Skip to content
2000
image of Insight on Assessment of Toxins and Heavy Metals in Food Products - A Concise View on Analytical Approach and Methods

Abstract

Introduction

With the globalization of food supply chains, food safety has emerged as a critical global concern impacting public health, well-being, and economic stability. Chemical contaminants such as mycotoxins and heavy metals pose significant health risks, necessitating advanced detection and monitoring strategies to ensure food safety.

Methods

A literature search was conducted in PubMed, Scopus, Web of Science, and ScienceDirect (2010-2025) using keywords like and Relevant studies were screened and reviewed to evaluate recent advancements in analytical technologies and sample preparation methods. Techniques such as SERS, ICP-MS, AFS, and AAS were assessed for sensitivity and accuracy, while novel preparation methods (microwave-assisted digestion, ultrasonic extraction, slurry, and direct solid sampling) were analyzed for efficiency. Speciation analysis of arsenic and mercury was also included to address bioavailability and toxicity.

Results

Advanced analytical methods showed superior sensitivity and rapid detection of trace contaminants. Microwave-assisted digestion and ultrasonic extraction enhanced sample preparation by reducing analyte loss and improving recovery rates. Direct solid sampling (., graphite furnace AAS) and speciation analysis proved critical for assessing toxicological relevance.

Discussion

These findings highlight the potential of integrating cutting-edge analytical technologies and improved sample preparation methods into routine food analysis. They address challenges of trace-level detection and offer strategies for mitigating chemical hazards in the food chain.

Conclusion

Adopting advanced analytical and sample preparation techniques, supported by strengthened regulatory frameworks, is essential to ensuring food quality and safety and protecting public health globally.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461384294251007170357
2025-10-15
2025-12-06
Loading full text...

Full text loading...

References

  1. Yang J. Mental health in china: Change, tradition, and therapeutic governance; 2017
  2. Mirriam E.N. Rol N.N. The challenges of foodborne pathogens and antimicrobial chemotherapy: A global perspective. Afr. J. Microbiol. Res. 2013 7 14 1158 1172 10.5897/AJMRx12.014
    [Google Scholar]
  3. Coley W.B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc. R. Soc. Med. 1910 1 48 10.1177/003591571000301601
    [Google Scholar]
  4. Bhaskar S.V. Foodborne diseases-disease burden. In: Food. Safety in the 21st Century. Academic Press 2017 1 10 10.1016/B978‑0‑12‑801773‑9.00001‑7
    [Google Scholar]
  5. da Cunha D.T. Stedefeldt E. Luning P.A. Prates C.B. Zanin L.M. Food safety culture as a behavioural phenomenon shaping food safety. Curr. Opin. Food Sci. 2025 63 101305 10.1016/j.cofs.2025.101305
    [Google Scholar]
  6. Khezerlou A. Alizadeh-Sani M. Azizi-Lalabadi M. Ehsani A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb. Pathog. 2018 123 505 526 10.1016/j.micpath.2018.08.008 30092260
    [Google Scholar]
  7. Newell D.G. Koopmans M. Verhoef L. Duizer E. Aidara-Kane A. Sprong H. Opsteegh M. Langelaar M. Threfall J. Scheutz F. der Giessen J. Kruse H. Food-borne diseases - The challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 2010 139 S3 S15 10.1016/j.ijfoodmicro.2010.01.021 20153070
    [Google Scholar]
  8. Antibiotic resistance emerging, continued contamination of food by changing environments and food production, and a growing num-ber of multistate outbreaks,
  9. Hembrom S. Singh B. Gupta SK. Nema AK. A comprehensive evaluation of heavy metal contamination in foodstuff and associated human health risk: A global perspective. In: Contemporary Environmental Issues and Challenges in Era of Climate Change. Singapore Springer 2020 10.1007/978‑981‑32‑9595‑7_2
    [Google Scholar]
  10. Goutam M.A. Ramesh W.U. Renu K. Vellingiri B. Valsala G.A. Heavy metal and metalloid - induced reproductive toxicity. Environ. Toxicol. Pharmacol. 2022 92 103859 10.1016/j.etap.2022.103859 35358731
    [Google Scholar]
  11. Guidelines for safe recreational water environments: Coastal and fresh waters; World Health Organization, 2003
  12. Charkiewicz A.E. Omeljaniuk W.J. Nowak K. Garley M. Nikliński J. Cadmium toxicity and health effects - A brief summary. Molecules 2023 28 18 6620 10.3390/molecules28186620 37764397
    [Google Scholar]
  13. Sergentanis T.N. Antoniadis A.G. Gogas H.J. Antonopoulos C.N. Adami H.O. Ekbom A. Petridou E.T. Obesity and risk of malignant melanoma: A meta-analysis of cohort and case–control studies. Eur. J. Cancer 2013 49 3 642 657 10.1016/j.ejca.2012.08.028 23200191
    [Google Scholar]
  14. Liang Y. Lei L. Nilsson J. Li H. Nordberg M. Bernard A. Nordberg G.F. Bergdahl I.A. Jin T. Renal function after reduction in cadmium exposure: An 8-year follow-up of residents in cadmium-polluted areas. Environ. Health Perspect. 2012 120 2 223 228 10.1289/ehp.1103699 22027495
    [Google Scholar]
  15. Bayless R.L. Moore A.R. Hassel D.M. Byer B.J. Landolt G.A. Nout-Lomas Y.S. Equine urinary N-acetyl-β-D-glucosami-] nidase assay validation and correlation with other markers of kidney injury. J. Vet. Diagn. Invest. 2019 31 5 688 695 10.1177/1040638719867124 31347464
    [Google Scholar]
  16. Argyropoulos C.P. Chen S.S. Ng Y.H. Roumelioti M.E. Shaffi K. Singh P.P. Tzamaloukas A.H. Rediscovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front. Med. 2017 4 73 10.3389/fmed.2017.00073 28664159
    [Google Scholar]
  17. Wirth J.J. Mijal R.S. Adverse effects of low level heavy metal exposure on male reproductive function. Syst Biol Reprod Med 2010 56 2 147 167 10.3109/19396360903582216 20377313
    [Google Scholar]
  18. Krouse J.H. Veling M.C. Ryan M.W. Pillsbury H.C. Krouse H.J. Joe S. Heller A.J. Han J.K. Fineman S.M. Brown R.W. Asthma and the unified airway. Otolaryngol. Head Neck Surg. 2007 136 5 699 706 10.1016/j.otohns.2007.02.023 17462497
    [Google Scholar]
  19. Food safety. 1999 Available from: https://applications.emro.who. int/emhj/14_s1/14_s1_s143.pdf
  20. Hameed S. Xie L. Ying Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci. Technol. 2018 81 61 73 10.1016/j.tifs.2018.05.020
    [Google Scholar]
  21. Farzin L. Shamsipur M. Sheibani S. A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta 2017 174 619 627 10.1016/j.talanta.2017.06.066 28738631
    [Google Scholar]
  22. Ahuja V. Singh A. Paul D. Dasgupta D. Urajová P. Ghosh S. Singh R. Sahoo G. Ewe D. Saurav K. Recent advances in the detection of food toxins using mass spectrometry. Chem. Res. Toxicol. 2023 36 12 1834 1863 10.1021/acs.chemrestox.3c00241 38059476
    [Google Scholar]
  23. Yuan X. Chapman R.L. Wu Z. Analytical methods for heavy metals in herbal medicines. Phytochem. Anal. 2011 22 3 189 198 10.1002/pca.1287 21341339
    [Google Scholar]
  24. Barkan I.D. Industry invites regulation: The passage of the Pure Food and Drug Act of 1906. Am. J. Public Health 1985 75 1 18 26 10.2105/AJPH.75.1.18 3881052
    [Google Scholar]
  25. Anderson O.E. Refrigeration in America. Princeton University Press 2015
    [Google Scholar]
  26. Fortin N.D. The hang-up with HACCP: The resistance to translating science into food safety law. Food Drug Law J. 2003 58 4 565 593 15027451
    [Google Scholar]
  27. King H. Bedale W. Hazard analysis and risk-based preventive controls: Improving food safety in human food manufacturing for food businesses. 1st ed Academic Press 2017
    [Google Scholar]
  28. Baliyan N. Kumari R. Kumari A. Kumar A. Food safety and detection of bacterial foodborne pathogens in India. In: Handbook of Public. Health. Nutrition. Cham Springer 2024 10.1007/978‑3‑031‑32047‑7_7‑1
    [Google Scholar]
  29. Pettoello-Mantovani C. Olivieri B. Food safety and public health within the frame of the EU legislation. Global Pediatrics 2022 2 100020 10.1016/j.gpeds.2022.100020
    [Google Scholar]
  30. Fraqueza MJ. Barreto AS. Hazard analysis and critical control points. Wiley 2014
    [Google Scholar]
  31. Wallace CA Sperber WH Mortimore SE Food safety for the 21st century: Managing HACCP and food safety throughout the global supply chain, 2018 10.1002/9781119053569
  32. WHO global strategy for food safety 2022-2030: Towards stronger food safety systems and global cooperation. 2022 Available from: https://www.who.int/publications/i/item/9789240057685
  33. Anyairo C.S. Unban K. Shetty K. Khanongnuch C. Bacteriocin producing Bacillus and their potential applications in fish farming. Int. Aquatic Res. 2024 16 1 17 37
    [Google Scholar]
  34. Food safety issues associated with products from aquaculture: Report of a joint FAO/NACA/WHO study group. Bangkok, Thailand World Health Organization 1999 1 55
    [Google Scholar]
  35. Wong C. Roberts S.M. Saab I.N. Review of regulatory reference values and background levels for heavy metals in the human diet. Regul. Toxicol. Pharmacol. 2022 130 105122 10.1016/j.yrtph.2022.105122 35090957
    [Google Scholar]
  36. Altarawneh R.M. Levels of selected heavy metals (Pb, Ni, Cd, and Cr) in various widely consumed fruits and vegetables in Jordan. Int. J. Environ. Anal. Chem. 2021 101 7 1026 1033 10.1080/03067319.2019.1675653
    [Google Scholar]
  37. Janssen M.M. Put H.M. Nout, MJ Natural toxins. In: In Food safety and toxicity. CRC Press 2021
    [Google Scholar]
  38. Szajner J. Czarny-Dzialak M. Dziechciaz M. Pawlas N. Walosik A. Dioxin-like compounds (DLCs) in the environment and their impact on human health. J. Elem. 2021 26 2
    [Google Scholar]
  39. Birnbaum L.S. Developmental effects of dioxins. In: In Reproductive and Developmental Toxicology. CRC Press 1998 105 160
    [Google Scholar]
  40. Awuchi C.G. Ondari E.N. Nwozo S. Odongo G.A. Eseoghene I.J. Twinomuhwezi H. Ogbonna C.U. Upadhyay A.K. Adeleye A.O. Okpala C.O.R. Mycotoxins’ toxicological mechanisms involving humans, livestock and their associated health concerns: A review. Toxins 2022 14 3 167 10.3390/toxins14030167 35324664
    [Google Scholar]
  41. Herrman J.L. Walker R. Risk analysis of mycotoxins by the joint FAO/WHO expert committee on food additives (JECFA). Food Nutr. Agric. 1999 17 24
    [Google Scholar]
  42. Codex standards in the WHO South-East Asia region 2018 Available from: https://www.who.int/publications/i/item/9789290226406
  43. Stoev S.D. Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. Environ. Toxicol. Pharmacol. 2015 39 2 794 809 10.1016/j.etap.2015.01.022 25734690
    [Google Scholar]
  44. Schrenk D. Bignami M. Bodin L. Chipman J.K. Del Mazo J. Grasl-Kraupp B. Hogstrand C. Hoogenboom L.R. Leblanc J.C. Nebbia C.S. Nielsen E. Ntzani E. Petersen A. Sand S. Schwerdtle T. Vleminckx C. Marko D. Oswald I.P. Piersma A. Routledge M. Schlatter J. Baert K. Gergelova P. Wallace H. Risk assessment of aflatoxins in food. EFSA J. 2020 18 3 e06040 32874256
    [Google Scholar]
  45. Chilaka C.A. Obidiegwu J.E. Chilaka A.C. Atanda O.O. Mally A. Mycotoxin regulatory status in Africa: A decade of weak institutional efforts. Toxins 2022 14 7 442 10.3390/toxins14070442 35878180
    [Google Scholar]
  46. Kanu A.B. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J. Chromatogr. A 2021 1654 462444 10.1016/j.chroma.2021.462444 34380070
    [Google Scholar]
  47. Hamadamin A.Y. Hassan K.I. Gas chromatography–mass spectrometry based sensitive analytical approach to detect and quantify non-polar pesticides accumulated in the fat tissues of domestic animals. Saudi J. Biol. Sci. 2020 27 3 887 893 10.1016/j.sjbs.2019.12.029 32127767
    [Google Scholar]
  48. Brinco J. Guedes P. Gomes da Silva M. Mateus E.P. Ribeiro A.B. Analysis of pesticide residues in soil: A review and comparison of methodologies. Microchem. J. 2023 195 109465 10.1016/j.microc.2023.109465
    [Google Scholar]
  49. Ganzera M. Zwerger M. Analysis of natural products by SFC – Applications from 2015 to 2021. Trends Analyt. Chem. 2021 145 116463 10.1016/j.trac.2021.116463
    [Google Scholar]
  50. Xu M.L. Gao Y. Wang X. Han X.X. Zhao B. Comprehensive strategy for sample preparation for the analysis of food contaminants and residues by GC–MS/MS: A review of recent research trends. Foods 2021 10 10 2473 10.3390/foods10102473 34681522
    [Google Scholar]
  51. Paszkiewicz M. Godlewska K. Lis H. Caban M. Białk-Bielińska A. Stepnowski P. Advances in suspect screening and non-target analysis of polar emerging contaminants in the environmental monitoring. Trends Analyt. Chem. 2022 154 116671 10.1016/j.trac.2022.116671
    [Google Scholar]
  52. Sanchis Y. Yusà V. Coscollà C. Analytical strategies for organic food packaging contaminants. J. Chromatogr. A 2017 1490 22 46 10.1016/j.chroma.2017.01.076 28238322
    [Google Scholar]
  53. Peters R.J.B. Groeneveld I. Sanchez P.L. Gebbink W. Gersen A. de Nijs M. van Leeuwen S.P.J. Review of analytical approaches for the identification of non-intentionally added substances in paper and board food contact materials. Trends Food Sci. Technol. 2019 85 44 54 10.1016/j.tifs.2018.12.010
    [Google Scholar]
  54. Sharma B. Bhatia R. Ganti S.S. Rangra N.K. Recent trends in the detection of alkaloids through analytical, bioanalytical, and electrochemical techniques. Curr. Pharm. Anal. 2024 20 4 241 263 10.2174/0115734129307329240430071035
    [Google Scholar]
  55. Şengül Ü. Comparing determination methods of detection and quantification limits for aflatoxin analysis in hazelnut. Yao Wu Shi Pin Fen Xi 2016 24 1 56 62 10.1016/j.jfda.2015.04.009 28911409
    [Google Scholar]
  56. Stroka J. Petz M. Anklam E. Analytical methods for the determination of aflatoxins in various food matrices at concentrations regarding the limits set in european regulations: Development, characteristics, limits. Mycotoxin Res. 2000 16 1 23 42 10.1007/BF02946103 23605285
    [Google Scholar]
  57. Notardonato I. Gianfagna S. Castoria R. Ianiri G. De Curtis F. Russo M.V. Avino P. Critical review of the analytical methods for determining the mycotoxin patulin in food matrices. Rev. Anal. Chem. 2021 40 1 144 160 10.1515/revac‑2021‑0131
    [Google Scholar]
  58. Sajid M. Mehmood S. Yuan Y. Yue T. Mycotoxin patulin in food matrices: Occurrence and its biological degradation strategies. Drug Metab. Rev. 2019 51 1 105 120 10.1080/03602532.2019.1589493 30857445
    [Google Scholar]
  59. Sohrabi H. Arbabzadeh O. Khaaki P. Khataee A. Majidi M.R. Orooji Y. Patulin and trichothecene: Characteristics, occurrence, toxic effects and detection capabilities via clinical, analytical and nanostructured electrochemical sensing/biosensing assays in foodstuffs. Crit. Rev. Food Sci. Nutr. 2022 62 20 5540 5568 10.1080/10408398.2021.1887077 33624529
    [Google Scholar]
  60. Monaci L. Palmisano F. Determination of ochratoxin a in foods: State-of-the-art and analytical challenges. Anal. Bioanal. Chem. 2004 378 1 96 103 10.1007/s00216‑003‑2364‑5 14614589
    [Google Scholar]
  61. Deng Y. Wang Y. Deng Q. Sun L. Wang R. Wang X. Liao J. Gooneratne R. Simultaneous quantification of aflatoxin B1, T-2 toxin, ochratoxin A and deoxynivalenol in dried seafood products by LC-MS/MS. Toxins 2020 12 8 488 10.3390/toxins12080488 32751656
    [Google Scholar]
  62. Schrenk D. Bodin L. Chipman J.K. Del Mazo J. Grasl-Kraupp B. Hogstrand C. Hoogenboom L.R. Leblanc J.C. Nebbia C.S. Nielsen E. Ntzani E. Petersen A. Sand S. Schwerdtle T. Vleminckx C. Wallace H. Alexander J. Dall’Asta C. Mally A. Metzler M. Binaglia M. Horváth Z. Steinkellner H. Bignami M. Risk assessment of ochratoxin A in food. EFSA J. 2020 18 5 e06113 37649524
    [Google Scholar]
  63. Kwaśniewska K. Gadzała-Kopciuch R. Cendrowski K. Analytical procedure for the determination of zearalenone in environmental and biological samples. Crit. Rev. Anal. Chem. 2015 45 2 119 130 10.1080/10408347.2014.896731 25558774
    [Google Scholar]
  64. Köppen R. Koch M. Siegel D. Merkel S. Maul R. Nehls I. Determination of mycotoxins in foods: Current state of analytical methods and limitations. Appl. Microbiol. Biotechnol. 2010 86 6 1595 1612 10.1007/s00253‑010‑2535‑1 20339844
    [Google Scholar]
  65. Mahato D.K. Devi S. Pandhi S. Sharma B. Maurya K.K. Mishra S. Dhawan K. Selvakumar R. Kamle M. Mishra A.K. Kumar P. Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: A review. Toxins 2021 13 2 92 10.3390/toxins13020092 33530606
    [Google Scholar]
  66. Man Y. Liang G. Li A. Pan L. Analytical methods for the determination of Alternaria mycotoxins. Chromatographia 2017 80 1 9 22 10.1007/s10337‑016‑3186‑x
    [Google Scholar]
  67. Scott P.M. Analysis of agricultural commodities and foods for Alternaria mycotoxins. J. AOAC Int. 2001 84 6 1809 1817 10.1093/jaoac/84.6.1809 11767150
    [Google Scholar]
  68. López P. Venema D. de Rijk T. de Kok A. Scholten J.M. Mol H.G.J. de Nijs M. Occurrence of Alternaria toxins in food products in The Netherlands. Food Control 2016 60 196 204 10.1016/j.foodcont.2015.07.032
    [Google Scholar]
  69. Palmieri S. Eugelio F. Della Valle F. Fanti F. Buccioni F. Ricci A. Sergi M. Del Carlo M. Compagnone D. Molecularly imprinted polymer coupled to UHPLC-MS/MS for the analysis of phomopsins in lupin samples. Talanta 2024 278 126508 10.1016/j.talanta.2024.126508 39002255
    [Google Scholar]
  70. Scientific Opinion on the risks for animal and public health related to the presence of phomopsins in feed and food. EFSA J. 2012 10 2 2567 10.2903/j.efsa.2012.2567
    [Google Scholar]
  71. Edgar J.A. A Phomopsins: Antimierotubule mycotoxins. In: InHand-book of Natural Toxins, 1st ed; CRC Press 2024
    [Google Scholar]
  72. Radić B. Janić Hajnal E. Mandić A. Krulj J. Stojanović Z. Kos J. Development and validation of an HPLC–DAD method for the determination of moniliformin in maize. J. Food Process. Preserv. 2022 46 10 e16008 10.1111/jfpp.16008
    [Google Scholar]
  73. Pardo O. Esteve-Turrillas F.A. Analytical methodologies for the determination of sterigmatocystin in food and current concentration levels. Exploration of Foods and Foodomics 2024 2 6 687 706 10.37349/eff.2024.00059
    [Google Scholar]
  74. Polak-Śliwińska M. Paszczyk B. Trichothecenes in food and feed, relevance to human and animal health and methods of detection: A systematic review. Molecules 2021 26 2 454 10.3390/molecules26020454 33467103
    [Google Scholar]
  75. Vulić A. Lešić T. Kudumija N. Zadravec M. Kiš M. Vahčić N. Pleadin J. The development of LC-MS/MS method of determination of cyclopiazonic acid in dry-fermented meat products. Food Control 2021 123 107814 10.1016/j.foodcont.2020.107814
    [Google Scholar]
  76. Durix A. Jaussaud P. Garcia P. Bonnaire Y. Bony S. Analysis of ergovaline in milk using high-performance liquid chromatography with fluorimetric detection. J. Chromatogr., Biomed. Appl. 1999 729 1-2 255 263 10.1016/S0378‑4347(99)00166‑8 10410950
    [Google Scholar]
  77. Ritieni A. Monti S.M. Moretti A. Logrieco A. Gallo M. Ferracane R. Fogliano V. Stability of fusaproliferin, a mycotoxin fromFusarium spp. J. Sci. Food Agric. 1999 79 12 1676 1680 10.1002/(SICI)1097‑0010(199909)79:12<1676:AID‑JSFA419>3.0.CO;2‑5
    [Google Scholar]
  78. Jestoi M. Ritieni A. Rizzo A. Analysis of the Fusarium mycotoxins fusaproliferin and trichothecenes in grains using gas chromatography-mass spectrometry. J. Agric. Food Chem. 2004 52 6 1464 1469 10.1021/jf035130g 15030197
    [Google Scholar]
  79. Oueslati S. Meca G. Mliki A. Ghorbel A. Mañes J. Determination of Fusarium mycotoxins enniatins, beauvericin and fusaproliferin in cereals and derived products from Tunisia. Food Control 2011 22 8 1373 1377 10.1016/j.foodcont.2011.02.015
    [Google Scholar]
  80. Santini A. Ferracane R. Meca G. Ritieni A. Overview of analytical methods for beauvericin and fusaproliferin in food matrices. Anal. Bioanal. Chem. 2009 395 5 1253 1260 10.1007/s00216‑009‑3117‑x 19774368
    [Google Scholar]
  81. Decleer M. Rajkovic A. Sas B. Madder A. De Saeger S. Development and validation of ultra-high-performance liquid chromatography–tandem mass spectrometry methods for the simultaneous determination of beauvericin, enniatins (A, A1, B, B1) and cereulide in maize, wheat, pasta and rice. J. Chromatogr. A 2016 1472 35 43 10.1016/j.chroma.2016.10.003 27776774
    [Google Scholar]
  82. Vaz A. Cabral Silva A.C. Rodrigues P. Venâncio A. Detection methods for aflatoxin M1 in dairy products. Microorganisms 2020 8 2 246 10.3390/microorganisms8020246 32059461
    [Google Scholar]
  83. Womack E.D. Sparks D.L. Brown A.E. Aflatoxin M1 in milk and milk products: A short review. World Mycotoxin J. 2016 9 2 305 316 10.3920/WMJ2014.1867
    [Google Scholar]
  84. Altunay N. Katin K.P. Gürsoy N. Elik A. Şimşek S. Kaya S. Spectrophotometric determination of aflatoxin B1 in food sample: Chemometric optimization and theoretical supports for reaction mechanisms and binding regions. J. Food Compos. Anal. 2020 94 103646 10.1016/j.jfca.2020.103646
    [Google Scholar]
  85. Barzegar F. Kamankesh M. Mohammadi A. Recent development in formation, toxic effects, human health and analytical techniques of food contaminants. Food Rev. Int. 2023 39 2 1157 1183 10.1080/87559129.2021.1929303
    [Google Scholar]
  86. Silva P. Silva C.L. Perestrelo R. Nunes F.M. Câmara J.S. A useful strategy based on chromatographic data combined with quality-by-design approach for food analysis applications. The case study of furanic derivatives in sugarcane honey. J. Chromatogr. A 2017 1520 117 126 10.1016/j.chroma.2017.09.019 28916394
    [Google Scholar]
  87. Perestrelo R. Silva C.L. Câmara J.S. Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography. J. Chromatogr. A 2015 1381 54 63 10.1016/j.chroma.2015.01.020 25618358
    [Google Scholar]
  88. Papageorgiou M. Lambropoulou D. Morrison C. Kłodzińska E. Namieśnik J. Płotka-Wasylka J. Literature update of analytical methods for biogenic amines determination in food and beverages. Trends Analyt. Chem. 2018 98 128 142 10.1016/j.trac.2017.11.001
    [Google Scholar]
  89. Prasad M.N. Prasad, M.N., Ed.; Heavy metal: From biomolecules to ecosystems 2013 10.1007/978‑3‑662‑07743‑6
    [Google Scholar]
  90. Nagajyoti P.C. Lee K.D. Sreekanth T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010 8 3 199 216 10.1007/s10311‑010‑0297‑8
    [Google Scholar]
  91. Jomova K. Makova M. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Rhodes C.J. Valko M. Essential metals in health and disease. Chem. Biol. Interact. 2022 367 110173 10.1016/j.cbi.2022.110173 36152810
    [Google Scholar]
  92. Tan S.Y. Praveena S.M. Abidin E.Z. Cheema M.S. A review of heavy metals in indoor dust and its human health-risk implications. Rev. Environ. Health 2016 31 4 447 456 10.1515/reveh‑2016‑0026 27845887
    [Google Scholar]
  93. Adeyeye S.A.O. Safety issues in traditional West African foods: A critical review. J. Culin. Sci. Technol. 2017 15 2 101 125 10.1080/15428052.2016.1225533
    [Google Scholar]
  94. Ali M.H.H. Al-Qahtani K.M. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt. J. Aquat. Res. 2012 38 1 31 37 10.1016/j.ejar.2012.08.002
    [Google Scholar]
  95. Jomova K. Alomar S.Y. Nepovimova E. Kuca K. Valko M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2024 99 1 153 209 10.1007/s00204‑024‑03903‑2 39567405
    [Google Scholar]
  96. Kip E. Parr-Brownlie L.C. Healthy lifestyles and wellbeing reduce neuroinflammation and prevent neurodegenerative and psychiatric disorders. Front. Neurosci. 2023 17 1092537 10.3389/fnins.2023.1092537 36875655
    [Google Scholar]
  97. Genchi G. Sinicropi M.S. Lauria G. Carocci A. Catalano A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020 17 11 3782 10.3390/ijerph17113782 32466586
    [Google Scholar]
  98. Ahmed H. Al-Rasheed M. Almoaeen R.A. ICP-OES method for the determination of trace metals in nori seaweed: Application for the analysis of different samples from different countries. Food Anal. Methods 2024 17 4 523 533 10.1007/s12161‑024‑02587‑9
    [Google Scholar]
  99. Patriarca M. Barlow N. Cross A. Hill S. Robson A. Taylor A. Tyson J. Atomic spectrometry update: Review of advances in the analysis of clinical and biological materials, foods and beverages. J. Anal. At. Spectrom. 2021 36 3 452 511 10.1039/D1JA90007B
    [Google Scholar]
  100. López-Lorente Á.I. Pena-Pereira F. Pedersen-Bjergaard S. Zuin V.G. Ozkan S.A. Psillakis E. The ten principles of green sample preparation. Trends Analyt. Chem. 2022 148 116530 10.1016/j.trac.2022.116530
    [Google Scholar]
  101. Vishnu KN. Aiswarya KN. Sumesh K. Recent advances in sample preparation in chromatographic techniques. In: Advances in Separation Sciences. Elsevier 2025 87 105 10.1016/B978‑0‑323‑95292‑7.00016‑5
    [Google Scholar]
  102. Pérez R.A. Albero B. Ultrasound-assisted extraction methods for the determination of organic contaminants in solid and liquid samples. Trends Analyt. Chem. 2023 166 117204 10.1016/j.trac.2023.117204
    [Google Scholar]
  103. Kumar A. Kumar S. Light-controlled receptors for environmentally and biologically relevant anions. Chem. Eng. J. 2023 474 145493 10.1016/j.cej.2023.145493
    [Google Scholar]
  104. Kumar A. Kumar A. Sahoo P.R. Kumar S. Colorimetric and fluorescence-based detection of mercuric ion using a benzothiazolinic spiropyran. Chemosensors 2019 7 3 35 10.3390/chemosensors7030035
    [Google Scholar]
  105. Kumar A. Kumar A. Sahoo P.R. Kumar S. A light controlled, reversible, sensitive and highly selective colorimetric sensor for mercuric ions in water. J. Mol. Struct. 2020 1206 127702 10.1016/j.molstruc.2020.127702
    [Google Scholar]
  106. El Hosry L. Sok N. Richa R. Al Mashtoub L. Cayot P. Bou-Maroun E. Sample preparation and analytical techniques in the determination of trace elements in food: A review. Foods 2023 12 4 895 10.3390/foods12040895 36832970
    [Google Scholar]
  107. Hoenig M. de Kersabiec A.M. Sample preparation steps for analysis by atomic spectroscopy methods: Present status. Spectrochim. Acta B At. Spectrosc. 1996 51 11 1297 1307 10.1016/0584‑8547(96)01507‑8
    [Google Scholar]
  108. Shen K. Zhang N. Yang X. Li Z. Zhang Y. Zhou T. Dry ashing preparation of (Quasi) solid samples for the determination of inorganic elements by atomic/mass spectrometry. Appl. Spectrosc. Rev. 2015 50 4 304 331 10.1080/05704928.2014.986735
    [Google Scholar]
  109. Enders A. Lehmann J. Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun. Soil Sci. Plant Anal. 2012 43 7 1042 1052 10.1080/00103624.2012.656167
    [Google Scholar]
  110. Zhang N. Shen K. Yang X. Li Z. Zhou T. Zhang Y. Sheng Q. Zheng J. Simultaneous determination of arsenic, cadmium and lead in plant foods by ICP-MS combined with automated focused infrared ashing and cold trap. Food Chem. 2018 264 462 470 10.1016/j.foodchem.2018.05.058 29853402
    [Google Scholar]
  111. Kebbekus B.B. Preparation of samples for metals analysis. In: Sample preparation techniques in analytical chemistry. Wiley 2003 227 270 10.1002/0471457817.ch5
    [Google Scholar]
  112. Idera F. Omotola O. Paul U.J. Adedayo A. Evaluation of the effectiveness of different acid digestion on sediments. IOSR 2014 7 12 39 47 10.9790/5736‑071213947
    [Google Scholar]
  113. Balaram V. Subramanyam K.S. Advances in Sample Preparation
    [Google Scholar]
  114. Pinheiro F.C. Babos D.V. Barros A.I. Pereira-Filho E.R. Nóbrega J.A. Microwave-assisted digestion using dilute nitric acid solution and investigation of calibration strategies for determination of As, Cd, Hg and Pb in dietary supplements using ICP-MS. J. Pharm. Biomed. Anal. 2019 174 471 478 10.1016/j.jpba.2019.06.018 31228850
    [Google Scholar]
  115. Sheehan A. Furey A. Advanced review of the contributing factors for the microwave digestion of food matrices for trace elemental analysis. Talanta Open 2024 9 100309 10.1016/j.talo.2024.100309
    [Google Scholar]
  116. Leong T. Ashokkumar M. Kentish S. The fundamentals of power ultrasound - A review. Acoust. Aust. 2011 39 2 54 63
    [Google Scholar]
  117. Ashley K. Andrews R.N. Cavazos L. Demange M. Ultrasonic extraction as a sample preparation technique for elemental analysis by atomic spectrometry. J. Anal. At. Spectrom. 2001 16 10 1147 1153 10.1039/b102027g
    [Google Scholar]
  118. Ultrasound. accelerates sample preparation by reducing the sol-vent concentration gradient at the solid-liquid interface, releasing unstable species,
  119. Savun-Hekimoğlu B. A review on sonochemistry and its environmental applications. Acoustics) 2020 2 4 766 775 10.3390/acoustics2040042
    [Google Scholar]
  120. Ferreira S.L.C. Miró M. da Silva E.G.P. Matos G.D. dos Reis P.S. Brandao G.C. dos Santos W.N.L. Duarte A.T. Vale M.G.R. Araujo R.G.O. Slurry sampling-an analytical strategy for the determination of metals and metalloids by spectroanalytical techniques. Appl. Spectrosc. Rev. 2010 45 1 44 62 10.1080/05704920903435474
    [Google Scholar]
  121. Sobiech M. Luliński P. Molecularly imprinted solid phase extraction – recent strategies, future prospects and forthcoming challenges in complex sample pretreatment process. Trends Analyt. Chem. 2024 174 117695 10.1016/j.trac.2024.117695
    [Google Scholar]
  122. Machado R.C. Andrade D.F. Babos D.V. Castro J.P. Costa V.C. Sperança M.A. Garcia J.A. Gamela R.R. Pereira-Filho E.R. Solid sampling: Advantages and challenges for chemical element determination-a critical review. J. Anal. At. Spectrom. 2020 35 1 54 77 10.1039/C9JA00306A
    [Google Scholar]
  123. Lata S. Ansari N.G. Analytical techniques for heavy metal analysis. In: In Heavy Metal Contamination in the Environment. CRC Press 2024 180 202 10.1201/9781032685793‑12
    [Google Scholar]
  124. Bustos D.E. Toro J.A. Briceño M. Rivas R.E. Use of slow atomization ramp in high resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous determination of Cd and Ni in slurry powdered chocolate samples. Talanta 2022 247 123547 10.1016/j.talanta.2022.123547 35636365
    [Google Scholar]
  125. Boyacı E. Rodríguez-Lafuente Á. Gorynski K. Mirnaghi F. Souza-Silva É.A. Hein D. Pawliszyn J. Sample preparation with solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases. Anal. Chim. Acta 2015 873 14 30 10.1016/j.aca.2014.12.051 25911426
    [Google Scholar]
  126. Thiers R.E. Contamination in trace element analysis and its control. Methods Biochem. Anal. 1957 5 273 273 335 10.1002/9780470110218.ch6 13503678
    [Google Scholar]
  127. Aleluia A.C.M. Nascimento M.S. dos Santos A.M.P. dos Santos W.N.L. de Freitas Santos Júnior A. Ferreira S.L.C. Analytical approach of elemental impurities in pharmaceutical products: A worldwide review. Spectrochim. Acta B At. Spectrosc. 2023 205 106689 10.1016/j.sab.2023.106689
    [Google Scholar]
  128. Nearing M.M. Koch I. Reimer K.J. Complementary arsenic speciation methods: A review. Spectrochim. Acta B At. Spectrosc. 2014 99 150 162 10.1016/j.sab.2014.07.001
    [Google Scholar]
  129. Bjørklund G. Dadar M. Mutter J. Aaseth J. The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017 159 545 554 10.1016/j.envres.2017.08.051 28889024
    [Google Scholar]
  130. Reeder R.J. Schoonen M.A.A. Lanzirotti A. Metal speciation and its role in bioaccessibility and bioavailability. Rev. Mineral. Geochem. 2006 64 1 59 113 10.2138/rmg.2006.64.3
    [Google Scholar]
  131. Harris G.K. Marshall M.R. Ash analysis. In: Food. Analysis Food. Sci. Text Series. Springer 2017 10.1007/978‑3‑319‑45776‑5_16
    [Google Scholar]
  132. Matusiewicz H. Sample preparation for inorganic trace element analysis. Phys. Sci. Rev. 2017 2 5 20178001 10.1515/psr‑2017‑8001
    [Google Scholar]
  133. Bizzi C.A. Pedrotti M.F. Silva J.S. Barin J.S. Nóbrega J.A. Flores E.M.M. Microwave-assisted digestion methods: Towards greener approaches for plasma-based analytical techniques. J. Anal. At. Spectrom. 2017 32 8 1448 1466 10.1039/C7JA00108H
    [Google Scholar]
  134. Camel V. Solid phase extraction of trace elements. Spectrochim. Acta B At. Spectrosc. 2003 58 7 1177 1233 10.1016/S0584‑8547(03)00072‑7
    [Google Scholar]
  135. Carreira-Casais A. Otero P. Garcia-Perez P. Garcia-Oliveira P. Pereira A.G. Carpena M. Soria-Lopez A. Simal-Gandara J. Prieto M.A. Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae. Int. J. Environ. Res. Public Health 2021 18 17 9153 10.3390/ijerph18179153 34501743
    [Google Scholar]
  136. Andrade K. M.G.; da Boa Morte, E.S.; Batista dos Santos, D.C.M.; Castro, J.T.; Barbosa, J.T.P.; Teixeira, A.P.; Fernandes, A.P.; Welz, B.; dos Santos, W.P.C.; Nunes dos Santos, E.B.G.; Korn, M. Sample preparation for the determination of metals in food samples using spectroanalytical methods - A review. Appl. Spectrosc. Rev. 2008 43 2 67 92 10.1080/05704920701723980
    [Google Scholar]
  137. Ražić S. Arsenijević J. Dogo M.S. Mušović J. Trtić-Petrović T. Greener chemistry in analytical sciences: From green solvents to applications in complex matrices. Current challenges and future perspectives: A critical review. Analyst 2023 148 14 3130 3152 10.1039/D3AN00498H 37337738
    [Google Scholar]
  138. Li Z. Huang J. Wang L. Li D. Chen Y. Xu Y. Li L. Xiao H. Luo Z. Novel insight into the role of sulfur dioxide in fruits and vegetables: Chemical interactions, biological activity, metabolism, applications, and safety. Crit. Rev. Food Sci. Nutr. 2024 64 24 8741 8765 10.1080/10408398.2023.2203737 37128783
    [Google Scholar]
  139. Moeller A. Ambrose R.F. Que Hee S.S. A comparison of techniques for preparing fish fillet for ICP-AES multielemental analysis and the microwave digestion of whole fish. Food Addit. Contam. 2001 18 1 19 29 10.1080/02652030010009156 11212544
    [Google Scholar]
  140. Rashid M.H. Fardous Z. Chowdhury M.A.Z. Alam M.K. Bari M.L. Moniruzzaman M. Gan S.H. Determination of heavy metals in the soils of tea plantations and in fresh and processed tea leaves: An evaluation of six digestion methods. Chem. Cent. J. 2016 10 1 7 10.1186/s13065‑016‑0154‑3 26900397
    [Google Scholar]
  141. Eleazu C.O. Eleazu K.F. Ukamaka G. Adeolu T. Ezeorah V. Ezeorah B. Ituma C. Ilom J. Nutrient and antinutrient composition and heavy metal and phenolic profiles of maize (Zea mays) as affected by different processing techniques. ACS. Food. Sci. Technol 2021 1 1 113 123 10.1021/acsfoodscitech.0c00045
    [Google Scholar]
  142. Metwally M. Benhawy A. Khalifa R. El Nashar R. Trojanowicz M. Application of molecularly imprinted polymers in the analysis of waters and wastewaters. Molecules 2021 26 21 6515 10.3390/molecules26216515 34770924
    [Google Scholar]
  143. Belay K.A. Tadesse A. Comparison of digestion methods for determination of Pb (II), Cr (VI) and Cd (II) contents in some Ethiopia spices using atomic absorption spectroscopy. Int. J. Acad. Sci. Res. 2014 2 3 42 53
    [Google Scholar]
  144. Ramezani Z. Aghel N. Amirabedin N. Determination of Pb and Cd in garlic herb (Allium sativum) planted in Gilan and Khuzestan provinces using graphite furnace atomic absorption spectrometry. Jundishapur J. Nat. Pharm. Prod. 2012 7 2 41 44 10.17795/jjnpp‑3350 24624152
    [Google Scholar]
  145. Ncube N. Tancu Y. Mketo N. A greener, rapid and accurate microwave-assisted hydrogen peroxide digestion method for ICP-OES determination of heavy metals in pet food samples. J. Food Compos. Anal. 2024 131 106201 10.1016/j.jfca.2024.106201
    [Google Scholar]
  146. Meng R. Zhu Q. Long T. He X. Luo Z. Gu R. Wang W. Xiang P. The innovative and accurate detection of heavy metals in foods: A critical review on electrochemical sensors. Food Control 2023 150 109743 10.1016/j.foodcont.2023.109743
    [Google Scholar]
  147. Csuros M. Environmental sampling and analysis: Lab manual. In: 1st ed New York Routledge 2018 400 10.1201/9780203756881
    [Google Scholar]
  148. Guo Z. Chen P. Yosri N. Chen Q. Elseedi H.R. Zou X. Yang H. Detection of heavy metals in food and agricultural products by surface-enhanced Raman spectroscopy. Food Rev. Int. 2023 39 3 1440 1461 10.1080/87559129.2021.1934005
    [Google Scholar]
  149. Sastre J. Sahuquillo A. Vidal M. Rauret G. Determination of Cd, Cu, Pb and Zn in environmental samples: Microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal. Chim. Acta 2002 462 1 59 72 10.1016/S0003‑2670(02)00307‑0
    [Google Scholar]
  150. Nuechter M. Mueller U. Ondruschka B. Tied A. Lautenschlaeger W. Microwave‐assisted chemical reactions. Ind. Chem. Plant. Equip Process. Eng. Biotechnol. 2003 26 12 1207 1216 10.1002/ceat.200301836
    [Google Scholar]
  151. Butcher D.J. Recent advances in graphite furnace atomic absorption spectrometry: A review of fundamentals and applications. Appl. Spectrosc. Rev. 2024 59 2 247 275 10.1080/05704928.2023.2192268
    [Google Scholar]
  152. Long Z. Luo Y. Zheng C. Deng P. Hou X. Recent advance of hydride generation–analytical atomic spectrometry: Part I-technique development. Appl. Spectrosc. Rev. 2012 47 5 382 413 10.1080/05704928.2012.666775
    [Google Scholar]
  153. Perelonia K.B.S. Benitez K.C.D. Banicod R.J.S. Tadifa G.C. Cambia F.D. Montojo U.M. Validation of an analytical method for the determination of cadmium, lead and mercury in fish and fishery resources by graphite furnace and cold vapor atomic absorption spectrometry. Food Control 2021 130 108363 10.1016/j.foodcont.2021.108363
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461384294251007170357
Loading
/content/journals/cgc/10.2174/0122133461384294251007170357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test