solidified floating organic drop microextraction techniques. Separ. Sci. Plus 2024 7 6 2400018 10.1002/sscp.202400018
    [Google Scholar]
  10. Pawliszyn J. Solid phase microextraction. Theory and practice 1997
    [Google Scholar]
  11. Harati F. Ghiasvand A. Dalvand K. Haddad P.R. Fused-silica capillary internally modified with nanostructured octadecyl silica for dynamic in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons from aqueous media. Microchem. J. 2020 155 104672 10.1016/j.microc.2020.104672
    [Google Scholar]
  12. Kusch P. The application of headspace: Solid-phase microextraction (HS-SPME) coupled with gas chromatography/mass spectrometry (GC/MS) for the characterization of polymersGas chromatography Analysis, methods and practices. Nova Science Publishers 2017
    [Google Scholar]
  13. Liu S. Ouyang G. Introduction of solid-phase microextraction. In: Solid Phase Microextraction. Berlin, Heidelberg Springer 2017 10.1007/978‑3‑662‑53598‑1_1
    [Google Scholar]
  14. Petre V.A. Cristea N.I. Cojocaru V.C. Pascu L.F. Chiriac F.L. Analysis of volatile flavor compounds in four commercial beverages using static headspace gas chromatography/mass spectrometry: A qualitative approach. Appl. Sci. 2024 14 5 1910 10.3390/app14051910
    [Google Scholar]
  15. Hu B. Ouyang G. In situ solid phase microextraction sampling of analytes from living human objects for mass spectrometry analysis. Trends Analyt. Chem. 2021 143 116368 10.1016/j.trac.2021.116368
    [Google Scholar]
  16. Xu C.H. Chen G-S. Xiong Z-H. Fan Y-X. Wang X-C. Liu Y. Applications of solid-phase microextraction in food analysis. Trends Analyt. Chem. 2016 80 12 29 10.1016/j.trac.2016.02.022
    [Google Scholar]
  17. Peña A. Ruano F. Mingorance M.D. Ultrasound-assisted extraction of pesticides from olive branches: A multifactorial approach to method development. Anal. Bioanal. Chem. 2006 385 5 918 925 10.1007/s00216‑006‑0449‑7 16791572
    [Google Scholar]
  18. Payá P. Anastassiades M. Mack D. Sigalova I. Tasdelen B. Oliva J. Barba A. Analysis of pesticide residues using the quick easy cheap effective rugged and safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bioanal. Chem. 2007 389 6 1697 1714 10.1007/s00216‑007‑1610‑7 17909760
    [Google Scholar]
  19. Lehotay S.J. QuEChERS sample preparation approach for mass spectrometric analysis of pesticide residues in foods. Mass Spectrometry in Food. Safety Methods in Molecular Biology. Humana Press 2011 10.1007/978‑1‑61779‑136‑9_4
    [Google Scholar]
  20. Giannetti V. Boccacci M.M. Torrelli P. Marini F. Flavour component analysis by HS-SPME/GC–MS and chemometric modeling to characterize Pilsner-style Lager craft beers. Microchem. J. 2019 149 103991 10.1016/j.microc.2019.103991
    [Google Scholar]
  21. Edgar Herkenhoff M. Brödel O. Frohme M. Aroma component analysis by HS-SPME/GC–MS to characterize Lager, Ale, and sour beer styles. Food Res. Int. 2024 194 114763 10.1016/j.foodres.2024.114763 39232500
    [Google Scholar]
  22. Zakharkiv I. Zui M. Zaitsev V. Determination of aliphatic aldehydes C1–C5 with headspace solid phase microextraction in tap water: Derivatization in-solution versus on-fiber. Chem. Zvesti 2024 78 1 435 445 10.1007/s11696‑023‑03100‑y
    [Google Scholar]
  23. Ghiasvand A.R. Hajipour S. Heidari N. Cooling-assisted microextraction: Comparison of techniques and applications. Trends Analyt. Chem. 2016 77 54 65 10.1016/j.trac.2015.12.008
    [Google Scholar]
  24. Wang J. Yang Q. Zhang L. Liu M. Hu N. Zhang W. Zhu W. Wang R. Suo Y. Wang J. A hybrid monolithic column based on layered double hydroxide-alginate hydrogel for selective solid phase extraction of lead ions in food and water samples. Food Chem. 2018 257 155 162 10.1016/j.foodchem.2018.02.143 29622193
    [Google Scholar]
  25. Mejía-Carmona K. Jordan-Sinisterra M. Lanças F.M. Current trends in fully automated on-line analytical techniques for beverage analysis. Beverages 2019 5 1 13 10.3390/beverages5010013
    [Google Scholar]
  26. Yu Z. Yu R. Wu S. Yu W. Song Q. Preparation of a novel solid phase microextraction fiber for Headspace GC-MS analysis of hazardous odorants in landfill leachate. Processes 2022 10 6 1045 10.3390/pr10061045
    [Google Scholar]
  27. Gong J. Ma Y. Li L. Cheng Y. Huang Y. Comparative characterization and contribution of key aroma compounds in the typical base liquor of Jiang -flavor Baijiu from different distributions in the chinese chishui river basin. Food Chem. X 2023 20 100932 10.1016/j.fochx.2023.100932 37868367
    [Google Scholar]
  28. Montes R. Quintana J.B. Ramil M. Rodil R. Environmental applications (water). In: Solid-Phase Extraction. Elsevier 2020 609 645 10.1016/B978‑0‑12‑816906‑3.00023‑6
    [Google Scholar]
  29. Yuan Y. Lin X. Li T. Pang T. Dong Y. Zhuo R. Wang Q. Cao Y. Gan N. A solid phase microextraction Arrow with zirconium metal–organic framework/molybdenum disulfide coating coupled with gas chromatography–mass spectrometer for the determination of polycyclic aromatic hydrocarbons in fish samples. J. Chromatogr. A 2019 1592 9 18 10.1016/j.chroma.2019.01.066 30711322
    [Google Scholar]
  30. Song X. Huang X. Recent developments in microextraction techniques for detection and speciation of heavy metals. Advances in Sample Preparation 2022 2 100019 10.1016/j.sampre.2022.100019
    [Google Scholar]
  31. Nawała J. Jóźwik P. Popiel S. Thermal and catalytic methods used for destruction of chemical warfare agents. Int. J. Environ. Sci. Technol. 2019 16 7 3899 3912 10.1007/s13762‑019‑02370‑y
    [Google Scholar]
  32. Naccarato A. Tagarelli A. Recent applications and newly developed strategies of solid-phase microextraction in contaminant analysis: Through the environment to humans. Separations 2019 6 4 54 10.3390/separations6040054
    [Google Scholar]
  33. Liaud C. Brucher M. Schummer C. Coscollà C. Wolff H. Schwartz J.J. Yusà V. Millet M. Utilization of long duration high-volume sampling coupled to SPME-GC-MS/MS for the assessment of airborne pesticides variability in an urban area (Strasbourg, France) during agricultural application. J. Environ. Sci. Health B 2016 51 10 703 714 10.1080/03601234.2016.1191916 27341476
    [Google Scholar]
  34. Zheng J. Huang J. Yang Q. Ni C. Xie X. Shi Y. Sun J. Zhu F. Ouyang G. Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. Trends Analyt. Chem. 2018 108 135 153 10.1016/j.trac.2018.08.021
    [Google Scholar]
  35. Song X. Pang J. Wu Y. Huang X. Development of magnetism-reinforced in-tube solid phase microextraction combined with HPLC for the sensitive quantification of cobalt(II) and nickel(II) in environmental waters. Microchem. J. 2020 159 105370 10.1016/j.microc.2020.105370
    [Google Scholar]
  36. Wu M. Chen G. Liu P. Zhou W. Jia Q. Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits. J. Chromatogr. A 2016 1456 34 41 10.1016/j.chroma.2016.05.100 27317006
    [Google Scholar]
  37. Saad A. M.; Merdivan, M.; Tağaç, A.A. Metal organic framework/clay composite for micro-dispersive solid-phase extraction of sulfonamides and penicillins in milk, and synthetic urine solution coupling with HPLC/DAD detection. Microchem. J. 2023 184 108165 10.1016/j.microc.2022.108165
    [Google Scholar]
  38. Xu L. Hu W. Zhang J. A novel fiber prepared from waste phosphogypsum for SPME of polycyclic aromatic hydrocarbons by GC-FID. Chem. Zvesti 2023 77 11 6947 6957 10.1007/s11696‑023‑02988‑w
    [Google Scholar]
  39. Hu K. Zhang Z. Zhao D. Li L. Yang C. Zeng H. Zhang S. Zhang Z. Berberine-based hypercrosslinked polymer: Advanced solid-phase microextraction for high-throughput analysis of aristolochic acids in environmental water and herbal plants. Talanta 2025 285 127333 10.1016/j.talanta.2024.127333 39673978
    [Google Scholar]
  40. Kumari M. Tripathy D.B. Gupta A. Analytical methods and their significance in pharmaceutical process impurities: A review. Macromol. Symp. 2024 413 2300026 10.1002/masy.202300026
    [Google Scholar]
  41. Kataoka H. Ishizaki A. Saito K. Recent progress in solid-phase microextraction and its pharmaceutical and biomedical applications. Anal. Methods 2016 8 29 5773 5788 10.1039/C6AY00380J
    [Google Scholar]
  42. Aleksa K. Walasek P. Fulga N. Kapur B. Gareri J. Koren G. Simultaneous detection of seventeen drugs of abuse and metabolites in hair using solid phase micro extraction (SPME) with GC/MS. Forensic Sci. Int. 2012 218 1-3 31 36 10.1016/j.forsciint.2011.10.002 22047752
    [Google Scholar]
  43. Martins R.O. Molecularly imprinted polymers in solid-phase microextraction: Enhancing the analysis of pharmaceutical compounds across diverse sample matrices. JPBA Open 2024 4 100037 10.1016/j.jpbao.2024.100037
    [Google Scholar]
  44. Khaled A. Belinato J.R. Pawliszyn J. Rapid and high‐throughput screening of multi-residue pharmaceutical drugs in bovine tissue using solid phase microextraction and direct analysis in real time-tandem mass spectrometry (SPME-DART-MS/MS). Talanta 2020 217 121095 10.1016/j.talanta.2020.121095 32498882
    [Google Scholar]
  45. Basu B. Therapeutic drug monitoring (tdm) and toxicological studies in alternative biological matrices. In: Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology. Springer 2022 95 116 10.1007/978‑3‑031‑12398‑6_7
    [Google Scholar]
  46. Roy K.S. Nazdrajić E. Shimelis O.I. Ross M.J. Chen Y. Cramer H. Pawliszyn J. Optimizing a high-throughput solid-phase microextraction system to determine the plasma protein binding of drugs in human plasma. Anal. Chem. 2021 93 32 11061 11065 10.1021/acs.analchem.1c01986 34353028
    [Google Scholar]
  47. Roszkowska A. Miękus N. Bączek T. Application of solid‐phase microextraction in current biomedical research. J. Sep. Sci. 2019 42 1 285 302 10.1002/jssc.201800785 30289623
    [Google Scholar]
  48. Jafari M.T. Saraji M. Ameri A.H. Coupling of solid phase microextraction with electrospray ionization ion mobility spectrometry and direct analysis of venlafaxine in human urine and plasma. Anal. Chim. Acta 2015 853 460 468 10.1016/j.aca.2014.10.054 25467491
    [Google Scholar]
  49. Costa B.R.B. Santos, Júnior, W.J.R.; Maximiano, I.F.; Gomes, N.C.; Freitas, B.T.; De Martinis, B.S. Application of microextraction techniques in alternative biological matrices with focus on forensic toxicology: A review. Bioanalysis 2021 13 1 45 64 10.4155/bio‑2020‑0241 33326299
    [Google Scholar]
  50. Frazier C.J.G. Gokool V.A. Holness H.K. Mills D.K. Furton K.G. Multivariate regression modelling for gender prediction using volatile organic compounds from hand odor profiles via HS-SPME-GC-MS. PLoS One 2023 18 7 e0286452 10.1371/journal.pone.0286452 37405979
    [Google Scholar]
  51. Brown J.S. Prada P.A. Curran A.M. Furton K.G. Applicability of emanating volatile organic compounds from various forensic specimens for individual differentiation. Forensic Sci. Int. 2013 226 1-3 173 182 10.1016/j.forsciint.2013.01.008 23369788
    [Google Scholar]
  52. Jain B. Jain R. Nowak P.M. Ali N. Ansari M.N. Kabir A. Chandravanshi L.P. Sharma S. Comparison of various sample preparation methods for benzodiazepines in terms of the principles of white analytical chemistry. Trends Analyt. Chem. 2024 171 117524 10.1016/j.trac.2024.117524
    [Google Scholar]
  53. Rani P. Nanda B.P. Paul P. Chawla R. Bhatia R. Exploring advanced strategies in SPME-HPLC-DAD: Enhancing analytical precision and diverse applications in modern era. J. Liq. Chromatogr. Relat. Technol. 2024 47 6-10 181 200 10.1080/10826076.2024.2349146
    [Google Scholar]
  54. Watt L. Sisco E. Detection of trace drugs of abuse in baby formula using solid‐phase microextraction direct analysis in real‐time mass spectrometry (SPME‐DART‐MS). J. Forensic Sci. 2021 66 1 172 178 10.1111/1556‑4029.14568 32986875
    [Google Scholar]
  55. Guo Z. Huang S. Wang J. Feng Y.L. Recent advances in non-targeted screening analysis using liquid chromatography - high resolution mass spectrometry to explore new biomarkers for human exposure. Talanta 2020 219 121339 10.1016/j.talanta.2020.121339 32887069
    [Google Scholar]
  56. Rosado T. Barroso M. Vieira D.N. Gallardo E. Determination of selected opiates in hair samples using microextraction by packed sorbent: A new approach for sample clean-up. J. Anal. Toxicol. 2019 43 6 465 476 10.1093/jat/bkz029 31329881
    [Google Scholar]
  57. Macias M.S. Guerra-Diaz P. Almirall J.R. Furton K.G. Detection of piperonal emitted from polymer controlled odor mimic permeation systems utilizing Canis familiaris and solid phase microextraction–ion mobility spectrometry. Forensic Sci. Int. 2010 195 1-3 132 138 10.1016/j.forsciint.2009.12.006 20044224
    [Google Scholar]
  58. Zhang X. Dai Z. Fan X. Liu M. Ma J. Shang W. Liu J. Strappe P. Blanchard C. Zhou Z. A study on volatile metabolites screening by HS‐SPME‐GC‐MS and HS‐GC‐IMS for discrimination and characterization of white and yellowed rice. Cereal Chem. 2020 97 2 496 504 10.1002/cche.10264
    [Google Scholar]
  59. Song A. Liu R. He X. Wei L. Sensitive determination of amphetamine-type stimulants in human hair by electro-enhanced solid-phase microextraction coupled to gas chromatography with nitrogen-phosphorus detector. Chin. J. Anal. Chem. 2025 53 4 100525 10.1016/j.cjac.2025.100525
    [Google Scholar]
  60. Jalili V. Barkhordari A. Ghiasvand A. A comprehensive look at solid-phase microextraction technique: A review of reviews. Microchem. J. 2020 152 104319 10.1016/j.microc.2019.104319
    [Google Scholar]
  61. Rafson J. Novel extractions of trace-level compounds using pdms sorbent polymers for high-throughput analyses and mass spectral imaging. Thesis: Cornell University 2021
    [Google Scholar]
  62. Grecco C.F. de Souza I.D. Queiroz M.E.C. Novel materials as capillary coatings for in‐tube solid‐phase microextraction for bioanalysis. J. Sep. Sci. 2021 44 8 1662 1693 10.1002/jssc.202001070 33528909
    [Google Scholar]
  63. Song X.Y. Chen J. Shi Y.P. Different configurations of carbon nanotubes reinforced solid-phase microextraction techniques and their applications in the environmental analysis. Trends Analyt. Chem. 2017 86 263 275 10.1016/j.trac.2016.11.006
    [Google Scholar]
  64. Manousi N. Tzanavaras P.D. Zacharis C.K. Bioanalytical HPLC applications of in-tube solid phase microextraction: A two-decade overview. Molecules 2020 25 9 2096 10.3390/molecules25092096 32365828
    [Google Scholar]
  65. Paiva A.C. Crucello J. de Aguiar Porto N. Hantao L.W. Fundamentals of and recent advances in sorbent-based headspace extractions. Trends Analyt. Chem. 2021 139 116252 10.1016/j.trac.2021.116252
    [Google Scholar]
  66. Lopes A.L. Augusto F. Preparation and characterization of polydimethylsiloxane/poly(vinylalcohol) coated solid phase microextraction fibers using sol–gel technology. J. Chromatogr. A 2004 1056 1-2 13 19 10.1016/j.chroma.2004.05.047 15595527
    [Google Scholar]
  67. Zhang N. Huang C. Feng Z. Chen H. Tong P. Wu X. Zhang L. Metal-organic framework-coated stainless steel fiber for solid-phase microextraction of polychlorinated biphenyls. J. Chromatogr. A 2018 1570 10 18 10.1016/j.chroma.2018.07.065 30076008
    [Google Scholar]
  68. Konieczna K. Yavir K. Kermani M. Mielewczyk-Gryń A. Kloskowski A. The new silica-based coated SPME fiber as universal support for the confinement of ionic liquid as an extraction medium. Separ. Purif. Tech. 2020 252 117411 10.1016/j.seppur.2020.117411
    [Google Scholar]
  69. Szultka-Mlynska M. Olszowy P. Buszewski B. Nanoporous conducting polymer–based coatings in microextraction techniques for environmental and biomedical applications. Crit. Rev. Anal. Chem. 2016 46 3 236 247 10.1080/10408347.2015.1081051 26322903
    [Google Scholar]
  70. Portillo-Castillo O.J. Castro-Ríos R. Chávez-Montes A. González-Horta A. Cavazos-Rocha N. de Torres N.H.W. Garza-Tapia M. Developments of solid-phase microextraction fiber coatings for environmental pharmaceutical and personal care products analysis. Rev. Anal. Chem. 2018 37 2 20170018 10.1515/revac‑2017‑0018
    [Google Scholar]
  71. Hoang A.T. Nižetić S. Duong X.Q. Rowinski L. Nguyen X.P. Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water. Chemosphere 2021 277 130274 10.1016/j.chemosphere.2021.130274 33770690
    [Google Scholar]
  72. Wang S. Geng Y. Sun X. Wang R. Zheng Z. Hou S. Wang X. Ji W. Molecularly imprinted polymers prepared from a single cross-linking functional monomer for solid-phase microextraction of estrogens from milk. J. Chromatogr. A 2020 1627 461400 10.1016/j.chroma.2020.461400 32823105
    [Google Scholar]
  73. Abbasian M. Balali-Mood M. Salar Amoli H. Masoumi A. A new solid-phase microextraction fiber for separation and determination of methamphetamines in human urine using sol–gel technique. J. Sol-Gel Sci. Technol. 2017 81 1 247 260 10.1007/s10971‑016‑4050‑z
    [Google Scholar]
  74. Śmiełowska M. Zabiegała B. Current trends in analytical strategies for determination of polybrominated diphenyl ethers (PBDEs) in samples with different matrix compositions – Part 1.: Screening of new developments in sample preparation. Trends Analyt. Chem. 2020 132 115255 10.1016/j.trac.2018.09.019
    [Google Scholar]
  75. Jampílek J. Kráľová K. Potential of nanoscale carbon-based materials for remediation of pesticide-contaminated environment. Carbon Nanomaterials for Agri-Food and Environmental Applications. Elsevier 2020 359 399 10.1016/B978‑0‑12‑819786‑8.00017‑7
    [Google Scholar]
  76. Rohanifar A. Rodriguez L.B. Devasurendra A.M. Alipourasiabi N. Anderson J.L. Kirchhoff J.R. Solid-phase microextraction of heavy metals in natural water with a polypyrrole/carbon nanotube/1, 10–phenanthroline composite sorbent material. Talanta 2018 188 570 577 10.1016/j.talanta.2018.05.100 30029414
    [Google Scholar]
  77. Lan H. Hartonen K. Riekkola M.L. Miniaturised air sampling techniques for analysis of volatile organic compounds in air. Trends Analyt. Chem. 2020 126 115873 10.1016/j.trac.2020.115873
    [Google Scholar]
  78. Pati S. Tufariello M. Crupi P. Coletta A. Grieco F. Losito I. Quantification of volatile compounds in wines by HS-SPME-GC/MS: Critical issues and use of multivariate statistics in method optimization. Processes 2021 9 4 662 10.3390/pr9040662
    [Google Scholar]
  79. Lancioni C. Castells C. Candal R. Tascon M. Headspace solid-phase microextraction: Fundamentals and recent advances. Adv. Sample Prep 2022 3 100035 10.1016/j.sampre.2022.100035
    [Google Scholar]
  80. Bueno M. Resconi V.C. Campo M.M. Ferreira V. Escudero A. Development of a robust HS-SPME-GC-MS method for the analysis of solid food samples. Analysis of volatile compounds in fresh raw beef of differing lipid oxidation degrees. Food Chem. 2019 281 49 56 10.1016/j.foodchem.2018.12.082 30658764
    [Google Scholar]
  81. Badawy M.E.I. El-Nouby M.A.M. Kimani P.K. Lim L.W. Rabea E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022 38 12 1457 1487 10.1007/s44211‑022‑00190‑8 36198988
    [Google Scholar]
  82. Ebrahimzadeh H. Dehghani Z. Asgharinezhad A.A. Shekari N. Molaei K. Determination of haloperidol in biological samples using molecular imprinted polymer nanoparticles followed by HPLC-DAD detection. Int. J. Pharm. 2013 453 2 601 609 10.1016/j.ijpharm.2013.05.054 23742977
    [Google Scholar]
  83. Rodríguez B.E.S. Technological innovations in industry. A proposal for the analysis of environmental contaminants with molecularly imprinted polymers. Tékhne 2018 21 2
    [Google Scholar]
  84. Shakerian F. Kim K-H. Kwon E. Szulejko J.E. Kumar P. Dadfarnia S. Haji S.A.M. Advanced polymeric materials: Synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions. Trends Analyt. Chem. 2016 83 55 69 10.1016/j.trac.2016.08.001
    [Google Scholar]
  85. Memon N. Quantum dots coated with molecularly imprinted polymer as probes for environmentally and medicinally important analytes. In: Molecular Imprinting for Nanosensors and Other Sensing Applications 2021223 253 10.1016/B978‑0‑12‑822117‑4.00009‑5
    [Google Scholar]
  86. Dugheri S. Mucci N. Cappelli G. Trevisani L. Bonari A. Bucaletti E. Squillaci D. Arcangeli G. Advanced solid-phase microextraction techniques and related automation: A review of commercially available technologies. J. Anal. Methods Chem. 2022 2022 1 1 15 10.1155/2022/8690569 35154846
    [Google Scholar]
  87. Armenta S. de la Guardia M. Namiesnik J. Green microextraction. Analytical Microextraction Techniques 2017 3 27
    [Google Scholar]
  88. Tajik L. Bahrami A. Ghiasvand A. Shahna F.G. Determination of BTEX in urine samples using cooling/heating-assisted headspace solid-phase microextraction. Chem. Pap. 2017 71 10 1829 1838 10.1007/s11696‑017‑0176‑x
    [Google Scholar]
  89. Spietelun A. Kloskowski A. Chrzanowski W. Namieśnik J. Understanding solid-phase microextraction: Key factors influencing the extraction process and trends in improving the technique. Chem. Rev. 2013 113 3 1667 1685 10.1021/cr300148j 23273266
    [Google Scholar]
  90. Yiantzi E. Murtada K. Terzidis K. Pawliszyn J. Psillakis E. Vacuum-assisted headspace thin-film microextraction: Theoretical formulation and method optimization for the extraction of polycyclic aromatic hydrocarbons from water samples. Anal. Chim. Acta 2022 1189 339217 10.1016/j.aca.2021.339217 34815047
    [Google Scholar]
  91. Murtada K. Galpin V. Grandy J.J. Singh V. Sanchez F. Pawliszyn J. Development of porous carbon/polydimethylsiloxane thin-film solid-phase microextraction membranes to facilitate on-site sampling of volatile organic compounds. Sustain. Chem. Pharm. 2021 21 100435 10.1016/j.scp.2021.100435
    [Google Scholar]
  92. Miranda L.F.C. Gonçalves R.R. Queiroz C. M.E. A dual ligand sol–gel organic-silica hybrid monolithic capillary for in-tube SPME-MS/MS to determine amino acids in plasma samples. Molecules 2019 24 9 1658 10.3390/molecules24091658 31035579
    [Google Scholar]
  93. Vargas M.D.A. Maciel E.V.S. Lanças F.M. Modern automated sample preparation for the determination of organic compounds: A review on robotic and on-flow systems. Trends Analyt. Chem. 2023 166 117171 10.1016/j.trac.2023.117171
    [Google Scholar]
  94. AL-Hashimi N.N.; Aleih, H.A.; Fasfous, I.I.; AlKhatib, H.S. Multi-walled carbon nanotubes as efficient sorbent for the solid bar microextraction of non-steroidal anti-inflammatory drugs from human urine samples. Curr. Pharm. Anal. 2018 14 3 239 246 10.2174/1573412913666170317131328
    [Google Scholar]
  95. Wieczorek M.N. Zhou W. Jeleń H.H. Pawliszyn J. Automated sequential SPME addressing the displacement effect in food samples. Food Chem. 2024 439 138093 10.1016/j.foodchem.2023.138093 38043285
    [Google Scholar]
  96. Wang Y. Pawliszyn J. Automated sequential solid-phase microextraction to address displacement effects in the quantitative Analysis of polar compounds. Green Analyt. Chem. 2023 6 100070 10.1016/j.greeac.2023.100070
    [Google Scholar]
  97. Su Y. Ren T. Lin Y. Zheng C. Application of solid-phase microextraction in atomic spectrometry. Adv. Sample Preparation 2022 3 100033 10.1016/j.sampre.2022.100033
    [Google Scholar]
  98. Carter S. Fisher A. Garcia R. Gibson B. Lancaster S. Marshall J. Whiteside I. Atomic spectrometry update. Review of advances in the analysis of metals, chemicals and functional materials. J. Anal. At. Spectrom. 2015 30 11 2249 2294 10.1039/C5JA90045J
    [Google Scholar]
  99. Gugushe A.S. Application of magnetic nanocomposites for removal and preconcentration of trace metals in water. South Africa University of Johannesburg 2019
    [Google Scholar]
  100. Kurup C.P. Ahmed M.U. Nanozymes towards personalized diagnostics: A recent progress in biosensing. Biosensors 2023 13 4 461 10.3390/bios13040461 37185536
    [Google Scholar]
  101. Wang H. Liu X. Nan K. Chen B. He M. Hu B. Sample pre-treatment techniques for use with ICP-MS hyphenated techniques for elemental speciation in biological samples. J. Anal. At. Spectrom. 2017 32 1 58 77 10.1039/C6JA00077K
    [Google Scholar]
  102. Fei J. Zhao L. Wu X. Cui X. Min H. Lian H. Chen Y. In-tube solid-phase microextraction with a hybrid monolithic column for the preconcentration of ultra-trace metals prior to simultaneous determination by ICP-MS. Mikrochim. Acta 2020 187 6 356 10.1007/s00604‑020‑04329‑0 32468175
    [Google Scholar]
  103. Nomngongo P.N. Ngila J.C. Hollow fiber solid phase microextraction coupled to square wave anodic stripping voltammetry for selective preconcentration and determination of trace levels of mercury in liquid fuel samples. J. Indian Chem. Soc. 2015 12 12 2141 2147
    [Google Scholar]
  104. He M. Chen B. Wang H. Hu B. Microfluidic chip-inductively coupled plasma mass spectrometry for trace elements and their species analysis in cells. Appl. Spectrosc. Rev. 2019 54 3 250 263 10.1080/05704928.2019.1565864
    [Google Scholar]
  105. Chen Z. Chen B. He M. Wang H. Hu B. A porous organic polymer with magnetic nanoparticles on a chip array for preconcentration of platinum(IV), gold(III) and bismuth(III) prior to their on-line quantitation by ICP-MS. Mikrochim. Acta 2019 186 2 107 10.1007/s00604‑018‑3139‑1 30637494
    [Google Scholar]
  106. Wan L. Wang H. Mo X. Wang Y. Song L. Liu L. Liang W. Applying HS-SPME-GC-MS combined with PTR-TOF-MS to analyze the volatile compounds in coffee husks of Coffea arabica with different primary processing treatments in Yunnan. Lebensm. Wiss. Technol. 2024 191 115675 10.1016/j.lwt.2023.115675
    [Google Scholar]
  107. Wan L. Li Y. Wang H. Wang Y. Song L. Liang W. Rapid detection of markers in green coffee beans with different primary processing treatments of Coffea arabica L. from Yunnan. Food Chem. 2024 455 139942 10.1016/j.foodchem.2024.139942 38917655
    [Google Scholar]
  108. Valverde-Som L. Herrero A. Reguera C. Sarabia L.A. Ortiz M.C. Sánchez M.S. Model inversion and three-way decompositions in the analytical quality by design strategy for the determination of phthalates BY HS-SPME-GC-MS. Talanta 2024 267 125265 10.1016/j.talanta.2023.125265 37826997
    [Google Scholar]
  109. Fan X. Zhong M. Feng L. Huo Y. Pan L. Evaluation of flavor characteristics in tartary buckwheat (Fagopyrum tataricum) by E-nose, GC-IMS, and HS-SPME-GC-MS: Influence of different roasting temperatures. Lebensm. Wiss. Technol. 2024 191 115672 10.1016/j.lwt.2023.115672
    [Google Scholar]
  110. Rong Y. Xie J. Yuan H. Wang L. Liu F. Deng Y. Jiang Y. Yang Y. Characterization of volatile metabolites in Pu-erh teas with different storage years by combining GC-E-Nose, GC–MS, and GC-IMS. Food Chem. X 2023 18 100693 10.1016/j.fochx.2023.100693 37397226
    [Google Scholar]
  111. Hecker A.J. Screening and Quantitation of Volatiles from Explosive Initiators and Plastic Bonded Explosives (PBX). Purdue University Graduate School 2024
    [Google Scholar]
  112. Zhang J. Zhong L. Wang P. Song J. Shi C. Li Y. Oyom W. Zhang H. Zhu Y. Wen P. HS-SPME-GC-MS combined with orthogonal partial least squares identification to analyze the effect of LPL on Yak Milk’s flavor under different storage temperatures and times. Foods 2024 13 2 342 10.3390/foods13020342 38275709
    [Google Scholar]
  113. Mihaylova D. Popova A. Dincheva I. Pandova S. HS-SPME-GC–MS Profiling of volatile organic compounds and polar and lipid metabolites of the “Stendesto” plum–apricot Kernel with reference to its parents. Horticulturae 2024 10 3 257 10.3390/horticulturae10030257
    [Google Scholar]
  114. Vas G. Vékey K. Solid‐phase microextraction: A powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 2004 39 3 233 254 10.1002/jms.606 15039931
    [Google Scholar]
  115. Kavian M. Ghani M. Raoof J.B. In-situ synthesis of amine-functionalized ZIF-8/COF hybrid composite reinforced hollow fiber for solid-phase microextraction of pesticides besides their quantification via HPLC-UV. Microchem. J. 2025 211 113075 10.1016/j.microc.2025.113075
    [Google Scholar]
  116. Borges F.A. Costa L.M. Tarley C.R.T. de Fátima Lima Martins G. Figueiredo E.C. Lead determination in commercial juice samples by direct magnetic sorbent sampling flame atomic absorption spectrometry (DMSS-FAAS). Food Chem. 2023 413 135676 10.1016/j.foodchem.2023.135676 36804744
    [Google Scholar]
  117. Peng P.L. Lim L.H. Polycyclic aromatic hydrocarbons (PAHs) sample preparation and analysis in beverages: A review. Food Anal. Methods 2022 15 4 1042 1061 10.1007/s12161‑021‑02178‑y
    [Google Scholar]
  118. Mital S. HPLC of nitrosamines in food and other matrices. In: Food. Analysis by HPLC. CRC Press 2012 910 939
    [Google Scholar]
  119. Li Y. Yin S. Yang Y. Chen J. Wu L. Sun C. Sample treatment methods for the determination of phenolic environmental estrogens in foods and drinking water. J. AOAC Int. 2020 103 2 348 364 10.5740/jaoacint.19‑0249 31537210
    [Google Scholar]
  120. Notardonato I. Gianfagna S. Castoria R. Ianiri G. De Curtis F. Russo M.V. Avino P. Critical review of the analytical methods for determining the mycotoxin patulin in food matrices. Rev. Anal. Chem. 2021 40 1 144 160 10.1515/revac‑2021‑0131
    [Google Scholar]
  121. Carbon nanomaterials in sample preparation. Carbon-Based Nanomaterials in Analytical Chemistry 2018 12 37
    [Google Scholar]
  122. Custodio-Mendoza J.A. Ares-Fuentes A.M. Carro A.M. Innovative solutions for food analysis: Microextraction techniques in lipid peroxidation product detection. Separations 2023 10 10 531 10.3390/separations10100531
    [Google Scholar]
  123. Socas-Rodríguez B. Asensio-Ramos M. Hernández-Borges J. Herrera-Herrera A.V. Rodríguez-Delgado M.Á. Chromatographic analysis of natural and synthetic estrogens in milk and dairy products. Trends Analyt. Chem. 2013 44 58 77 10.1016/j.trac.2012.10.013
    [Google Scholar]
  124. Serra-Mora P. Trends in online intube solid phase microextraction. In: Comprehensive Analytical Chemistry. Elsevier 2017 427 461
    [Google Scholar]
  125. De Toffoli A.L. Fumes B.H. Lanças F.M. Packed in-tube solid phase microextraction with graphene oxide supported on aminopropyl silica: Determination of target triazines in water samples. J. Environ. Sci. Health B 2018 53 7 434 440 10.1080/03601234.2018.1438831 29469607
    [Google Scholar]
  126. Ishizaki A. Sito K. Kataoka H. Analysis of contaminant polycyclic aromatic hydrocarbons in tea products and crude drugs. Anal. Methods 2011 3 2 299 305 10.1039/C0AY00423E 32938028
    [Google Scholar]
  127. Wang T.T. Chen Y.H. Ma J.F. Hu M.J. Li Y. Fang J.H. Gao H.Q. A novel ionic liquid-modified organic-polymer monolith as the sorbent for in-tube solid-phase microextraction of acidic food additives. Anal. Bioanal. Chem. 2014 406 20 4955 4963 10.1007/s00216‑014‑7923‑4 24939131
    [Google Scholar]
  128. Wu F. Wang J. Zhao Q. Jiang N. Lin X. Xie Z. Li J. Zhang Q. Detection of trans-fatty acids by high performance liquid chromatography coupled with in-tube solid-phase microextraction using hydrophobic polymeric monolith. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017 1040 214 221 10.1016/j.jchromb.2016.11.014 27866847
    [Google Scholar]
  129. Sowa I. Wójciak M. Tyszczuk-Rotko K. Klepka T. Dresler S. Polyaniline and polyaniline-based materials as sorbents in solid-phase extraction techniques. Materials 2022 15 24 8881 10.3390/ma15248881 36556687
    [Google Scholar]
  130. Pelit L. Pelit F. Ertaş H. Ertaş F.N. Electrochemically fabricated solid phase microextraction fibers and their applications in food, environmental and clinical analysis. Curr. Anal. Chem. 2019 15 7 706 730 10.2174/1573411015666190314155440
    [Google Scholar]
  131. Hajebi N. Seidi S. Ramezani M. Manouchehri M. Electrospun polyamide/graphene oxide/polypyrrole composite nanofibers: An efficient sorbent for headspace solid phase microextraction of methamphetamine in urine samples followed by GC-MS analysis. New J. Chem. 2020 44 34 14429 14437 10.1039/D0NJ03240A
    [Google Scholar]
  132. Jagirani M.S. Ozalp O. Soylak M. New trend in the extraction of pesticides from the environmental and food samples applying microextraction based green chemistry scenario: a review. Crit. Rev. Anal. Chem. 2022 52 6 1343 1369 10.1080/10408347.2021.1874867 33560139
    [Google Scholar]
  133. Delińska K. Rakowska P.W. Kloskowski A. Porous material-based sorbent coatings in solid-phase microextraction technique: Recent trends and future perspectives. Trends Analyt. Chem. 2021 143 116386 10.1016/j.trac.2021.116386
    [Google Scholar]
  134. Ajmal P.Y. Bhangare R.C. Tiwari M. Sahu S.K. Analysis of nitroaromatics: A comparison between gas chromatography, liquid chromatography and their hyphenation with solid phase micro-extraction. Curr. Chromatogr. 2019 6 1 42 51 10.2174/2213240606666190423122358
    [Google Scholar]
  135. Navitha R.G. Dilip Z.A. Sengupta P. Current direction and advances in analytical sample extraction techniques for drugs with special emphasis on bioanalysis. Bioanalysis 2019 11 4 313 332 10.4155/bio‑2018‑0144 30663327
    [Google Scholar]
  136. Skok A. Bazel Y. Headspace microextraction. A comprehensive review on method application to the analysis of real samples (from 2018 till present). Crit. Rev. Anal. Chem. 2025 55 2 375 405 10.1080/10408347.2023.2291695 38079469
    [Google Scholar]
  137. Temerdashev A. Atapattu S.N. Feng Y.Q. A tutorial on solid-phase analytical derivatization in sample preparation applications. J. Chromatogr Open 2024 6 100157 10.1016/j.jcoa.2024.100157
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461384287250711063801
Loading
/content/journals/cgc/10.2174/0122133461384287250711063801
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test