Skip to content
2000
image of Sustainable Tools for C-C and C-heteroatom Cross-coupling from Aryl Diazonium Salts

Abstract

Aromatic and heteroatomic diazonium salts constitute a significant class of very reactive electrophiles. In recent times, reactions of diazonium compounds under visible-light photocatalysis, microwave irradiation, and ball-milling strategies have been at the forefront of organic synthesis. The anions like tetrafluoroborate, mesylate, tosylate, disulfonamide, except for chloride and carboxylate, tethered with the aromatic rings of diazo frameworks, have rendered exceptional stability. The synthetic methodologies are highly advantageous in terms of regioselectivity of yields, broad substrate scope, excellent functional group tolerance, and high conversion ratio. These sustainable approaches not only reduce waste production, but also facilitate a ubiquitous eco-friendly protocol which enables strategies, transformations, and syntheses that are typically unachievable in solution. This current review article summarizes the recent developments of aryl diazonium compounds in the field of organic synthesis under ligand- and additive-less conditions. The sustainable techniques employed herein involve the use of non-toxic, low-cost, commercial-grade reagents, environmentally benign and greener solvents.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461403573250717025917
2025-07-22
2025-09-29
Loading full text...

Full text loading...

References

  1. Kalyani D. McMurtrey K.B. Neufeldt S.R. Sanford M.S. Room-temperature C-H arylation: Merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 2011 133 46 18566 18569 10.1021/ja208068w 22047138
    [Google Scholar]
  2. Hari D.P. Schroll P. König B. Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts. J. Am. Chem. Soc. 2012 134 6 2958 2961 10.1021/ja212099r 22296099
    [Google Scholar]
  3. Hari D.P. Hering T. König B. Visible light photocatalytic synthesis of benzothiophenes. Org. Lett. 2012 14 20 5334 5337 10.1021/ol302517n 23039199
    [Google Scholar]
  4. Yu J. Zhang L. Yan G. Metal-free, visible light-induced borylation of aryldiazonium salts: A simple and green synthetic route to arylboronates. Adv. Synth. Catal. 2012 354 14-15 2625 2628 10.1002/adsc.201200416
    [Google Scholar]
  5. Schroll P. Hari D.P. König B. Photocatalytic arylation of alkenes, alkynes and enones with diazonium salts. ChemistryOpen 2012 1 3 130 133 10.1002/open.201200011 24551500
    [Google Scholar]
  6. Majek M. von Wangelin A.J. Organocatalytic visible light mediated synthesis of aryl sulfides. Chem. Commun. (Camb.) 2013 49 48 5507 5509 10.1039/C3CC41867G 23660726
    [Google Scholar]
  7. Hering T. Hari D.P. König B. Visible-light-mediated α-arylation of enol acetates using aryl diazonium salts. J. Org. Chem. 2012 77 22 10347 10352 10.1021/jo301984p 23101908
    [Google Scholar]
  8. Wang X. Cuny G.D. Noël T. A mild, one-pot Stadler-Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow. Angew. Chem. Int. Ed. Engl. 2013 52 30 7860 7864 10.1002/anie.201303483 23784666
    [Google Scholar]
  9. Xiao T. Dong X. Tang Y. Zhou L. Phenanthrene synthesis by eosin Y-catalyzed, visible light-induced [4+2] benzannulation of biaryldiazonium salts with alkynes. Adv. Synth. Catal. 2012 354 3195 3199 10.1002/adsc.201200569
    [Google Scholar]
  10. Kundu D. Synthetic strategies for aryl/heterocyclic selenides and tellurides under transition-metal-catalyst free conditions. RSC Advances 2021 11 12 6682 6698 10.1039/D0RA10629A 35423206
    [Google Scholar]
  11. Doyle M.P. Bryker W.J. Alkyl nitrite-metal halide deamination reactions. 6. Direct synthesis of arenediazonium tetrafluoroborate salts from aromatic amines, tert-butyl nitrite, and boron trifluoride etherate in anhydrous media. J. Org. Chem. 1979 44 9 1572 1574 10.1021/jo01323a048
    [Google Scholar]
  12. Roglans A. Pla-Quintana A. Moreno-Mañas M. Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions. Chem. Rev. 2006 106 11 4622 4643 10.1021/cr0509861 17091930
    [Google Scholar]
  13. Lavanya J. Aishwarya M. Rizwana S. Vignesh K. A review on -aryl diazonium compounds. Int. J. Pharm. Res. 2023 8 4 667
    [Google Scholar]
  14. Koziakov D. Wu G. Jacobi von Wangelin A. Aromatic substitutions of arenediazonium salts via metal catalysis, single electron transfer, and weak base mediation. Org. Biomol. Chem. 2018 16 27 4942 4953 10.1039/C8OB00591E 29926882
    [Google Scholar]
  15. Mo F. Qiu D. Zhang L. Wang J. Recent development of aryl diazonium chemistry for the derivatization of aromatic compounds. Chem. Rev. 2021 121 10 5741 5829 10.1021/acs.chemrev.0c01030 33836126
    [Google Scholar]
  16. Sandmeyer T. Ueber die Ersetzung der Amidgruppe durch Chlor in den aromatischen Substanzen. Ber. Dtsch. Chem. Ges. 1884 17 2 1633 1635 10.1002/cber.18840170219
    [Google Scholar]
  17. Pschorr R. Neue Synthese des Phenanthrens und seiner Derivate. Ber. Dtsch. Chem. Ges. 1896 29 496 501 10.1002/cber.18960290198
    [Google Scholar]
  18. Gomberg M. Bachmann W.E. The synthesis of biaryl compounds by means of the diazo reaction. J. Am. Chem. Soc. 1924 46 10 2339 2343 10.1021/ja01675a026
    [Google Scholar]
  19. Meerwein H. Büchner E. van Emster K. Über die einwirkung aromatischer diazover-bindungen auf α,β-ungesättigte carbonylverbindungen. J. Prakt. Chem. 1939 152 237 266 10.1002/prac.19391520705
    [Google Scholar]
  20. Trusova M.E. Kutonova K.V. Kurtukov V.V. Filimonov V.D. Postnikov P.S. Arenediazonium salts transformations in water media: Coming round to origins. Resour. -. Effic Technol 2016 2 1 36 42 10.1016/j.reffit.2016.01.001
    [Google Scholar]
  21. Zollinger H. Diazo Chemistry. Weinheim, New York, Basel, Cambridge, Tokyo Wiley-VCH 1994
    [Google Scholar]
  22. Galli C. Radical reactions of arenediazonium ions: An easy entry into the chemistry of the aryl radical. Chem. Rev. 1988 88 5 765 792 10.1021/cr00087a004
    [Google Scholar]
  23. Hari D.P. König B. The photocatalyzed Meerwein arylation: Classic reaction of aryl diazonium salts in a new light. Angew. Chem. Int. Ed. Engl. 2013 52 18 4734 4743 10.1002/anie.201210276 23576379
    [Google Scholar]
  24. Mo F. Dong G. Zhang Y. Wang J. Recent applications of arene diazonium salts in organic synthesis. Org. Biomol. Chem. 2013 11 10 1582 1593 10.1039/C3OB27366K 23358692
    [Google Scholar]
  25. Patil C.J. Talele D.S. Talele S.P. Pohekar P.R. Kolhe D.S. Coupling reactions involving aryldiazonium salt: Part-VII. Products of chemoselective reaction of aryl-diazonium chloride with active methylene group containing moiety. J. Pharm. Sci. Res. 2019 11 6 2213 2219
    [Google Scholar]
  26. Hodgson H.H. The Sandmeyer reaction. Chem. Rev. 1947 40 2 251 277 10.1021/cr60126a003 20291034
    [Google Scholar]
  27. He Y. Wu H. Toste F.D. A dual catalytic strategy for carbon-phosphorus cross-coupling via gold and photoredox catalysis. Chem. Sci. (Camb.) 2015 6 2 1194 1198 10.1039/C4SC03092C 25685313
    [Google Scholar]
  28. Billingsley K. Buchwald S.L. Highly efficient monophosphine-based catalyst for the palladium-catalyzed suzuki-miyaura reaction of heteroaryl halides and heteroaryl boronic acids and esters. J. Am. Chem. Soc. 2007 129 11 3358 3366 10.1021/ja068577p 17326639
    [Google Scholar]
  29. Billingsley K.L. Buchwald S.L. A general and efficient method for the Suzuki-Miyaura coupling of 2-pyridyl nucleophiles. Angew. Chem. Int. Ed. Engl. 2008 47 25 4695 4698 10.1002/anie.200801465 18491343
    [Google Scholar]
  30. Crisóstomo F.P. Martín T. Carrillo R. Ascorbic acid as an initiator for the direct C-H arylation of (hetero)arenes with anilines nitrosated in situ. Angew. Chem. Int. Ed. Engl. 2014 53 8 2181 2185 10.1002/anie.201309761 24453180
    [Google Scholar]
  31. Kundu D. Mahata A. Roy T. Synthesis of aryl/heteroaryl selenides using transition metals catalyzed cross coupling and C—H activation. Curr. Org. Chem. 2022 26 15 1470 1484 10.2174/1385272827666221103104321
    [Google Scholar]
  32. Mahata A. Garain M. Roy T. Gorai D. Kundu D. Transition metals catalyzed direct C—H chalcogenation of arenes and heteroarenes. Curr. Org. Synth. 2024 21 6 764 795 10.2174/1570179420666230428122124
    [Google Scholar]
  33. Roy T. Mahata A. Kundu D. Recent advances in copper-catalyzed carbon chalcogenides cross-coupling reactions. Curr. Org. Synth. 2023 20 3 267 277 10.2174/1570179419666220324122735 35331115
    [Google Scholar]
  34. Xuan J. Xiao W-J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. Engl. 2012 51 28 6828 6838 10.1002/anie.201200223 22711502
    [Google Scholar]
  35. Prier C.K. Rankic D.A. MacMillan D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013 113 7 5322 5363 10.1021/cr300503r 23509883
    [Google Scholar]
  36. Yin Y. Zhao X. Qiao B. Jiang Z. Cooperative photoredox and chiral hydrogen- bonding catalysis. Org. Chem. Front. 2020 7 10 1283 1296 10.1039/D0QO00276C
    [Google Scholar]
  37. Yoon T.P. Ischay M.A. Du J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010 2 7 527 532 10.1038/nchem.687 20571569
    [Google Scholar]
  38. Narayanam J.M.R. Stephenson C.R.J. Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev. 2011 40 1 102 113 10.1039/B913880N 20532341
    [Google Scholar]
  39. Reckenthäler M. Griesbeck A.G. Photoredox catalysis for organic syntheses. Adv. Synth. Catal. 2013 355 14-15 2727 2744 10.1002/adsc.201300751
    [Google Scholar]
  40. Hari D.P. König B. Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun. (Camb.) 2014 50 51 6688 6699 10.1039/C4CC00751D 24699920
    [Google Scholar]
  41. Hopkinson M.N. Sahoo B. Li J-L. Glorius F. Dual catalysis sees the light: Combining photoredox with organo-, acid, and transition-metal catalysis. Chemistry 2014 20 14 3874 3886 10.1002/chem.201304823 24596102
    [Google Scholar]
  42. Miranda M.A. Garcia H. 2,4,6-Triphenylpyrylium tetrafluoroborate as an electron-transfer photosensitizer. Chem. Rev. 1994 94 4 1063 1089 10.1021/cr00028a009
    [Google Scholar]
  43. Fagnoni M. Dondi D. Ravelli D. Albini A. Photocatalysis for the formation of the C-C bond. Chem. Rev. 2007 107 6 2725 2756 10.1021/cr068352x 17530909
    [Google Scholar]
  44. Fukuzumi S. Ohkubo K. Selective photocatalytic reactions with organic photocatalysts. Chem. Sci. (Camb.) 2013 4 2 561 574 10.1039/C2SC21449K
    [Google Scholar]
  45. Fukuzumi S. Ohkubo K. Organic synthetic transformations using organic dyes as photoredox catalysts. Org. Biomol. Chem. 2014 12 32 6059 6071 10.1039/C4OB00843J 24984977
    [Google Scholar]
  46. Neumann M. Füldner S. König B. Zeitler K. Metal-free, cooperative asymmetric organophotoredox catalysis with visible light. Angew. Chem. Int. Ed. Engl. 2011 50 4 951 954 10.1002/anie.201002992 20878819
    [Google Scholar]
  47. Liu J. Wen S. Hou Y. Zuo F. Beran G.J.O. Feng P. Boron carbides as efficient, metal-free, visible-light-responsive photocatalysts. Angew. Chem. Int. Ed. Engl. 2013 52 11 3241 3245 10.1002/anie.201209363 23355478
    [Google Scholar]
  48. Majek M. Filace F. von Wangelin A.J. On the mechanism of photocatalytic reactions with eosin Y. Beilstein J. Org. Chem. 2014 10 981 989 10.3762/bjoc.10.97 24991248
    [Google Scholar]
  49. Ischay M.A. Anzovino M.E. Du J. Yoon T.P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc. 2008 130 39 12886 12887 10.1021/ja805387f 18767798
    [Google Scholar]
  50. Hari D.P. Hering T. König B. The photoredox-catalyzed Meerwein addition reaction: Intermolecular amino-arylation of alkenes. Angew. Chem. Int. Ed. Engl. 2014 53 3 725 728 10.1002/anie.201307051 24307333
    [Google Scholar]
  51. Kundu D. Ahammed S. Ranu B.C. Visible light photocatalyzed direct conversion of aryl-/heteroarylamines to selenides at room temperature. Org. Lett. 2014 16 6 1814 1817 10.1021/ol500567t 24621272
    [Google Scholar]
  52. Bu M. Niu T.F. Cai C. Visible-light-mediated oxidative arylation of vinylarenes under aerobic conditions. Catal. Sci. Technol. 2015 5 2 830 834 10.1039/C4CY01523A
    [Google Scholar]
  53. Wu Y.B. Lu G.P. Zhou B.J. Bu M.J. Wan L. Cai C. Visible-light-initiated difluoromethylation of arene diazonium tetrafluoroborates. Chem. Commun. (Camb.) 2016 52 35 5965 5968 10.1039/C6CC00177G 27055723
    [Google Scholar]
  54. Das B.C. Thapa P. Karki R. Schinke C. Das S. Kambhampati S. Banerjee S.K. Boron chemicals in diagnosis and therapeutics. Future Med. Chem. 2013 5 6 653 676 10.4155/fmc.13.38 23617429
    [Google Scholar]
  55. Lennox A.J.J. Lloyd-Jones G.C. Selection of boron reagents for Suzuki-Miyaura coupling. Chem. Soc. Rev. 2014 43 1 412 443 10.1039/C3CS60197H 24091429
    [Google Scholar]
  56. Ban H.S. Nakamura H. Boron-based drug design. Chem. Rec. 2015 15 3 616 635 10.1002/tcr.201402100 25800654
    [Google Scholar]
  57. Li D. Chen Y. Liu Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem. Soc. Rev. 2015 44 22 8097 8123 10.1039/C5CS00013K 26377373
    [Google Scholar]
  58. Xu L. Zhang S. Li P. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules. Chem. Soc. Rev. 2015 44 24 8848 8858 10.1039/C5CS00338E 26393673
    [Google Scholar]
  59. Hall D.G. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Weinheim Wiley-VCH 2011 1 13
    [Google Scholar]
  60. Xu Y. Yang X. Fang H. Additive- and photocatalyst-free borylation of arylazo sulfones under visible light. J. Org. Chem. 2018 83 20 12831 12837 10.1021/acs.joc.8b01662 30256639
    [Google Scholar]
  61. Ghiazza C. Debrauwer V. Monnereau C. Khrouz L. Médebielle M. Billard T. Tlili A. Visible-light-mediated metal-free synthesis of trifluoromethylselenolated arenes. Angew. Chem. Int. Ed. Engl. 2018 57 36 11781 11785 10.1002/anie.201806165 29985549
    [Google Scholar]
  62. Pramanik M.M.D. Rastogi N. Visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO. Chem. Commun. (Camb.) 2016 52 55 8557 8560 10.1039/c6cc04142f 27321904
    [Google Scholar]
  63. Hong B. Lee J. Lee A. Visible-light-promoted synthesis of diaryl sulfides under air. Tetrahedron Lett. 2017 58 29 2809 2812 10.1016/j.tetlet.2017.06.006
    [Google Scholar]
  64. Liang X. Li Y.F. Xia Q. Cheng L. Guo J.B. Zhang P. Zhang W.H. Wang Q.M. Visible-light-driven electron donor-acceptor complex induced sulfonylation of diazonium salts with sulfinates. Green Chem. 2021 23 8865 8870 10.1039/D1GC03239A
    [Google Scholar]
  65. Bartolomeu A.D. Silva R.C. Brocksom T.J. Noël T. de Oliveira K.T. Photoarylation of pyridines using aryldiazonium salts and visible light: An EDA approach. J. Org. Chem. 2019 84 10459 10471
    [Google Scholar]
  66. Silva R.C. Villela L.F. Brocksom T.J. de Oliveira K.T. Direct C-H photoarylation of diazines using aryldiazonium salts and visible-light. RSC Advances 2020 10 52 31115 31122 10.1039/D0RA06876D 35520669
    [Google Scholar]
  67. Kamal A. Srivastava V. Singh S. Visible-light-induced arylation via an electron–donor acceptor complex: A catalyst-free approach for the synthesis of N-(hetero)aryl sulfonamides. New J. Chem. 2023 47 14605 14609 10.1039/d3nj02224b
    [Google Scholar]
  68. Jiang Z. You K. Wu H. Xu M. Luo J. Zhou Y. Wang T. Visible-light-promoted thioetherification of aryl diazonium salts with thiols via electron-donor acceptor complex. Mol. Catal. 2025 572 114801 10.1016/j.mcat.2024.114801
    [Google Scholar]
  69. Oliver Kappe C. Microwave dielectric heating in synthetic organic chemistry. Chem. Soc. Rev. 2008 37 6 1127 1139 10.1039/B803001B 18497926
    [Google Scholar]
  70. Gonzalez-Arellano C. Luque R. Macquarrie D.J. Microwave efficient S-arylation of thiols with aryl iodides using supported metal nanoparticles. Chem. Commun. (Camb.) 2009 11 11 1410 1412 10.1039/b818767c 19259604
    [Google Scholar]
  71. Dandia A. Gupta S.L. Sharma R. Saini P. Parewa V. Microwave-assisted catalyst- free organic synthesis. In: Green Sustainable Process. for Chemical and Environmental Engineering and Science. Elsevier 2021 539 622
    [Google Scholar]
  72. Westaway K.C. Gedye R.N. The question of specific activation of organic reactions by microwaves. J. Microw. Power Electromagn. Energy 1995 30 4 219 230 10.1080/08327823.1995.11688280
    [Google Scholar]
  73. Perreux L. Loupy A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 2001 57 45 9199 9223 10.1016/S0040‑4020(01)00905‑X
    [Google Scholar]
  74. Kuhnert N. Microwave-assisted reactions in organic synthesis– are there any nonthermal microwave effects? Angew. Chem. Int. Ed. 2002 41 11 1863 10.1002/15213773
    [Google Scholar]
  75. Mingos D.M.P. Baghurst D.R. Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev. 1991 20 1 1 47 10.1039/CS9912000001
    [Google Scholar]
  76. Neas E.D. Collins M.J. Introduction to Microwave Sample Preparation. Washington, D. C. American Chemical Society 1988
    [Google Scholar]
  77. Metaxas A.C. Meridith R.J. Industrial microwave heating; The Institution of Engineering and Technology: London, 1983
    [Google Scholar]
  78. Gabriel C. Gabriel S. Grant E.H. Halstead B.S.J. Mingos D.M.P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev. 1998 27 3 213 223 10.1039/A827213Z
    [Google Scholar]
  79. Sundberg R.T. Indoles. London Academic Press 1996
    [Google Scholar]
  80. Scriven, E.F.V., Ed.; Comprehensive Heterocyclic Chemistry II. Oxford Pergamon Press 1996 207 257
    [Google Scholar]
  81. Zhang Z-G. Haag B.A. Li J-S. Knochel P. Efficient preparation of polyfunctional indoles via a zinc organometallic variation of the fischer indole synthesis. Synthesis 2011 1 23 29 10.1055/s‑0030‑1258348
    [Google Scholar]
  82. Kundu D. Ahammed S. Ranu B.C. Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: A general procedure for the synthesis of unsymmetrical diaryl chalcogenides. Green Chem. 2012 14 7 2024 2030 10.1039/C2GC35328H
    [Google Scholar]
  83. Kutonova K.V. Trusova M.E. Stankevich A.V. Postnikov P.S. Filimonov V.D. Matsuda-Heck reaction with arenediazonium tosylates in water. Beilstein J. Org. Chem. 2015 11 358 362 10.3762/bjoc.11.41 25977709
    [Google Scholar]
  84. Li X. Du J. Zhang Y. Chang H. Gao W. Wei W. Synthesis and nano-Pd catalyzed chemoselective oxidation of symmetrical and unsymmetrical sulfides. Org. Biomol. Chem. 2019 17 11 3048 3055 10.1039/C8OB03209B 30834408
    [Google Scholar]
  85. Dhiman A.K. Chandra D. Kumar R. Sharma U. Catalyst-free synthesis of 2-anilino-quinolines and 3-hydroxyquinolines via three-component reaction of quinoline N-oxides, aryldiazonium salts, and acetonitrile. J. Org. Chem. 2019 84 11 6962 6969 10.1021/acs.joc.9b00739 31070920
    [Google Scholar]
  86. Wada S. Suzuki H. Calcite and fluorite as catalyst for the Knövenagel condensation of malononitrile and methyl cyanoacetate under solvent-free conditions. Tetrahedron Lett. 2003 44 2 399 401 10.1016/S0040‑4039(02)02431‑0
    [Google Scholar]
  87. James S.L. Adams C.J. Bolm C. Braga D. Collier P. Friščić T. Grepioni F. Harris K.D.M. Hyett G. Jones W. Krebs A. Mack J. Maini L. Orpen A.G. Parkin I.P. Shearouse W.C. Steed J.W. Waddell D.C. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012 41 1 413 447 10.1039/C1CS15171A 21892512
    [Google Scholar]
  88. Stolle A. Szuppa T. Leonhardt S.E.S. Ondruschka B. Ball milling in organic synthesis: Solutions and challenges. Chem. Soc. Rev. 2011 40 5 2317 2329 10.1039/C0CS00195C 21387034
    [Google Scholar]
  89. Wang G-W. Mechanochemical organic synthesis. Chem. Soc. Rev. 2013 42 18 7668 7700 10.1039/C3CS35526H 23660585
    [Google Scholar]
  90. Zhu S-E. Li F. Wang G-W. Mechanochemistry of fullerenes and related materials. Chem. Soc. Rev. 2013 42 18 7535 7570 10.1039/C3CS35494F 23677148
    [Google Scholar]
  91. Thorwirth R. Bernhardt F. Stolle A. Ondruschka B. Asghari J. Switchable selectivity during oxidation of anilines in a ball mill. Chemistry 2010 16 44 13236 13242 10.1002/chem.201001702 20922723
    [Google Scholar]
  92. Su W. Yu J. Li Z. Jiang Z. Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines. J. Org. Chem. 2011 76 21 9144 9150 10.1021/jo2015533 21961457
    [Google Scholar]
  93. Schimdt R. Thorwirth R. Szuppa T. Stolle A. Ondruschka B. Hopf H. Fast, ligand- and solvent-free synthesis of 1,4-substituted buta-1,3-diynes by Cu- catalyzed homocoupling of terminal alkynes in a ball mill. Chem. -Eur J. 2011 17 29 8129 10.1002/chem.201100604
    [Google Scholar]
  94. Hernández J.G. Juaristi E. Efficient ball-mill procedure in the ‘green’ asymmetric aldol reaction organocatalyzed by (S)-proline-containing dipeptides in the presence of water. Tetrahedron 2011 67 36 6953 6959 10.1016/j.tet.2011.06.042
    [Google Scholar]
  95. Bonnamour J. Métro T-X. Martirez J. Lamaty F. Environmentally benign peptide synthesis using liquid-assisted ball-milling: Application to the synthesis of Leuenkephalin. Green Chem. 2013 15 5 1116 1120 10.1039/C3GC40302E
    [Google Scholar]
  96. Zhang Z. Wu H-H. Tan Y-J. A simple and straightforward synthesis of phenyl iso-thiocyanates, symmetrical and unsymmetrical thioureas under ball milling. RSC Advances 2013 3 38 16940 16944 10.1039/C3RA43252A
    [Google Scholar]
  97. Pichon A. James S.L. An array-based study of reactivity under solvent-free mechano-chemical conditions—insights and trends. CrystEngComm 2008 10 12 1839 1847 10.1039/B810857A
    [Google Scholar]
  98. Yuan W. Friscić T. Apperley D. James S.L. High reactivity of metal-organic frameworks under grinding conditions: Parallels with organic molecular materials. Angew. Chem. Int. Ed. Engl. 2010 49 23 3916 3919 10.1002/anie.200906965 20422663
    [Google Scholar]
  99. Garay A.L. Pichon A. James S.L. Solvent-free synthesis of metal complexes. Chem. Soc. Rev. 2007 36 6 846 855 10.1039/B600363J 17534472
    [Google Scholar]
  100. Kubias B. Fait M.J.G. Schlögl R. Handbook of Heterogeneous Catalysis, 2nd ed; Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J., Eds.; Wiley-VCH: Weinheim, 2008 571 583
    [Google Scholar]
  101. Mukherjee N. Chatterjee T. Ranu B.C. Reaction under ball-milling: Solvent-, ligand-, and metal-free synthesis of unsymmetrical diaryl chalcogenides. J. Org. Chem. 2013 78 21 11110 11114 10.1021/jo402071b 24116379
    [Google Scholar]
  102. Hernández J.G. Mechanochemical borylation of aryldiazonium salts: Merging light and ball milling. Beilstein J. Org. Chem. 2017 13 1463 1469 10.3762/bjoc.13.144 28845189
    [Google Scholar]
  103. Manna D. Roy G. Mugesh G. Antithyroid drugs and their analogues: Synthesis, structure, and mechanism of action. Acc. Chem. Res. 2013 46 11 2706 2715 10.1021/ar4001229 23883148
    [Google Scholar]
  104. Engman L. Cotgreave I. Angulo M. Taylor C.W. Paine-Murrieta G.D. Powis G. Diaryl chalcogenides as selective inhibitors of thioredoxin reductase and potential antitumor agents. Anticancer Res. 1997 17 6D 4599 4605 9494575
    [Google Scholar]
  105. Prochnow T. Back D.F. Zeni G. Iron(III) chloride and diorganyl diselenide-promoted nucleophilic closures of 1-benzyl-2-alkynylbenzenes in the preparation of 9- organoselanyl -5H-benzo[7]annulenes. Adv. Synth. Catal. 2016 358 7 1119 1129 10.1002/adsc.201501055
    [Google Scholar]
  106. Kundu D. Roy A. Panja S. Transition metal catalyst, solvent, base free synthesis of diaryl diselenides under mechanical ball milling. Curr. Org. Synth. 2021 19 4 477 483 10.2174/1570179419666211224144932 34951576
    [Google Scholar]
  107. Andrejčak S. Kisszekelyi P. Majek M. Šebesta R. Mechanochemical radical boronation of aryl diazonium salts promoted by sodium chloride. Eur. J. Org. Chem. 2023 26 5 e202201399 10.1002/ejoc.202201399
    [Google Scholar]
  108. Gao P. Wu X. Zhang D. Sun X. Zhang G. Chen F. Mechanochemical activation of aryl diazonium salts: Synthesis of polycyclic (hetero)aromatics. J. Org. Chem. 2024 89 17 12197 12203 10.1021/acs.joc.4c01107 39162099
    [Google Scholar]
  109. Zhang S. Kolluru L. Vedula S.K. Whippie D. Jin J. Carbon-carbon bond forming reactions via Pd-catalyzed detellurative homocoupling of diorganyl tellurides. Tetrahedron Lett. 2017 58 37 3594 3597 10.1016/j.tetlet.2017.07.087
    [Google Scholar]
  110. Stefani H.A. Pena J.M. Manarin F. Ando R.A. Leal D.M. Petragnani N. Cross-coupling of organotellurium compounds: Synthesis of biaryls, aryl-, and diaryl acetylenes. Tetrahedron Lett. 2011 52 34 4398 4401 10.1016/j.tetlet.2011.06.025
    [Google Scholar]
  111. Roy A. Panja S. Basu P.K. Kundu D. Synthesis of unsymmetrical diaryl tellurides under mechanical ball milling in room temperature. Curr. Org. Chem. 2024 28 4 319 324 10.2174/0113852728291474240123065931
    [Google Scholar]
  112. Zhao J. Yuan Y. Zhao F. Han W. Yuan Q. Kou M. Zhao J. Chen C. Wang S. Identifying the facet-dependent active sites of Cu2O for selective C-N coupling toward electrocatalytic urea synthesis. Appl. Catal. B 2024 340 123265 10.1016/j.apcatb.2023.123265
    [Google Scholar]
  113. Tu X. Zhu X. Bo S. Zhang X. Miao R. Wen G. Chen C. Li J. Zhou Y. Liu Q. Chen D. Shao H. Yan D. Li Y. Jia J. Wang S. A universal approach for sustainable urea synthesis via intermediate assembly at the electrode/electrolyte interface. Angew. Chem. Int. Ed. 2024 63 3 202317087 10.1002/anie.202317087
    [Google Scholar]
  114. Liang J. Deng S. Li Z. Zhou M. Wang S. Su Y. Yang S. Li H. Spin state modulati-on with oxygen vacancy orientates C/N intermediates for urea electrosynthesis of ultrahigh efficiency. Adv. Mater. 2025 37 9 e2418828 10.1002/adma.202418828 39846324
    [Google Scholar]
  115. Zhou M. Zhang Y. Li H. Li Z. Wang S. Lu X. Yang S. Tailoring O-Monodentate adsorption of CO2 initiates C—N coupling for efficient urea electrosynthesis with ultra-high carbon atom economy. Angew. Chem. Int. Ed. Engl. 2025 64 2 e202414392 10.1002/anie.202414392 39180230
    [Google Scholar]
  116. Aryamol K.S. Kanagaraj K. Nangan S. Haponiuk J.T. Okhawilai M. Pandiaraj S. Hanif M.B. Alodhayb A.N. Thomas S. Thirumalaivasan N. Gopi S. Recent advances of carbon pathways for sustainable environment development. Environ. Res. 2024 250 118513 10.1016/j.envres.2024.118513 38368918
    [Google Scholar]
  117. Nair A. Kuppusamy K. Nangan S. Natesan T. Haponiuk J.T. Thomas S. Ramasubburayan R. Gnanasekaran L. Selvaraj M. Gopi S. Multifunctional natural derived carbon quantum dots from Withania somnifera (L.) - Antiviral activities against SARS-CoV-2 pseudoviron. Environ. Res. 2023 239 Pt 1 117366 10.1016/j.envres.2023.117366 37827368
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461403573250717025917
Loading
/content/journals/cgc/10.2174/0122133461403573250717025917
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: visible light ; ball milling ; coupling ; microwave ; Aryl diazonium salts ; eosin Y
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test